/* layer2.c: the layer 2 decoder, root of mpg123 copyright 1994-2009 by the mpg123 project - free software under the terms of the LGPL 2.1 see COPYING and AUTHORS files in distribution or http://mpg123.org initially written by Michael Hipp mpg123 started as mp2 decoder a long time ago... part of this file is required for layer 1, too. */ #include "mpg123lib_intern.h" #ifndef NO_LAYER2 #include "l2tables.h" #endif #include "getbits.h" #ifndef NO_LAYER12 /* Stuff needed for layer I and II. */ static int grp_3tab[32 * 3] = { 0, }; /* used: 27 */ static int grp_5tab[128 * 3] = { 0, }; /* used: 125 */ static int grp_9tab[1024 * 3] = { 0, }; /* used: 729 */ #if defined(REAL_IS_FIXED) && defined(PRECALC_TABLES) #include "l12_integer_tables.h" #else static const double mulmul[27] = { 0.0 , -2.0/3.0 , 2.0/3.0 , 2.0/7.0 , 2.0/15.0 , 2.0/31.0, 2.0/63.0 , 2.0/127.0 , 2.0/255.0 , 2.0/511.0 , 2.0/1023.0 , 2.0/2047.0 , 2.0/4095.0 , 2.0/8191.0 , 2.0/16383.0 , 2.0/32767.0 , 2.0/65535.0 , -4.0/5.0 , -2.0/5.0 , 2.0/5.0, 4.0/5.0 , -8.0/9.0 , -4.0/9.0 , -2.0/9.0 , 2.0/9.0 , 4.0/9.0 , 8.0/9.0 }; #endif void init_layer12(void) { const int base[3][9] = { { 1 , 0, 2 , } , { 17, 18, 0 , 19, 20 , } , { 21, 1, 22, 23, 0, 24, 25, 2, 26 } }; int i,j,k,l,len; const int tablen[3] = { 3 , 5 , 9 }; int *itable; int *tables[3] = { grp_3tab , grp_5tab , grp_9tab }; for(i=0;i<3;i++) { itable = tables[i]; len = tablen[i]; for(j=0;jmuls[k], k); *table++ = 0.0; } } real* init_layer12_table(mpg123_handle *fr, real *table, int m) { #if defined(REAL_IS_FIXED) && defined(PRECALC_TABLES) int i; for(i=0;i<63;i++) *table++ = layer12_table[m][i]; #else int i,j; for(j=3,i=0;i<63;i++,j--) *table++ = DOUBLE_TO_REAL_SCALE_LAYER12(mulmul[m] * pow(2.0,(double) j / 3.0)); #endif return table; } #ifdef OPT_MMXORSSE real* init_layer12_table_mmx(mpg123_handle *fr, real *table, int m) { int i,j; if(!fr->p.down_sample) { for(j=3,i=0;i<63;i++,j--) *table++ = DOUBLE_TO_REAL(16384 * mulmul[m] * pow(2.0,(double) j / 3.0)); } else { for(j=3,i=0;i<63;i++,j--) *table++ = DOUBLE_TO_REAL(mulmul[m] * pow(2.0,(double) j / 3.0)); } return table; } #endif #endif /* NO_LAYER12 */ /* The rest is the actual decoding of layer II data. */ #ifndef NO_LAYER2 static void II_step_one(unsigned int *bit_alloc,int *scale,mpg123_handle *fr) { int stereo = fr->stereo-1; int sblimit = fr->II_sblimit; int jsbound = fr->jsbound; int sblimit2 = fr->II_sblimit<alloc; int i; unsigned int scfsi_buf[64]; unsigned int *scfsi,*bita; int sc,step; bita = bit_alloc; if(stereo) { for(i=jsbound;i;i--,alloc1+=(1<bits; *bita++ = (char) getbits(fr, step); *bita++ = (char) getbits(fr, step); } for(i=sblimit-jsbound;i;i--,alloc1+=(1<bits; bita[0] = (char) getbits(fr, step); bita[1] = bita[0]; bita+=2; } bita = bit_alloc; scfsi=scfsi_buf; for(i=sblimit2;i;i--) if(*bita++) *scfsi++ = (char) getbits_fast(fr, 2); } else /* mono */ { for(i=sblimit;i;i--,alloc1+=(1<bits; *bita++ = (char) getbits(fr, step); } bita = bit_alloc; scfsi=scfsi_buf; for(i=sblimit;i;i--) if(*bita++) *scfsi++ = (char) getbits_fast(fr, 2); } bita = bit_alloc; scfsi=scfsi_buf; for(i=sblimit2;i;i--) if(*bita++) switch(*scfsi++) { case 0: *scale++ = getbits_fast(fr, 6); *scale++ = getbits_fast(fr, 6); *scale++ = getbits_fast(fr, 6); break; case 1 : *scale++ = sc = getbits_fast(fr, 6); *scale++ = sc; *scale++ = getbits_fast(fr, 6); break; case 2: *scale++ = sc = getbits_fast(fr, 6); *scale++ = sc; *scale++ = sc; break; default: /* case 3 */ *scale++ = getbits_fast(fr, 6); *scale++ = sc = getbits_fast(fr, 6); *scale++ = sc; break; } } static void II_step_two(unsigned int *bit_alloc,real fraction[2][4][SBLIMIT],int *scale,mpg123_handle *fr,int x1) { int i,j,k,ba; int stereo = fr->stereo; int sblimit = fr->II_sblimit; int jsbound = fr->jsbound; const struct al_table *alloc2,*alloc1 = fr->alloc; unsigned int *bita=bit_alloc; int d1,step; for(i=0;ibits; for(j=0;jbits; if( (d1=alloc2->d) < 0) { real cm=fr->muls[k][scale[x1]]; fraction[j][0][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm); fraction[j][1][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm); fraction[j][2][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm); } else { const int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab }; unsigned int idx,*tab,m=scale[x1]; idx = (unsigned int) getbits(fr, k); tab = (unsigned int *) (table[d1] + idx + idx + idx); fraction[j][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m]); fraction[j][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m]); fraction[j][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m]); } scale+=3; } else fraction[j][0][i] = fraction[j][1][i] = fraction[j][2][i] = DOUBLE_TO_REAL(0.0); } } for(i=jsbound;ibits; bita++; /* channel 1 and channel 2 bitalloc are the same */ if( (ba=*bita++) ) { k=(alloc2 = alloc1+ba)->bits; if( (d1=alloc2->d) < 0) { real cm; cm=fr->muls[k][scale[x1+3]]; fraction[0][0][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1); fraction[0][1][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1); fraction[0][2][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1); fraction[1][0][i] = REAL_MUL_SCALE_LAYER12(fraction[0][0][i], cm); fraction[1][1][i] = REAL_MUL_SCALE_LAYER12(fraction[0][1][i], cm); fraction[1][2][i] = REAL_MUL_SCALE_LAYER12(fraction[0][2][i], cm); cm=fr->muls[k][scale[x1]]; fraction[0][0][i] = REAL_MUL_SCALE_LAYER12(fraction[0][0][i], cm); fraction[0][1][i] = REAL_MUL_SCALE_LAYER12(fraction[0][1][i], cm); fraction[0][2][i] = REAL_MUL_SCALE_LAYER12(fraction[0][2][i], cm); } else { const int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab }; unsigned int idx,*tab,m1,m2; m1 = scale[x1]; m2 = scale[x1+3]; idx = (unsigned int) getbits(fr, k); tab = (unsigned int *) (table[d1] + idx + idx + idx); fraction[0][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m2]); fraction[0][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m2]); fraction[0][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m2]); } scale+=6; } else { fraction[0][0][i] = fraction[0][1][i] = fraction[0][2][i] = fraction[1][0][i] = fraction[1][1][i] = fraction[1][2][i] = DOUBLE_TO_REAL(0.0); } /* Historic comment... should we use individual scalefac for channel 2 or is the current way the right one , where we just copy channel 1 to channel 2 ?? The current 'strange' thing is, that we throw away the scalefac values for the second channel ...!! -> changed .. now we use the scalefac values of channel one !! */ } if(sblimit > (fr->down_sample_sblimit) ) sblimit = fr->down_sample_sblimit; for(i=sblimit;isampling_frequency >= 3) /* Or equivalent: (fr->lsf == 1) */ table = 4; else table = translate[fr->sampling_frequency][2-fr->stereo][fr->bitrate_index]; sblim = sblims[table]; fr->alloc = tables[table]; fr->II_sblimit = sblim; } int do_layer2(mpg123_handle *fr) { int clip=0; int i,j; int stereo = fr->stereo; /* pick_table clears unused subbands */ /* replacement for real fraction[2][4][SBLIMIT], needs alignment. */ real (*fraction)[4][SBLIMIT] = fr->layer2.fraction; unsigned int bit_alloc[64]; int scale[192]; int single = fr->single; II_select_table(fr); fr->jsbound = (fr->mode == MPG_MD_JOINT_STEREO) ? (fr->mode_ext<<2)+4 : fr->II_sblimit; if(fr->jsbound > fr->II_sblimit) { fprintf(stderr, "Truncating stereo boundary to sideband limit.\n"); fr->jsbound=fr->II_sblimit; } /* TODO: What happens with mono mixing, actually? */ if(stereo == 1 || single == SINGLE_MIX) /* also, mix not really handled */ single = SINGLE_LEFT; II_step_one(bit_alloc, scale, fr); for(i=0;i>2); for(j=0;j<3;j++) { if(single != SINGLE_STEREO) clip += (fr->synth_mono)(fraction[single][j], fr); else clip += (fr->synth_stereo)(fraction[0][j], fraction[1][j], fr); } } return clip; } #endif /* NO_LAYER2 */