/* synth_real.c: The functions for synthesizing real (float) samples, at the end of decoding. copyright 1995-2008 by the mpg123 project - free software under the terms of the LGPL 2.1 see COPYING and AUTHORS files in distribution or http://mpg123.org initially written by Michael Hipp, heavily dissected and rearranged by Thomas Orgis */ #include "mpg123lib_intern.h" #include "sample.h" #include "debug.h" #ifdef REAL_IS_FIXED #error "Do not build this file with fixed point math!" #else /* Part 3: All synth functions that produce float output. What we need is just a special WRITE_SAMPLE. For the generic and i386 functions, that is. The optimized synths would need to be changed internally to support float output. */ #define SAMPLE_T real #define WRITE_SAMPLE(samples,sum,clip) WRITE_REAL_SAMPLE(samples,sum,clip) /* Part 3a: All straight 1to1 decoding functions */ #define BLOCK 0x40 /* One decoding block is 64 samples. */ #define SYNTH_NAME synth_1to1_real #include "synth.h" #undef SYNTH_NAME /* Mono-related synths; they wrap over _some_ synth_1to1_real (could be generic, could be i386). */ #define SYNTH_NAME fr->synths.plain[r_1to1][f_real] #define MONO_NAME synth_1to1_real_mono #define MONO2STEREO_NAME synth_1to1_real_m2s #include "synth_mono.h" #undef SYNTH_NAME #undef MONO_NAME #undef MONO2STEREO_NAME #ifdef OPT_X86 #define NO_AUTOINCREMENT #define SYNTH_NAME synth_1to1_real_i386 #include "synth.h" #undef SYNTH_NAME /* i386 uses the normal mono functions. */ #undef NO_AUTOINCREMENT #endif #undef BLOCK /* At least one optimized real decoder... */ #ifdef OPT_X86_64 /* Assembler routines. */ int synth_1to1_real_x86_64_asm(real *window, real *b0, real *samples, int bo1); int synth_1to1_real_s_x86_64_asm(real *window, real *b0l, real *b0r, real *samples, int bo1); void dct64_real_x86_64(real *out0, real *out1, real *samples); /* Hull for C mpg123 API */ int synth_1to1_real_x86_64(real *bandPtr,int channel, mpg123_handle *fr, int final) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0, **buf; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer); #endif if(!channel) { fr->bo--; fr->bo &= 0xf; buf = fr->real_buffs[0]; } else { samples++; buf = fr->real_buffs[1]; } if(fr->bo & 0x1) { b0 = buf[0]; bo1 = fr->bo; dct64_real_x86_64(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr); } else { b0 = buf[1]; bo1 = fr->bo+1; dct64_real_x86_64(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr); } synth_1to1_real_x86_64_asm(fr->decwin, b0, samples, bo1); if(final) fr->buffer.fill += 256; return 0; } int synth_1to1_real_stereo_x86_64(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0l, *b0r, **bufl, **bufr; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) { do_equalizer(bandPtr_l,0,fr->equalizer); do_equalizer(bandPtr_r,1,fr->equalizer); } #endif fr->bo--; fr->bo &= 0xf; bufl = fr->real_buffs[0]; bufr = fr->real_buffs[1]; if(fr->bo & 0x1) { b0l = bufl[0]; b0r = bufr[0]; bo1 = fr->bo; dct64_real_x86_64(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l); dct64_real_x86_64(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r); } else { b0l = bufl[1]; b0r = bufr[1]; bo1 = fr->bo+1; dct64_real_x86_64(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l); dct64_real_x86_64(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r); } synth_1to1_real_s_x86_64_asm(fr->decwin, b0l, b0r, samples, bo1); fr->buffer.fill += 256; return 0; } #endif #ifdef OPT_AVX /* Assembler routines. */ #ifndef OPT_X86_64 int synth_1to1_real_x86_64_asm(real *window, real *b0, real *samples, int bo1); #endif int synth_1to1_real_s_avx_asm(real *window, real *b0l, real *b0r, real *samples, int bo1); void dct64_real_avx(real *out0, real *out1, real *samples); /* Hull for C mpg123 API */ int synth_1to1_real_avx(real *bandPtr,int channel, mpg123_handle *fr, int final) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0, **buf; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer); #endif if(!channel) { fr->bo--; fr->bo &= 0xf; buf = fr->real_buffs[0]; } else { samples++; buf = fr->real_buffs[1]; } if(fr->bo & 0x1) { b0 = buf[0]; bo1 = fr->bo; dct64_real_avx(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr); } else { b0 = buf[1]; bo1 = fr->bo+1; dct64_real_avx(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr); } synth_1to1_real_x86_64_asm(fr->decwin, b0, samples, bo1); if(final) fr->buffer.fill += 256; return 0; } int synth_1to1_fltst_avx(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0l, *b0r, **bufl, **bufr; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) { do_equalizer(bandPtr_l,0,fr->equalizer); do_equalizer(bandPtr_r,1,fr->equalizer); } #endif fr->bo--; fr->bo &= 0xf; bufl = fr->real_buffs[0]; bufr = fr->real_buffs[1]; if(fr->bo & 0x1) { b0l = bufl[0]; b0r = bufr[0]; bo1 = fr->bo; dct64_real_avx(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l); dct64_real_avx(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r); } else { b0l = bufl[1]; b0r = bufr[1]; bo1 = fr->bo+1; dct64_real_avx(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l); dct64_real_avx(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r); } synth_1to1_real_s_avx_asm(fr->decwin, b0l, b0r, samples, bo1); fr->buffer.fill += 256; return 0; } #endif #if defined(OPT_SSE) || defined(OPT_SSE_VINTAGE) /* Assembler routines. */ int synth_1to1_real_sse_asm(real *window, real *b0, real *samples, int bo1); int synth_1to1_real_s_sse_asm(real *window, real *b0l, real *b0r, real *samples, int bo1); void dct64_real_sse(real *out0, real *out1, real *samples); /* Hull for C mpg123 API */ int synth_1to1_real_sse(real *bandPtr,int channel, mpg123_handle *fr, int final) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0, **buf; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer); #endif if(!channel) { fr->bo--; fr->bo &= 0xf; buf = fr->real_buffs[0]; } else { samples++; buf = fr->real_buffs[1]; } if(fr->bo & 0x1) { b0 = buf[0]; bo1 = fr->bo; dct64_real_sse(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr); } else { b0 = buf[1]; bo1 = fr->bo+1; dct64_real_sse(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr); } synth_1to1_real_sse_asm(fr->decwin, b0, samples, bo1); if(final) fr->buffer.fill += 256; return 0; } int synth_1to1_real_stereo_sse(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0l, *b0r, **bufl, **bufr; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) { do_equalizer(bandPtr_l,0,fr->equalizer); do_equalizer(bandPtr_r,1,fr->equalizer); } #endif fr->bo--; fr->bo &= 0xf; bufl = fr->real_buffs[0]; bufr = fr->real_buffs[1]; if(fr->bo & 0x1) { b0l = bufl[0]; b0r = bufr[0]; bo1 = fr->bo; dct64_real_sse(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l); dct64_real_sse(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r); } else { b0l = bufl[1]; b0r = bufr[1]; bo1 = fr->bo+1; dct64_real_sse(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l); dct64_real_sse(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r); } synth_1to1_real_s_sse_asm(fr->decwin, b0l, b0r, samples, bo1); fr->buffer.fill += 256; return 0; } #endif #ifdef OPT_NEON /* Assembler routines. */ int synth_1to1_real_neon_asm(real *window, real *b0, real *samples, int bo1); int synth_1to1_real_s_neon_asm(real *window, real *b0l, real *b0r, real *samples, int bo1); void dct64_real_neon(real *out0, real *out1, real *samples); /* Hull for C mpg123 API */ int synth_1to1_real_neon(real *bandPtr,int channel, mpg123_handle *fr, int final) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0, **buf; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer); #endif if(!channel) { fr->bo--; fr->bo &= 0xf; buf = fr->real_buffs[0]; } else { samples++; buf = fr->real_buffs[1]; } if(fr->bo & 0x1) { b0 = buf[0]; bo1 = fr->bo; dct64_real_neon(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr); } else { b0 = buf[1]; bo1 = fr->bo+1; dct64_real_neon(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr); } synth_1to1_real_neon_asm(fr->decwin, b0, samples, bo1); if(final) fr->buffer.fill += 256; return 0; } int synth_1to1_real_stereo_neon(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0l, *b0r, **bufl, **bufr; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) { do_equalizer(bandPtr_l,0,fr->equalizer); do_equalizer(bandPtr_r,1,fr->equalizer); } #endif fr->bo--; fr->bo &= 0xf; bufl = fr->real_buffs[0]; bufr = fr->real_buffs[1]; if(fr->bo & 0x1) { b0l = bufl[0]; b0r = bufr[0]; bo1 = fr->bo; dct64_real_neon(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l); dct64_real_neon(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r); } else { b0l = bufl[1]; b0r = bufr[1]; bo1 = fr->bo+1; dct64_real_neon(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l); dct64_real_neon(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r); } synth_1to1_real_s_neon_asm(fr->decwin, b0l, b0r, samples, bo1); fr->buffer.fill += 256; return 0; } #endif #ifdef OPT_NEON64 /* Assembler routines. */ int synth_1to1_real_neon64_asm(real *window, real *b0, real *samples, int bo1); int synth_1to1_real_s_neon64_asm(real *window, real *b0l, real *b0r, real *samples, int bo1); void dct64_real_neon64(real *out0, real *out1, real *samples); /* Hull for C mpg123 API */ int synth_1to1_real_neon64(real *bandPtr,int channel, mpg123_handle *fr, int final) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0, **buf; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer); #endif if(!channel) { fr->bo--; fr->bo &= 0xf; buf = fr->real_buffs[0]; } else { samples++; buf = fr->real_buffs[1]; } if(fr->bo & 0x1) { b0 = buf[0]; bo1 = fr->bo; dct64_real_neon64(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr); } else { b0 = buf[1]; bo1 = fr->bo+1; dct64_real_neon64(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr); } synth_1to1_real_neon64_asm(fr->decwin, b0, samples, bo1); if(final) fr->buffer.fill += 256; return 0; } int synth_1to1_fltst_neon64(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr) { real *samples = (real *) (fr->buffer.data+fr->buffer.fill); real *b0l, *b0r, **bufl, **bufr; int bo1; #ifndef NO_EQUALIZER if(fr->have_eq_settings) { do_equalizer(bandPtr_l,0,fr->equalizer); do_equalizer(bandPtr_r,1,fr->equalizer); } #endif fr->bo--; fr->bo &= 0xf; bufl = fr->real_buffs[0]; bufr = fr->real_buffs[1]; if(fr->bo & 0x1) { b0l = bufl[0]; b0r = bufr[0]; bo1 = fr->bo; dct64_real_neon64(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l); dct64_real_neon64(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r); } else { b0l = bufl[1]; b0r = bufr[1]; bo1 = fr->bo+1; dct64_real_neon64(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l); dct64_real_neon64(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r); } synth_1to1_real_s_neon64_asm(fr->decwin, b0l, b0r, samples, bo1); fr->buffer.fill += 256; return 0; } #endif #ifndef NO_DOWNSAMPLE /* Part 3b: 2to1 synth. Only generic and i386. */ #define BLOCK 0x20 /* One decoding block is 32 samples. */ #define SYNTH_NAME synth_2to1_real #include "synth.h" #undef SYNTH_NAME /* Mono-related synths; they wrap over _some_ synth_2to1_real (could be generic, could be i386). */ #define SYNTH_NAME fr->synths.plain[r_2to1][f_real] #define MONO_NAME synth_2to1_real_mono #define MONO2STEREO_NAME synth_2to1_real_m2s #include "synth_mono.h" #undef SYNTH_NAME #undef MONO_NAME #undef MONO2STEREO_NAME #ifdef OPT_X86 #define NO_AUTOINCREMENT #define SYNTH_NAME synth_2to1_real_i386 #include "synth.h" #undef SYNTH_NAME /* i386 uses the normal mono functions. */ #undef NO_AUTOINCREMENT #endif #undef BLOCK /* Part 3c: 4to1 synth. Only generic and i386. */ #define BLOCK 0x10 /* One decoding block is 16 samples. */ #define SYNTH_NAME synth_4to1_real #include "synth.h" #undef SYNTH_NAME /* Mono-related synths; they wrap over _some_ synth_4to1_real (could be generic, could be i386). */ #define SYNTH_NAME fr->synths.plain[r_4to1][f_real] #define MONO_NAME synth_4to1_real_mono #define MONO2STEREO_NAME synth_4to1_real_m2s #include "synth_mono.h" #undef SYNTH_NAME #undef MONO_NAME #undef MONO2STEREO_NAME #ifdef OPT_X86 #define NO_AUTOINCREMENT #define SYNTH_NAME synth_4to1_real_i386 #include "synth.h" #undef SYNTH_NAME /* i386 uses the normal mono functions. */ #undef NO_AUTOINCREMENT #endif #undef BLOCK #endif /* NO_DOWNSAMPLE */ #ifndef NO_NTOM /* Part 3d: ntom synth. Same procedure as above... Just no extra play anymore, straight synth that may use an optimized dct64. */ /* These are all in one header, there's no flexibility to gain. */ #define SYNTH_NAME synth_ntom_real #define MONO_NAME synth_ntom_real_mono #define MONO2STEREO_NAME synth_ntom_real_m2s #include "synth_ntom.h" #undef SYNTH_NAME #undef MONO_NAME #undef MONO2STEREO_NAME #endif #undef SAMPLE_T #undef WRITE_SAMPLE #endif /* non-fixed type */