
WavPack 5 Library Documentation

David Bryant
November 20, 2016

1.0 Introduction

This document describes the use of the WavPack library (libwavpack) from a programmer's viewpoint.
The library is designed to make reading and writing WavPack files as easy as possible, however there
are some subtleties involved (especially when creating WavPack files) that should be understood to get
the most out of WavPack and to make sure the resulting files are standardized. It is assumed that this
document will be used with the wavpack.h header file (which obviously takes precedence in the case
of discrepancies).

Functionality that was introduced with version 5.0.0 will be noted, so this document can be used with
older library versions as well. There is also a document called WavPack 5 Porting Guide For
Developers that is specifically targeted at developers moving from a previous version of the library.

There is also functionality in the library to create, read and edit metadata tags that are often appended
to WavPack files, and there is functionality to decode stand-alone WavPack blocks for streaming
applications. The WavPack format was adopted by WinZip Computing to be used for compressing
WAV files and important details of this are discussed at the end of the document for programmers
integrating this library with Zip handling software.

To test decoders, there is also a test suite available that has many varieties of WavPack files to test the
robustness of any decoder. This is constantly getting updated, but is as of this writing available here:

 http://www.rarewares.org/wavpack/test_suite.zip

The WavPack library is written in C and has been ported to many platforms, and it should be possible
to call it from many different programming languages. It is also written to contain no static storage and
so can be used by any number of clients simultaneously.

Note that in this document the meaning of the word "sample" or "samples" refers to "samples per
channel". So, a function like WavpackUnpackSamples() takes an integer parameter specifying the
number of samples to unpack and this would mean the number of samples for one channel only
(although all channels in the file would be unpacked and interleaved). In other words, the number of
actual data values generated by the call would be the specified number of samples times the number of
channels. On the other hand, in a function like WavpackGetBitsPerSample(), the value would
be the number of bits in a single channel's sample (or 16, in the common case of CD audio).

DSD audio was introduced in WavPack 5, and this further complicated the definition of “sample”. In
WavPack's DSD mode, a “sample” is 8 consecutive DSD bits stored in a byte, with the MSB first
temporally. This is the minimum granularity of seeking and decoding in WavPack DSD files, and
actually reflects how DSD audio is stored in the WavPack file.

http://www.rarewares.org/wavpack/test_suite.zip

2.0 General Purpose Functions

uint32_t WavpackGetLibraryVersion (void);

Return the WavPack library version in a packed integer. Bits 0-7 give the micro version, bits 8-15 give
the minor version, and bits 16-23 give the major version. As of this writing the version is 5.0.0.

const char *WavpackGetLibraryVersionString (void);

Return the WavPack library version as a string. As of this writing this is "5.0.0".

char *WavpackGetErrorMessage (WavpackContext *wpc);

This function returns a pointer to a string describing the last error generated by WavPack. This may
provide useful information about why something is not working the way it should.

void WavpackLittleEndianToNative (void *data, char *format);
void WavpackNativeToLittleEndian (void *data, char *format);

These are two helper functions that normally would not be needed by an application. However, if an
application wanted to manually parse a WavPack file, a RIFF header, or a APEv2 tag, then these could
come in handy. They transform structures back and forth between native-endian and little-endian
(which is the format of all these particular structures) based on a format string that defines the layout of
the structure. In the string, an 'S' indicates a 2-byte value, an 'L' indicates a 4-byte value, a 'D' indicates
an 8-byte value, and a digit ('1' to '9') indicates that that many bytes should be skipped unchanged. In
wavpack.h there are format strings for several structures that might be required. Of course, on little-
endian computers they will do nothing (but can still be called). Note that on machines that have field
alignment requirements, it is important that the structures are properly aligned!

3.0 Reading WavPack Files

The basic procedure for reading a WavPack file is this:

1. open file with WavpackOpenFileInput() or WavpackOpenFileInputEx64()
2. determine important characteristics for decoding using these (and other) functions:

◦ WavpackGetNumSamples()
◦ WavpackGetBitsPerSample()
◦ WavpackGetBytesPerSample()
◦ WavpackGetSampleRate()

3. read decoded samples with WavpackUnpackSamples()
4. optionally seek with WavpackSeekSample()
5. close file with WavpackCloseFile()

For opening existing WavPack files for decoding, the easiest function to use is:

WavpackContext *WavpackOpenFileInput (
 const char *infilename,
 char *error,
 int flags,
 int norm_offset
);

This function accepts the path/filename of a WavPack file and opens it for reading, returning a pointer
to a WavpackContext on success. The filename can be simply the string '-' to specify stdin as the
source. The returned pointer can essentially be treated as a handle by the calling function (it is actually
typed as a void pointer in wavpack.h) and is used in all other calls to WavPack to refer to this file. If
the function fails for some reason (such as the WavPack file is not found or is invalid) then NULL is
returned and the string pointed to by "error" is set to a message describing the problem. Note that the
string space is allocated by the caller and must be at least 80 chars. The "flags" parameter is a bitmask
that provides the following options:

• OPEN_WVC: Attempt to open and read a corresponding "correction" file along with the
standard WavPack file. No error is generated if this fails (although it is possible to find out
which decoding mode is actually being used). Note that if this flag is not set then lossy
decoding will occur even when a correction file is available, therefore this flag should
normally be set!

• OPEN_TAGS: Attempt to read any ID3v1 or APEv2 tags appended to the end of the file. This
obviously requires a seekable file to succeed because it takes place before decoding audio.

• OPEN_WRAPPER: Normally all the information required to decode the file will be available
from native WavPack information. However, if the purpose is to restore the actual source file
verbatim (or the file header is needed for some other reason) then this flag should be set. After
opening the file, WavpackGetWrapperData() can be used to obtain the actual file header
(which the caller must parse if desired). Note that some WavPack files might not contain
headers, and some may contain headers for other formats besides WAV (which will only be

presented if the OPEN_ALT_TYPES flags is specified).

• OPEN_2CH_MAX: This allows multichannel WavPack files to be opened with only one
stream, which usually incorporates the front left and front right channels. This is provided to
allow decoders that can only handle 2 channels to at least provide "something" when playing
multichannel. It would be nice if this could downmix the multichannel audio to stereo instead of
just using two channels, but that exercise is left for the student. :)

• OPEN_NORMALIZE: Most floating point audio data is normalized to the range of +/-1.0
(especially the floating point data in Microsoft WAV files) and this is what WavPack normally
stores. However, WavPack is a lossless compressor, which means that is should (and does) work
with floating point data that is normalized to some other range (or even with crazy values all
over the place). However, if an application simply wants to play the audio, then it probably
wants the data normalized to the same range regardless of the source. This flag is provided to
accomplish that, and when set simply tells the decoder to provide floating point data normalized
to +/-1.0 even if the source had some other range. The "norm_offset" parameter can be used to
select a different range if that is desired (see below).

Keep in mind that floating point audio (unlike integer audio) is not required to stay within its
normalized limits. In fact, it can be argued that this is one of the advantages of floating point
audio (i.e. no danger of clipping)! However, when this is decoded for playback (which, of
course, must eventually involve a conversion back to the integer domain) it is important to
consider this possibility and (at a minimum) perform hard clipping.

• OPEN_STREAMING: This is essentially a "raw" or "blind" mode where the library will
simply decode any blocks fed it through the reader callback (or file), regardless of where those
blocks came from in a stream. The only requirement is that complete WavPack blocks are fed to
the decoder (and this will require multiple blocks in multichannel mode) and that complete
blocks are decoded (even if all samples are not actually required). All the blocks must contain
the same number of channels and bit resolution, and the correction data must be either present
or not. All other parameters may change from block to block (like lossy/lossless). Obviously, in
this mode any seeking must be performed by the application (and again, decoding must start at
the beginning of the block containing the seek sample).

Starting with WavPack 5, all blocks include a checksum to improve performance with corrupted
streams. However, this can cause trouble with streaming audio because the blocks may not be
reassembled verbatim, so in this case the OPEN_NO_CHECKSUM flag should also be set to skip
this verification. When the compatibility function WavpackOpenFileInputEx() is used,
the OPEN_NO_CHECKSUM flag is automatically set if OPEN_STREAMING is set. This is done
to retain compatibility with existing applications.

• OPEN_EDIT_TAGS: Open the file in read/write mode to allow editing of any APEv2 tags
present, or appending a new APEv2 tag. Of course the file must have write permission and be
seekable.

• OPEN_FILE_UTF8: On Windows platforms only, assume that the passed filename is UTF-
8 encoded rather than local ANSI, allowing the WavPack library to be Unicode compliant. On
non-Windows platforms this flag doesn't do anything; the filename is always passed directly to
fopen(). Introduced with 4.80.0.

• OPEN_DSD_NATIVE: Open DSD files as bitstreams so that decoded audio is returned as 8-
bit “samples” (which actually contain 8 discrete DSD samples, MSB first temporally) in 32-bit

integers (like all WavPack audio data). If neither this flag nor the OPEN_DSD_AS_PCM flag are
set, then DSD audio files will not be readable. Introduced with 5.0.0.

• OPEN_DSD_AS_PCM: Open DSD files as 24-bit PCM where DSD audio is decimated 8x.
Note that this will still be at a very high sampling rate (352.8 kHz for DSD64) and contain lots
of quantization noise, so they should be further downsampled before use. Introduced with 5.0.0.

• OPEN_ALT_TYPES: Indicates to the library that the application is aware of alternate file
types, their extensions and the “qualify modes” returned by WavpackGetQualifyMode().
If this flag is not set then file wrappers for alternate file types and MD5 sums generated using
“qualify modes” will not be returned to the application (because, presumably, it wouldn't handle
them correctly). For simply accessing the audio of files this flag should not be required.
Introduced with 5.0.0.

• OPEN_NO_CHECKSUM: Don't verify block checksums before decoding. This is useful in
streaming applications where the blocks may have been regenerated without all the fields
correct (Matroska). When using the compatibility function WavpackOpenFileInputEx()
this flag is forced on when OPEN_STREAMING is set. Introduced with 5.0.0.

The "norm_offset" parameter is used with the OPEN_NORMALIZE flag and floating point audio data to
specify an alternate normalization range. The default is 0 and results in a standard range of +/-1.0;
positive values increase the range and negative values decrease the range (by factors of two). For
example, a value here of 15 will generate a range of +/-32768.0 (assuming no clipping samples).

WavpackContext *WavpackOpenFileInputEx64 (
 WavpackStreamReader64 *reader,
 void *wv_id,
 void *wvc_id,
 char *error,
 int flags,
 int norm_offset
);

This function is identical to WavpackOpenFileInput() except that instead of providing a
filename to open, the caller provides a pointer to a set of reader callbacks and instances of up to two
streams. The first of these streams is required and contains the regular WavPack data stream; the
second contains the
"correction" file if desired. Unlike the standard open function which handles the correction file
transparently, in this case it is the responsibility of the caller to be aware of correction files.

The advantage of this method is that the data doesn't necessarily need to be contained in a file. For
example, the data might be streamed from somewhere or it may already be in memory because it is
being parsed by another program.

The prototype for the WavpackStreamReader64 is in wavpack.h and an example
implementation is provided in open_filename.c using standard stream I/O. Pay close attention to
the return values of the seek functions set_pos_xxx() because this has caused headaches on
more than one occasion (0 means success)! This 64-bit reader callback was introduced with WavPack
5.0.0 as was this function.

Note that the reader callbacks include a function to close the file. If provided, this callback is called for
each file (wv and wvc) when WavpackCloseFile() is called. If the application wants to handle
closing the files itself, simply provide a NULL pointer for this callback.

WavpackContext *WavpackOpenFileInputEx (
 WavpackStreamReader *reader,
 void *wv_id,
 void *wvc_id,
 char *error,
 int flags,
 int norm_offset
);

This function is identical to WavpackOpenFileInputEx64() except that it uses an older version
of the reader callbacks that did not provide for 64-bit values and was therefore limited to 2 GB files.
This function provides a translation layer between the old and new reader callbacks so that existing
applications can continue to work, but new applications should use the new reader if possible. To
maintain backward compatibility, this function also sets the OPEN_NO_CHECKSUM flag when the
OPEN_STREAMING flag is set to that modified blocks are not discarded.

Once the WavPack file has been opened, the application will probably want to get some information
about the file (like bitdepth, sampling rate, etc). This is accomplished with a series of several functions.
The most basic is:

int WavpackGetMode (WavpackContext *wpc);

This returns a bitmask with the following values:

• MODE_WVC: A .wvc file has been found and will be used for lossless decoding.

• MODE_LOSSLESS: The file decoding is lossless (either pure or hybrid).

• MODE_HYBRID: The file is in hybrid mode (may be either lossy or lossless).

• MODE_FLOAT: The audio data is 32-bit ieee floating point.

• MODE_VALID_TAG: The file contains a valid ID3v1 or APEv2 tag (OPEN_TAGS must be
set above to get this status).

• MODE_HIGH: The file was originally created in "high" mode (this is really only useful for
reporting to the user)

• MODE_FAST: The file was originally created in "fast" mode (this is really only useful for
reporting to the user)

• MODE_EXTRA: The file was originally created with the "extra" mode (this is really only
useful for reporting to the user). The MODE_XMODE below can sometimes allow determination
of the exact extra mode level.

• MODE_XMODE: If the MODE_EXTRA bit above is set, this 3-bit field can sometimes allow the

determination of the exact extra mode parameter specified by the user if the file was encoded
with version 4.50 or later. If these three bits are zero then the extra mode level is unknown,
otherwise is represents the extra mode level from 1-6.

• MODE_APETAG: The file contains a valid APEv2 tag (OPEN_TAGS must be set in the
"open" call for this to be true). Note that only APEv2 tags can be edited by the library. If a file
that has an ID3v1 tag needs to be edited then it must either be done with another library or it
must be converted (field by field) into a APEv2 tag (see the wvgain.c program for an example
of this).

• MODE_SFX: The file was created as a "self-extracting" executable (this is really only useful
for reporting to the user). The creation of self-extracting files is no longer supported.

• MODE_VERY_HIGH: The file was created in the "very high" mode (or in the "high" mode
prior to 4.40).

• MODE_MD5: The file contains an MD5 checksum.

• MODE_DNS: The hybrid file was encoded with the dynamic noise shaping feature which was
introduced in the 4.50 version of WavPack.

int WavpackGetNumChannels (WavpackContext *wpc);

Returns the number of channels of the specified WavPack file. Note that this is the actual number of
channels contained in the file even if the OPEN_2CH_MAX flag was specified when the file was
opened.

int WavpackGetReducedChannels (WavpackContext *wpc);

If the OPEN_2CH_MAX flag is specified when opening the file, this function will return the actual
number of channels decoded from the file (which may or may not be less than the actual number of
channels, but will always be 1 or 2). Normally, this will be the front left and right channels of a
multichannel file.

int WavpackGetChannelMask (WavpackContext *wpc);

Returns the standard Microsoft channel mask for the specified WavPack file. If present, these channels
must come before any channels not defined by this mask, and be in the standard Microsoft order.

uint32_t WavpackGetChannelLayout (
 WavpackContext *wpc,
 unsigned char *reorder
);

This function allows retrieving the Core Audio File channel layout, many of which do not conform to
the Microsoft ordering standard that WavPack requires internally (at least for those channels present in
the "channel mask"). In addition to the layout tag, this function returns the reordering string (if stored
in the file) to allow the unpacker to reorder the channels back to the specified layout (if it wants to
restore the CAF order). The number of channels in the layout is determined from the lower nybble of
the layout word (and should probably match the number of channels in the file), and if a reorder string

is requested then that much space must be allocated. Note that all the reordering is actually done
outside of this library, and that if reordering is required then the appropriate bit from
WavpackGetQualifyMode()will be set. Introduced in 5.0.0.

Note: Normally this function would not be used by an application unless it specifically wanted to
restore a non-standard channel order (to check an MD5, for example) or obtain the Core Audio channel
layout ID. For simple file decoding for playback, the channel_mask should provide all the information
required unless there are non-Microsoft channels involved, in which case the following function,
WavpackGetChannelIdentities(), will provide the identities of the other channels (if they are
known).

void WavpackGetChannelIdentities (
 WavpackContext *wpc,
 unsigned char *identities
);

This function provides the identities of all the channels in the file, including the standard Microsoft
channels (which come first, in order, and are numbered 1-18) and also any non-Microsoft channels
(which can be in any order and have values from 33-254). The value 0x00 is invalid and 0xFF
indicates an "unknown" or "unnassigned" channel. The string is NULL terminated so the caller must
supply enough space for the number of channels indicated by WavpackGetNumChannels(), plus
one. The current channel assignment values are listed in pack_utils.c. Introduced in 5.0.0.

Note that this function returns the actual order of the channels in the Wavpack file (i.e., the order
returned by WavpackUnpackSamples()). If the file includes a "reordering" string because the source
file was not in Microsoft order, that is not taken into account here and really only needs to be
considered if doing an MD5 verification or if it's required to restore the original order/file (like
wvunpack does).

uint32_t WavpackGetSampleRate (WavpackContext *wpc);

Returns the sample rate of the specified WavPack file in samples per second. For DSD audio, this
represents the number of 8-bit “samples” per second, or 8 times the actual sample rate. Use the function
WavpackGetNativeSampleRate() to obtain the true DSD sample rate to report to the user.

uint32_t WavpackGetNativeSampleRate (WavpackContext *wpc);

Returns the sample rate of the specified WavPack file in samples per second. For DSD audio, this
returns the actual DSD sample rate that should be reported to the user (e.g., 2822400 for DSD64). Keep
in mind that with respect to all other functions, a DSD “sample” is a byte that consist of 8 consecutive
DSD bits, and the actual “DSD-byte” sample rate is returned by WavpackGetSampleRate(). This
function was introduced in 5.0.0.

int WavpackGetBitsPerSample (WavpackContext *wpc);

Returns the actual number of valid bits per sample contained in the original file, which may or may not
be a multiple of 8. Floating data always has 32 bits, integers may be from 8 to 32 bits each. When this

value is not a multiple of 8, then the "extra" zeroed bits are located in the LSBs of the result. So, values
are left justified when placed into the number of bytes used by the original data, but these finished
bytes are right-justified into each 4-byte buffer entry. For WavPack DSD audio files, this value will be
8 for files opened with OPEN_DSD_NATIVE or 24 for files opened with OPEN_DSD_AS_PCM.

int WavpackGetBytesPerSample (WavpackContext *wpc);

Returns the number of bytes used for each sample (1 to 4) in the original file. This is required
information for the user of this module because the audio data is returned in the lower bytes of the 4-
byte buffer and must be left-shifted 8, 16, or 24 bits if normalized 4-byte values are required. This
value must be at least enough to store all the bits per sample, and of course the most natural and
common case is when there is an exact fit. For WavPack DSD audio files, this value will be 1 for files
opened with OPEN_DSD_NATIVE or 3 for files opened with OPEN_DSD_AS_PCM.

int WavpackGetVersion (WavpackContext *wpc);

This function returns the major version number of the WavPack program (or library) that created the
open file. Currently, this can be from 1 to 5 if the library is built with legacy support, otherwise it's just
4 or 5. Minor and micro versions are not recorded directly in WavPack files.

unsigned char WavpackGetFileFormat (WavpackContext *wpc);

Return the file format specified in the call to WavpackSetFileInformation() when the file was
created. For all files created prior to WavPack 5 this will be zero (WP_FORMAT_WAV). Introduced in
WavPack 5.0.0. The following formats are currently defined in wavpack.h:

• WP_FORMAT_WAV: Microsoft Waveform Audio Format, including BWF and RF64
• WP_FORMAT_W64: Sony Wave64
• WP_FORMAT_CAF: Apple Core Audio
• WP_FORMAT_DFF: Philips DSDIFF
• WP_FORMAT_DSF: Sony DSD format

char *WavpackGetFileExtension (WavpackContext *wpc);

Return a string representing the recommended file extension for the open WavPack file. For all files
created prior to WavPack 5 this will be "wav", even for raw files with no RIFF into. This string is
specified in the call to WavpackSetFileInformation() when the file was created. Introduced in
WavPack 5.0.0.

int WavpackGetQualifyMode (WavpackContext *wpc);

This function obtains information about specific file features that were added for version 5, specifically
qualifications added to support CAF and DSD files. These bits are meant to simply indicate the format
of the data in the original source file and do not indicate how the library will return the data to the
application (which is always the same). This means that in general an application that simply wants to
play or process the audio data need not be concerned about these. Introduced with WavPack 5.0.0.

If the file is DSD audio, then either of the QMODE_DSD_LSB_FIRST or QMODE_DSD_MSB_FIRST
bits will be set (but native DSD audio is always returned to the caller MSB first). Checking for one of
these two bits is the proper way to check for DSD audio.

• QMODE_BIG_ENDIAN: big-endian data format (opposite of WAV format)
• QMODE_SIGNED_BYTES: 8-bit audio data is signed (opposite of WAV format)
• QMODE_UNSIGNED_WORDS: audio data (> 8-bit) is unsigned (opposite of WAV format)
• QMODE_REORDERED_CHANS: source channels were reordered
• QMODE_DSD_LSB_FIRST: DSD bytes, LSB first (most Sony .dsf files)
• QMODE_DSD_MSB_FIRST: DSD bytes, MSB first (Philips .dff files)
• QMODE_DSD_IN_BLOCKS: DSD data is blocked by channels (Sony .dsf only)

uint32_t WavpackGetNumSamples (WavpackContext *wpc);

Get total number of samples contained in the WavPack file, or -1 if unknown.

int64_t WavpackGetNumSamples64 (WavpackContext *wpc);

Get total number of samples contained in the WavPack file, or -1 if unknown. Introduced in 5.0.0 to
handle files with over 2^32 samples.

uint32_t WavpackGetFileSize (WavpackContext *wpc);

Return the total size of the WavPack file(s) in bytes.

int64_t WavpackGetFileSize64 (WavpackContext *wpc);

Return the total size of the WavPack file(s) in bytes. Introduced in 5.0.0 to handle files over 4 GB.

double WavpackGetRatio (WavpackContext *wpc);

Calculate the ratio of the specified WavPack file size to the size of the original audio data as a double
greater than 0.0 and (usually) smaller than 1.0. A value greater than 1.0 represents "negative"
compression and a return value of 0.0 indicates that the ratio cannot be determined.

double WavpackGetAverageBitrate (
 WavpackContext *wpc,
 int count_wvc
);

Calculate the average bitrate of the WavPack file in bits per second. A return of 0.0 indicates that the
bitrate cannot be determined. An option is provided to use (or not use) any attendant .wvc file.

int WavpackGetFloatNormExp (WavpackContext *wpc);

Return the normalization value for floating point data (valid only if floating point data is present). A
value of 127 indicates that the floating point range is +/- 1.0. Higher values indicate a larger floating
point range. Note that if the OPEN_NORMALIZE flag is set when the WavPack file is opened, then
floating data will be returned normalized to +/-1.0 regardless of this value (and can also be offset from
that by using the "norm_offset" field of the "open" call).

int WavpackGetMD5Sum (WavpackContext *wpc, uchar data [16]);

Get any MD5 checksum stored in the metadata (should be called after reading last sample or an extra
seek will occur). A return value of FALSE indicates that no MD5 checksum was stored.

uint32_t WavpackGetWrapperBytes (WavpackContext *wpc);
uchar *WavpackGetWrapperData (WavpackContext *wpc);
void WavpackFreeWrapper (WavpackContext *wpc);

These three routines are used to access (and free) header and trailer data that was retrieved from the
WavPack file. The header will be available before the samples are decoded. The trailer will be available
after all samples have been read and an attempt is made to read at least one sample past the end of the
available samples (it is also possible to use the WavpackSeekTrailingWrapper() function
described below). Note that the OPEN_WRAPPER flag must be set in the "open" call for this
information to be available. Most applications will not need this data because everything required to
decode and play a WavPack file can be determined without this information, and some valid WavPack
files might not even actually have this wrapper.

The wrapper information is simply a verbatim copy of everything that was in the original source file
right up to the start of the audio data (and anything after the audio data in the case of the "trailer"). In
RIFF terms, this means that the data chunk will be last and only include the "data" ID and the size (as it
was in the WAV file). Other file formats have different headers. The code was implemented like this so
that the wvunpack program could simply copy this information directly to the output file (before and
after the audio data) to create verbatim copies of the source file (like an archiver).

The WavPack library accumulates this information when parsing the WavPack file and only purges this
when WavpackFreeWrapper() is called. Therefore, if the application unpacks an entire WavPack
file without freeing anything, then the entire wrapper data (both header and trailer) will be returned.

void WavpackSeekTrailingWrapper (WavpackContext *wpc);

Normally the trailing wrapper will not be available when a WavPack file is first opened for reading
because it is stored in the final block of the file. This function forces a seek to the end of the file to pick
up any trailing wrapper stored there (then use WavPackGetWrapper**() to obtain). This can
obviously only be used for seekable files (not pipes) and is not available for pre-4.0 WavPack files.

These are the only three functions directly involved in decoding WavPack audio data:

uint32_t WavpackUnpackSamples (
 WavpackContext *wpc,
 int32_t *buffer,
 uint32_t samples
);

Unpack the specified number of samples from the current file position. Note that "samples" here refers
to "complete" samples, which would be 2 integers for stereo files or even more for multichannel files,
so the required memory at "buffer" is (4 * samples * num_channels) bytes. The audio data is returned
right-justified in 32-bit integers in the endian mode native to the executing processor. So, if the original
data was 16-bit in 2-bytes, then the values returned would be +/-32k. Floating point data can also be
returned if the source was floating point data (and this can be optionally normalized to +/-1.0 by using
the appropriate flag in the call to WavpackOpenFileInput()). The actual number of samples
unpacked is returned, which should be equal to the number requested unless the end of file is
encountered or an error occurs. If all samples have been unpacked then 0 will be returned.

Note that if the WavPack file contains floating-point data (as indicated by the MODE_FLOAT bit being
set in the value returned from WavpackGetMode()) then 32-bit float values are returned in the
buffer despite the defined type of the pointer. If integers are desired (e.g. for writing to a DAC) then
this conversion must be performed by the caller, and it is important to keep in mind that clipping is
probably required. Assuming that OPEN_NORMALIZE is used to ensure that the normalized range is
+/- 1.0, then this C code sample will perform the conversion to 16-bit:

 int32_t *lptr = buffer;

 while (num_samples--) {
 float fdata = * (float*) lptr;

 if (fdata >= 1.0)
 *lptr++ = 32767;
 else if (fdata <= -1.0)
 *lptr++ = -32768;
 else
 *lptr++ = floor (fdata * 32768.0);
 }

For highest quality when converting to 16-bit it would be advisable to also perform dithering and/or
noise shaping, but that is beyond the scope of this document. For converting to 24-bit this would
probably not be required.

int WavpackSeekSample64 (WavpackContext *wpc, int64_t sample);

Seek to the specified sample index, returning TRUE on success. Note that files generated with version
4.0 or newer will seek almost immediately. Older files can take quite long if required to seek through
unplayed portions of the file, but will create a seek map so that reverse seeks (or forward seeks to
already scanned areas) will be very fast. After a FALSE return the file should not be accessed again
(other than to close it); this is a fatal error. Introduced in 5.0.0.

int WavpackSeekSample (WavpackContext *wpc, uint32_t sample);

Legacy function for seeking that handles files with less that 2^32 samples, provided for compatibility
with existing applications.

Finally, there are several functions which provide extra information during decoding:

int64_t WavpackGetSampleIndex64 (WavpackContext *wpc);

Get the current sample index position, or -1 if unknown. Introduced with 5.0.0.

uint32_t WavpackGetSampleIndex (WavpackContext *wpc);

Legacy function for obtaining sample index in files with less than 2^32 samples, provided for
compatibility with existing application.

double WavpackGetInstantBitrate (WavpackContext *wpc);

Calculate the bitrate of the current WavPack file block in bits per second. This can be used for an
"instant" bit display and gets updated from about 1 to 4 times per second. A return of 0.0 indicates that
the bitrate cannot be determined.

int WavpackGetNumErrors (WavpackContext *wpc);

Get the number of errors encountered so far. These are probably CRC errors, but could also be missing
blocks.

int WavpackLossyBlocks (WavpackContext *wpc);

Return TRUE if any uncorrected lossy blocks were actually written or read. This can be used to
determine if the lossy bitrate specified was so high that the compression was nevertheless lossless.

double WavpackGetProgress (WavpackContext *wpc);

Calculate the progress through the file as a double from 0.0 (for begin) to 1.0 (for done). A return value
of -1.0 indicates that the progress is unknown.

Finally, this function is used when no more access to a file is needed:

WavpackContext *WavpackCloseFile (WavpackContext *wpc);

Close the specified WavPack file and release all resources used by it. Returns NULL. If the 64-bit
stream reader is being used and a “close” function has been provided, it will be called for each file
instance.

4.0 Writing WavPack Files

To use the library to create WavPack files from raw PCM audio, the user must provide a
WavpackBlockOutput function that is used by the library to write finished WavPack blocks to the
output. Unlike the read case, there is no facility to write directly to named files. Here is the function
required:

typedef int (*WavpackBlockOutput)(
 void *id,
 void *data,
 int32_t bcount
);

where the "id" is used to differentiate the regular WavPack data "wv" from the correction data "wvc"
(or for the case of multiple streams running at the same time). The return value is simply TRUE for
success and FALSE for error. An example of this function can be found in wavpack.c called
write_block().

Note that the function should keep track of the first block written, which is simply the first call to this
function, because that block might need to be rewritten when packing is done to update the length
fields. The library takes care of updating the fields with WavpackUpdateNumSamples(), but the
application is responsible for rereading the first block and writing it back.

The basic procedure for creating WavPack files is this (with mandatory steps in bold):

1. get a context and set block output function with WavpackOpenFileOutput()
2. optionally specify the file type and extension with WavpackSetFileInformation()
3. optionally write a file header with WavpackAddWrapper()
4. set the data format and specify modes with WavpackSetConfiguration64()
5. optionally call WavpackSetChannelLayout() to specify Core Audio layouts
6. allocate buffers and prepare for packing with WavpackPackInit()
7. actually compress audio and write blocks with WavpackPackSamples()
8. flush final samples into blocks with WavpackFlushSamples()
9. optionally write MD5 sum with WavpackStoreMD5Sum()
10. optionally write file trailer with WavpackAddWrapper()
11. if MD5 sum or file trailer written, call WavpackFlushSamples() again
12. optionally append metadata tag with functions in next section
13. optionally update number of samples with WavpackUpdateNumSamples()
14. close the context with WavpackCloseFile()

Note that this does not show opening and closing the output files which is done by the application
itself. What follows is a description of the functions involved.

WavpackContext *WavpackOpenFileOutput (
 WavpackBlockOutput blockout,
 void *wv_id,
 void *wvc_id
);

Open context for writing WavPack files. The returned context pointer is used in all following calls to
the library. The "blockout" function will be used to store the actual completed WavPack blocks and will
be called with the id pointers containing user defined data (one for the wv file and one for the wvc file).
A return value of NULL indicates that memory could not be allocated for the context.

void WavpackSetFileInformation (
 WavpackContext *wpc,
 char *file_extension,
 unsigned char file_format
);

This function allows the application to store a file extension and a file format identification. The
extension would be used by the unpacker if the user had not specified the target filename, and
specifically handles the case where the original file had the "wrong" extension for the file format (e.g.,
a Wave64 file having a WAV extension) or an alternative (e.g., AMB or BWF) or where the file format
is not known. Specifying a file format besides the default WP_FORMAT_WAV will ensure that old
decoders will not be able to see the non-WAV wrapper provided with WavpackAddWrapper()
(which they would not understand or end up putting on a file with a .wav extension). For a list of the
currently defined file formats, see wavpack.h or WavpackGetFileFormat(). Introduced in
5.0.0.

int WavpackSetConfiguration64 (
 WavpackContext *wpc,
 WavpackConfig *config,
 int64_t total_samples,
 const unsigned char *chan_ids
);

Set configuration for writing WavPack files. This must be done before sending any actual samples,
however it is okay to send wrapper or other metadata before calling this. It's a good idea to clear the
WavpackConfig structure before setting it to avoid enabling unintentional settings. The "config"
structure contains the following required information:

• config->bytes_per_sample: see WavpackGetBytesPerSample() for info
• config->bits_per_sample: see WavpackGetBitsPerSample() for info
• config->channel_mask: Microsoft standard (mono = 4, stereo = 3)
• config->num_channels: self evident
• config->sample_rate: self evident

Be particularly careful with the "channel_mask" field. If this is not set to the correct value (3 or 4
for stereo or mono) then everything will still appear to work correctly, but the resulting WavPack file

will have undefined channel assignments, which could cause trouble with some decoder or players, and
will not compress as well.

Specifying these 5 parameters alone would create a default lossless WavPack file, identical to the one
produced by using the command-line program without options. For optional configuration, the
following fields and flags may be set:

• config->flags:
◦ CONFIG_HYBRID_FLAG: select hybrid mode (must set bitrate)
◦ CONFIG_JOINT_STEREO: select joint stereo (must set override also)
◦ CONFIG_JOINT_OVERRIDE: override default joint stereo selection
◦ CONFIG_HYBRID_SHAPE: select hybrid noise shaping (set override &

shaping_weight != 0.0)
◦ CONFIG_SHAPE_OVERRIDE: override default hybrid noise shaping (set

CONFIG_HYBRID_SHAPE and shaping_weight)
◦ CONFIG_DYNAMIC_SHAPING: force dynamic noise shaping even when WavPack

would not use it (no need to set any of the other shaping flags when using this one)
◦ CONFIG_FAST_FLAG: "fast" compression mode (same as -f)
◦ CONFIG_HIGH_FLAG: "high" compression mode (same as -h)
◦ CONFIG_VERY_HIGH_FLAG: "very high" compression mode (same as -hh)
◦ CONFIG_BITRATE_KBPS: hybrid bitrate is kbps, not bits / sample
◦ CONFIG_CREATE_WVC: create correction file
◦ CONFIG_OPTIMIZE_WVC: maximize hybrid compression (same as -cc)
◦ CONFIG_CALC_NOISE: calc noise in hybrid mode
◦ CONFIG_EXTRA_MODE: extra processing mode (same as -x)
◦ CONFIG_SKIP_WVX: no wvx stream for floats & large ints (same as -p)
◦ CONFIG_MD5_CHECKSUM: specify if you plan to store MD5 signature (the sum is

calculated by the application, NOT by the library)
◦ CONFIG_CREATE_EXE: no longer used (ignored)
◦ CONFIG_OPTIMIZE_MONO: “on” by default from 5.0.0 (flag ignored)
◦ CONFIG_COMPATIBLE_WRITE: write streams compatible back to WavPack 4.0 and

WinZip decoder (disables “mono optimization”)
◦ CONFIG_CROSS_DECORR: force cross-channel decorrelation even in hybrid mode

• config->bitrate: hybrid bitrate in either bits/sample or kbps
• config->shaping_weight: hybrid noise shaping coefficient override
• config->block_samples: force samples per WavPack block (0 = use default, else 1-

131072)
• config->float_norm_exp: select floating-point data (127 for +/-1.0)
• config->xmode: extra mode processing value override (1-6)
• config->qmode: non-WAV qualification modes (see WavpackGetQualifyMode()

for details)

If the number of samples to be written is known then it should be passed here. If the duration is not
known then pass -1. In the case that the size is not known (or the writing is terminated early) then it is

suggested that the application retrieve the first block written and let the library update the total samples
indication. A function is provided to do this update and it should be done to the "correction" file also. If
this cannot be done (because a pipe is being used, for instance) then a valid WavPack will still be
created (assuming the initial duration was set to -1), but when applications want to access that file they
will have to seek all the way to the end to determine the actual duration (the library takes care of this).
Also, if a header has been included then it might need to be updated as well or the WavPack file will
not be directly unpackable to a valid file (although it will still be usable by itself).

The “chan_ids” argument allows setting the identities of any channels that are not standard Microsoft
channels and are therefore not represented in the channel mask. WavPack files require that all the
Microsoft channels come first (and in Microsoft order) and these are followed by any other channels
(which can be in any order).

The identities are provided in a NULL-terminated string (0x00 is not an allowed channel ID). The
Microsoft channels may be provided as well (and will be checked) but it is really only necessary to
provide the "unknown" channels. Any truly unknown channels are indicated with a 0xFF. The current
channel assignment values are listed in pack_utils.c. Simply pass a NULL pointer if there are no
extra channels to define (the most common case by far).

This function was introduced with WavPack 5.0.0, and results in a newer version of the stream being
generated that is incompatible with some very old decoders (before 4.3). This new stream allows for
more efficient encoding of stereo streams that are actually mono, and in previous versions of the library
was generated when the CONFIG_OPTIMIZE_MONO flag was set. Now that flag is ignored and the
newer stream is generated by default. The older stream can still be generated if the compatibility
function WavpackSetConfiguration() is used instead, or the CONFIG_COMPATIBLE_WRITE
flag is specified.

A return of FALSE indicates an error (use WavpackGetErrorMessage() to find out what
happened).

int WavpackSetConfiguration (
 WavpackContext *wpc,
 WavpackConfig *config,
 uint32_t total_samples
);

This legacy function provides the same capability as WavpackSetConfiguration64() above
except the total samples must be < 2^32, no extra non-Microsoft channels can be defined, and the
stream generated will be compatible with all decoders back to 4.0. It it provided for compatibility with
existing applications and legacy decoders (e.g., WinZip).

int WavpackSetChannelLayout (
 WavpackContext *wpc,
 uint32_t layout_tag,
 const unsigned char *reorder
);

This function allows setting the Core Audio File channel layout, many of which do not conform to the
Microsoft ordering standard that Wavpack requires internally (at least for those channels present in the
"channel mask"). In addition to the layout tag, this function allows a reordering string to be stored in
the file to allow the unpacker to reorder the channels back to the specified layout (if it is aware of this
feature and wants to restore the CAF order). The number of channels in the layout is specified in the
lower nybble of the layout word, and if a reorder string is specified it must be that long.

The reorder string (if supplied) is first scanned for the lowest value, and that is used as the base. This is
done so that the string can be binary zero based or can be a text string based on “1” (which is what the
caff.c module does). Either way, the values (once normalized) represent the destination position
when packing (reordering) and the source position when unpacking (restoring original order, or
“unreordering”).

All the reordering is actually done outside of this library, and if reordering is done then the
QMODE_REORDERED_CHANS bit in qmode bit must be set to ensure that any MD5 sum is stored with
a new ID so that existing decoders don't try to verify it (and to let new decoders know that a reorder
might be required).

Note: This function should only be used to encode Core Audio files in such a way that a verbatim
archive can be created. Applications can just include the “chan_ids” parameter in the call to
WavpackSetConfiguration64() if there are non-Microsoft channels to specify, or do nothing
special if only Microsoft channels are present (the vast majority of cases).

int WavpackPackInit (WavpackContext *wpc);

Prepare to actually pack samples by determining the size of the WavPack blocks and allocating sample
buffers and initializing each stream. Call after WavpackSetConfiguration64() and before
WavpackPackSamples(). A return of FALSE indicates an error.

int WavpackPackSamples (
 WavpackContext *wpc,
 int32_t *sample_buffer,
 uint32_t sample_count
);

Pack the specified samples. Samples must be stored in 32-bit integers in the native endian format of the
executing processor, and should be in the numerical range corresponding to config->bytes_per_sample,
i.e. any extra high-order bytes in the input data should be a pure sign-extension of the low (significant)
bytes. Otherwise, since samples are sign-extended during encode, out-of-range values will be aliased to
a valid value. The number of samples specified indicates composite samples (sometimes called
"frames"). So, the actual number of data points would be this "sample_count" times the number of
channels. Note that samples are accumulated here until enough exist to create a complete WavPack
block (or several blocks for multichannel audio). If an application wants to break a block at a specific
sample, it just calls WavpackFlushSamples() to force an early termination. Completed WavPack
blocks are sent to the function provided in the initial call to WavpackOpenFileOutput(). A return
of FALSE indicates an error (which most likely indicates the that user-supplied blockout function
returned an error).

int WavpackFlushSamples (WavpackContext *wpc);

Flush all accumulated samples into WavPack blocks. This is normally called after all samples have
been sent to WavpackPackSamples(), but can also be called to terminate a WavPack block at a
specific sample (in other words it is possible to continue after this operation). This also must be called
to dump non-audio blocks like those holding metadata for MD5 sums or file trailers. A return of
FALSE indicates an error.

void WavpackUpdateNumSamples (
 WavpackContext *wpc,
 void*first_block
);

Given the pointer to the first block written (to either a .wv or .wvc file), update the block with the
actual number of samples written. If the wav header was generated by the library, then it is updated
also. This should be done if WavpackSetConfiguration64() was called with an incorrect
number of samples (or -1). This should also be done in the case where the application did not provide
the RIFF header but did add some chunks for a RIFF trailer (see the section on adding RIFF metadata).
It is the responsibility of the application to read and rewrite the block. An example of this can be found
in the Audition filter or in the command-line packer when the -i option is used. On machines with
alignment requirements, be sure that the passed pointer is properly aligned!

int WavpackStoreMD5Sum (WavpackContext *wpc, uchar data [16]);

Store computed MD5 sum in WavPack metadata. Note that the user must compute the 16 byte sum; it is
not done here. It is also required that WavpackFlushSamples() be called after this to make sure
the block containing the MD5 sum is actually written. A return of FALSE indicates an error.

WavpackContext *WavpackCloseFile (WavpackContext *wpc);

Close the specified WavPack file and release all resources used by it. Returns NULL.

With respect to the file wrapper that is normally appended to the WavPack file, there are three options
available for the application to handle this.

The first is the simplest, and that is for the application to simply do nothing. The library will
automatically create a RIFF header appropriate for the audio data (including RF64 and/or
WAVEFORMATEXTENSIBLE) and store this in the WavPack file. If the application does not know
the actual number of samples beforehand and needs to reread the first block and have the library update
it, then the library will handle updating its own RIFF header also (even converting it to an RF64). In
this scenario, there will be no trailing RIFF data. For the vast majority of applications, this will be all
that is required, and the resulting WavPack file will be unpacked as a valid WAV file.

However, some applications may want to store a custom RIFF header (and trailer) instead, or they may
even want to attach headers for a different file format (like the Core Audio Format). An example of a

program that does this is the WavPack command-line program itself because it wants to work as a file
archiver for several different formats. To accomplish this, functions are provided (see below) to add
headers and trailers to a WavPack file being written. In this case, the application must provide a
verbatim copy of all the header data from the beginning of the file right up to the start of the audio data.
If any data is desired to be come after the audio data (a “trailer”), then this is appended after all samples
have been packed and flushed. This wrapper data will be exactly what wvunpack will use to restore the
original file. In no circumstance does the WavPack library parse, verify, or otherwise use this data.

If the header information needs to be updated after packing (because the total file size was not known
before packing the audio) then the first block must be reread and the function
WavpackGetWrapperLocation() must be called to find the wrapper in the block (it would be
possible to find it by searching for it in the last block, but using this function is significantly less ugly
and is guaranteed to work in the future). The WavPack library will not touch a wrapper that it did not
create when calling WavpackUpdateNumSamples().

The third option for including RIFF data chunks is a hybrid between these two methods and is useful if
an application wants to add a few specific RIFF chunks and does not mind if the chunks appear at the
end of the WAV file. In this method, which only applies to WAV files, the application does not send any
RIFF header before packing the audio data which forces the library to create and store a standard RIFF
header. However, when all samples have been packed, the application sends the RIFF chunks that it
wants to add at the end of the file (RIFF trailer). Then, after flushing, it must reread the first block and
call WavpackUpdateNumSamples() so that the library can update the RIFF header to reflect the
added chunks (even if the number of samples was correct). Because the library created the header, it
will update it, and will take into account the RIFF chunks added to the end.

All of this wrapper stuff can be a little confusing. It is a good idea to test that the final application is
working correctly and creating WavPack files that will unpack to valid WAV files (even if the RIFF
info is totally wrong, the files will still work perfectly well as WavPack files because, again, the RIFF
wrapper is just informational). The first test is to use the -ss option on WvUnpack to make sure the
RIFF wrapper is reported correctly. Then, unpack the WavPack file into a WAV using WvUnpack and
repack it again with the standard WavPack command-line program (without options). If it doesn't
complain about anything then there is a good chance that all the wrapper information is valid (although
trailing data is not parsed, it is simply copied).

Here are the appropriate functions:

int WavpackAddWrapper (
 WavpackContext *wpc,
 void *data,
 uint32_t bcount
);

Add wrapper to store verbatim in WavPack blocks. This should be called before sending any audio
samples in the case of the header or after all samples have been sent (and flushed) for any trailer. It is
also required that WavpackFlushSamples() be called again after specifying a trailer to make sure
it is actually written to the file.

If the exact contents of the header written above are not known because, for example, the file duration
is uncertain or trailing chunks are possible, simply write a "dummy" header of the correct length. When
all data has been written it will be possible to read the first block written and update the header
directly. An example of this can be found in the Audition filter. A return of FALSE indicates an error.

void *WavpackGetWrapperLocation (
 void *first_block,
 uint32_t *size
);

Given the pointer to the first block written to a WavPack file, this function returns the location of the
stored header that was originally written with WavpackAddWrapper(). This would normally be
used to update the wav header to indicate that a different number of samples was actually written or if
additional chunks are written at the end of the file. The "size" parameter can be set to non-NULL to
obtain the exact size of the header, and the function will return FALSE if the header is not found in the
block's metadata (or it is not a valid WavPack block). Note that the size of the RIFF header
cannot be changed and it is the responsibility of the application to read and rewrite the block. An
example of this can be found in the Audition filter.

5.0 Tagging Functions

The WavPack library supports reading and writing metadata tags on WavPack files. This includes
creating new APEv2 tags during WavPack file creation, reading text fields from both ID3v1 and APEv2
tags on existing WavPack files, and editing data in APEv2 tags.

Users should be aware of the following limitations of this functionality:

1. ID3v1 tags are read-only, and cannot be accessed if there is an APEv2 tag prior to them in the
file (because the APEv2 tag takes priority). ID3v1 tags are lost if the prior APEv2 tag is edited.

2. The text items in APEv2 tags are UTF-8 encoded. The functionality of converting to/from any
local or multi-byte encoding must be handled by the calling application.

3. The binary items of APEv2 tags can now (version 4.60+) be read and written. The functions that
handle binary items have Binary in their name; unless noted otherwise all other functions
refer to text tags only.

The convention for binary tag items in APEv2 tags is that the data starts with a NULL-
terminated string representing a filename. After the terminating NULL, the actual binary data
starts. In the WavPack code this filename has only the extension of the actual file; the name
portion is made up of the tag item name. Note that this functionality is not handled in the
library. The library only stores and retrieves a binary image and it is up to the calling
application to append and handle this filename.

4. When APEv2 tags are edited and the resulting tags are shorter than the original tags (or APEv2
tags are deleted altogether), the library uses the truncate_here() callback that was added
to the WavpackStreaReader64 structure to reduce the file size. If that callback is not
defined (NULL), or the old WavpackSreamReader is used, the tag is instead padded with
zeros at the front rather than having the file shortened, and this padding cannot be reclaimed by
future editing. The net result of this is that repeated editing of tags will cause the file to grow
indefinitely (although this will only happen when the tag is actually made smaller).

In these descriptions the meaning of the word "tag" refers to the whole bundle that is appended to the
end of the WavPack file. This bundle may contain many individual items, each consisting of a
key/value pair. The key is referred to here as the "item", meaning the item's name (like "artist"). Some
people refer to the individual items as "tags", but that usage is not used here. Also note that APEv2 tags
store the case of tag item names and values, but are not case sensitive when locating tag item names
(and this is carried here into the lookup of ID3v1 tag item names).

int WavpackGetNumTagItems (WavpackContext *wpc);
int WavpackGetNumBinaryTagItems (WavpackContext *wpc);

Count and return the total number of tag items (either text or binary) in the specified file. This works
with either ID3v1 tags or APEv2 tags (although ID3V1 tags do not have binary items).

int WavpackGetTagItem (
 WavpackContext *wpc,
 const char *item,
 char *value,
 int size
);

int WavpackGetBinaryTagItem (
 WavpackContext *wpc,
 const char *item,
 char *value,
 int size
);

Attempt to get the specified item (either text or binary) from the specified file's ID3v1 or APEv2 tag.
The "size" parameter specifies the amount of space available at "value", if the desired text item will not
fit in this space then ellipses (...) will be appended and the string terminated (binary tag data is simply
truncated). The actual length of the string (or binary data) is returned (or 0 if no matching value found).
Note that with APEv2 text tags the length might not be the same as the number of characters because
UTF-8 encoding is used. Also, APEv2 text tags can have multiple (NULL separated) strings for a single
value (this is why the length is returned). If this function is called with a NULL "value" pointer (or a
zero "length") then only the actual length of the value data is returned (not counting the terminating
NULL of text tag items). This can be used to determine the actual memory to be allocated beforehand.

For ID3v1 tags the only "item" names supported are "title", "artist", "album", "year", "comment" and
"track" (which is converted to numeric text by the library).

int WavpackGetTagItemIndexed (
 WavpackContext *wpc,
 int index,
 char *item,
 int size
);

int WavpackGetBinaryTagItemIndexed (
 WavpackContext *wpc,
 int index,
 char *item,
 int size
);

These functions look up the tag item name by index and is used when the application wants to access
all the items in the file's ID3v1 or APEv2 tag. Keep in mind that text and binary items are totally
separate and that there is a different count and index for each. Note that this function accesses only the
item's name; WavpackGetTagItem() still must be called to get the actual value. The "size"
parameter specifies the amount of space available at "item", if the desired item will not fit in this space
then ellipses (...) will be appended and the string terminated. The actual length of the string is returned

(or 0 if no item exists for index). If this function is called with a NULL "value" pointer (or a zero
"length") then only the actual length of the item name is returned (not counting the terminating NULL).
This can be used to determine the actual memory to be allocated beforehand.

int WavpackAppendTagItem (
 WavpackContext *wpc,
 const char *item,
 const char *value,
 int vsize
);

int WavpackAppendBinaryTagItem (
 WavpackContext *wpc,
 const char *item,
 const char *value,
 int vsize
);

This function is used to append (or replace) the specified field to the tag being created or edited. If no
tag has been started, then an empty one will be allocated first. When finished adding all the items to the
tag, use WavpackWriteTag() to write the completed tag to the file. Note that ID3 tags are not
supported for writing. A size parameter is included so that text values containing multiple (NULL
separated) strings (and binary data) can be written. A FALSE return indicates an error.

int WavpackDeleteTagItem (
 WavpackContext *wpc,
 const char *item
);

Delete the specified tag item from the APEv2 tag being created or edited. This function works with
either text or binary items. Returns TRUE to indicate that an item was actually deleted from the tag.

int WavpackWriteTag (WavpackContext *wpc);

Once a APEv2 tag has been created (or edited) using WavpackAppendTagItem() (and
WavpackDeleteTagItem()), this function is used to write the completed tag to the end of the
WavPack file. Note that this is not done for each item in the tag, but only after all items have been
added to the tag.

If this function is called when creating a WavPack file, then it uses the same blockout function that
is used to write regular WavPack blocks (and should be called after flushing all the audio data and
writing any WavPack metadata like trailers and MD5 sums). Note that this function may call the
blockout function multiple times to write the tag.

If this function is called when editing an existing APEv2 tag, then it will seek to the correct position
and write the tag using the WavpackStreamReader64 functions for this purpose or using its own
standard I/O functions if the file was opened by filename. If using the old WavpackStreamReader,

or if using the new WavpackStreamReader64 with the truncate_here() function pointer
NULL, this function will pad the file with 0's in front of a tag that had been edited to a shorter length.

6.0 Handling WavPack Streams

In some applications (for example streaming applications and some filters, or cases where WavPack
data might be embedded into another multimedia container) it is required for the audio file parsing
functions to be separated from the decoding functions. This is accomplished in two steps with the
WavPack library.

First, the parsing functions are implemented outside the WavPack library. It is very straightforward to
parse WavPack files because the WavPack block header is easy to recognize, and contains easy to parse
and interpret information about the block's contents and its relation to the whole WavPack file (or
stream). The exact file and block formats are described in detail in the file_format.txt
document. The stand-alone WavPack parser wvparser.c could be used as a starting point for a
parser. WavpackLittleEndianToNative() and WavpackNativeToLittleEndian()
might come in handy (see descriptions above in section 2.0).

Next, to actually decode the individual WavPack blocks into interleaved PCM, this new function
introduced in 5.0.0 can be used:

WavpackContext *WavpackOpenRawDecoder (
 void *main_data,
 int32_t main_size,
 void *corr_data,
 int32_t corr_size,
 int16_t version,
 char *error,
 int flags,
 int norm_offset
);

This function is somewhat similar to WavpackOpenFileInput() except that instead of providing
a filename to open, the caller provides a pointer to a complete buffered WavPack frame (or two frames
if a correction frame is available). It decodes only a single frame (or wv/wvc pair). The “version”
parameter is simply copied from the WavPack frame header (and its not required of the WavPack
blocks still have their headers), and the “error”, “flags” and “norm_offset” parameters have the same
meaning as the other open functions.

After creating this context, all of the applicable regular WavPack functions can be used to obtain
information about the audio data contained and unpack it to channel-interleaved PCM. Obviously
seeking will not work (only the passed frame is available for decoding). When the frame has been
decoded, then WavpackCloseFile() should be called to free the resources.

Note that in this context, a "frame" is a collection of WavPack blocks that represent all the channels
present. In the case of mono or [most] stereo streams, this is the same thing, but for multichannel
streams each frame consists of several WavPack blocks (which can contain only 1 or 2 channels each).
The first block of a multichannel stream has the INITIAL_BLOCK flag set and the last block has the
FINAL_BLOCK flag set.

It is also possible to convert WavPack blocks from Matroska streams that have had their headers
removed and this case is detected and done automatically. This is the reason that the “version”
parameter is provided (in Matroska it is stored in the CodecPrivate area) and can actually be left zero
when decoding WavPack blocks with their headers still present. For more information about WavPack
in Matroska, see here:

 https://www.matroska.org/technical/specs/codecid/wavpack.html

The length of the frame in samples cannot be determined with existing WavPack functions, so this
additional function is provided (although a parser might know this already):

uint32_t WavpackGetNumSamplesInFrame (WavpackContext *wpc);

As mentioned above, this raw decoding functionality was introduced in WavPack 5.0.0, but a
somewhat less convenient method is available using the regular WavpackOpenFileInputEx()
function. Using that method, the specified stream reader feeds the raw WavPack block's bytes into the
library when requested. The flags parameter should have the OPEN_STREAMING flag set so that the
decoder will ignore the position and any other "whole file" information in the block headers. Also, the
OPEN_NO_CHECKSUM flag should be set if the blocks are being reassembled and not identical to the
originals. The decoder will suck up the first block (through the stream reader) that actually contains
audio and stop, ready to decode. The next step is to call WavpackUnpackSamples() to unpack the
actual number of samples in the block (which should be known by the parser).

Normally, the entire block would be unpacked and then the decoder would be ready for the next block.
If a single additional sample is requested past the size of the current block the decoder will attempt to
read the next block, so it is important to request the exact number of samples (unless this behavior is
okay). If it is not desired to finish decoding the block then there are two options. The easiest would be
to simply decode the rest of the block anyway and discard the results. Another option would be to close
the context with the function WavpackCloseFile() and then open another context when needed.

This procedure will also work fine for multichannel WavPack files. The decoder will have to suck up
all the blocks for the various channels before decoding may begin.

The downside of this method is that the application is responsible for putting headers back on Matroska
“headerless” frames, and is more like to get “out of sync” with the application if corrupted data is
decoded. On the other hand, it does not require the context to be closed and opened again for every
frame.

https://www.matroska.org/technical/specs/codecid/wavpack.html

7.0 Zip Format Usage

With version 11.0, WinZip Computing added WavPack Audio to the official ZIP file format standard as
compression method 97, as described here:

 http://www.winzip.com/ppmd_info.htm

The WavPack library can easily be used to create or decode the WavPack images stored in the ZIP files.
Some issues to keep in mind:

1. To generate streams compatible with WinZip it is important that the legacy function
WavpackSetConfiguration() be called to set configuration, not the new
WavpackSetConfiguration64(). The newest stream format is not compatible with
WinZip, but unmodified applications should automatically get the older, compatible streams.

2. Only lossless mode is used. WinZip's implementation uses the "very high" mode with no extra
processing, although there is no reason that a different profile could not be employed as they
would still be fully compatible (for example, the new "high" mode and/or the new "extra" mode
could be used).

3. All bitdepths (including 32-bit floating-point) are supported. However, bitdepths that are not
multiples of 8 should be rounded up to the next multiple of 8 to ensure that all samples (even
illegal ones) are encoded losslessly (this is described in more detail in the WinZip document).

4. Multichannel data (with or without WAVEFORMATEXTENSIBLE) is fully supported.

5. CONFIG_OPTIMIZE_MONO is not available during decoding and therefore should not be used
for encoding. This only applies when using libwavpack versions prior to 5.0.0 (see #1).

6. The WavPack data must have RIFF headers (to generate .wav files) and may optionally have
RIFF trailers. It would not be appropriate to have WavPack generate the RIFF headers (either
during encode or decode) because of the obvious danger of generating files that don't match
exactly.

7. The WavPack data should probably not have metadata tags or MD5 sums added to it. This
information would be discarded during decoding anyway and could possibly trigger an error
condition in a decoder.

The easiest way of using the WavPack library to decode the embedded WavPack data would be to open
a WavPack context using WavpackOpenFileInputEx() and provide a
WavpackStreamReader that would read the appropriate part of the ZIP file by using an offset. If
only the standard unpacking operations are used, then the WavPack library will not attempt to seek
during a decode. The only flag to use for the "open" call would be OPEN_WRAPPER.

The most critical aspect of creating WavPack images to embed in Zip files is making sure that the
decoded data will exactly match the source. This is in contrast to the case of WavPack command-line
programs where some invalid WAV files may not encode (or exactly decode) for one reason or another.
For this reason it is important to check the parameters in the WAV header carefully and allow only a
well-defined set of known good combinations. The size of the audio data should be checked to make
sure it contains the correct number of whole composite samples (or if it doesn't then this is properly
handled). Since WavPack cannot properly decode WavPack files that contain no audio data (i.e. zero

http://www.winzip.com/ppmd_info.htm

samples), this case should also be avoided. In all situations where some question exists, the prudent
choice would be to default to some other (more genereralized) data compression method.

