/* GLib testing utilities * Copyright (C) 2007 Imendio AB * Authors: Tim Janik, Sven Herzberg * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "config.h" #include "gtestutils.h" #include "gfileutils.h" #include #ifdef G_OS_UNIX #include #include #include #endif #include #include #include #ifdef HAVE_UNISTD_H #include #endif #ifdef G_OS_WIN32 #include #endif #include #include #ifdef HAVE_SYS_SELECT_H #include #endif /* HAVE_SYS_SELECT_H */ #include "gmain.h" #include "gpattern.h" #include "grand.h" #include "gstrfuncs.h" #include "gtimer.h" #include "gslice.h" /** * SECTION:testing * @title: Testing * @short_description: a test framework * @see_also: gtester, * gtester-report * * GLib provides a framework for writing and maintaining unit tests * in parallel to the code they are testing. The API is designed according * to established concepts found in the other test frameworks (JUnit, NUnit, * RUnit), which in turn is based on smalltalk unit testing concepts. * * * * Test case * Tests (test methods) are grouped together with their * fixture into test cases. * * * Fixture * A test fixture consists of fixture data and setup and * teardown methods to establish the environment for the test * functions. We use fresh fixtures, i.e. fixtures are newly set * up and torn down around each test invocation to avoid dependencies * between tests. * * * Test suite * Test cases can be grouped into test suites, to allow * subsets of the available tests to be run. Test suites can be * grouped into other test suites as well. * * * The API is designed to handle creation and registration of test suites * and test cases implicitly. A simple call like * |[ * g_test_add_func ("/misc/assertions", test_assertions); * ]| * creates a test suite called "misc" with a single test case named * "assertions", which consists of running the test_assertions function. * * In addition to the traditional g_assert(), the test framework provides * an extended set of assertions for string and numerical comparisons: * g_assert_cmpfloat(), g_assert_cmpint(), g_assert_cmpuint(), * g_assert_cmphex(), g_assert_cmpstr(). The advantage of these variants * over plain g_assert() is that the assertion messages can be more * elaborate, and include the values of the compared entities. * * GLib ships with two utilities called gtester and gtester-report to * facilitate running tests and producing nicely formatted test reports. */ /** * g_test_quick: * * Returns %TRUE if tests are run in quick mode. * Exactly one of g_test_quick() and g_test_slow() is active in any run; * there is no "medium speed". * * Returns: %TRUE if in quick mode */ /** * g_test_slow: * * Returns %TRUE if tests are run in slow mode. * Exactly one of g_test_quick() and g_test_slow() is active in any run; * there is no "medium speed". * * Returns: the opposite of g_test_quick() */ /** * g_test_thorough: * * Returns %TRUE if tests are run in thorough mode, equivalent to * g_test_slow(). * * Returns: the same thing as g_test_slow() */ /** * g_test_perf: * * Returns %TRUE if tests are run in performance mode. * * Returns: %TRUE if in performance mode */ /** * g_test_undefined: * * Returns %TRUE if tests may provoke assertions and other formally-undefined * behaviour under g_test_trap_fork(), to verify that appropriate warnings * are given. It can be useful to turn this off if running tests under * valgrind. * * Returns: %TRUE if tests may provoke programming errors */ /** * g_test_verbose: * * Returns %TRUE if tests are run in verbose mode. * The default is neither g_test_verbose() nor g_test_quiet(). * * Returns: %TRUE if in verbose mode */ /** * g_test_quiet: * * Returns %TRUE if tests are run in quiet mode. * The default is neither g_test_verbose() nor g_test_quiet(). * * Returns: %TRUE if in quiet mode */ /** * g_test_queue_unref: * @gobject: the object to unref * * Enqueue an object to be released with g_object_unref() during * the next teardown phase. This is equivalent to calling * g_test_queue_destroy() with a destroy callback of g_object_unref(). * * Since: 2.16 */ /** * GTestTrapFlags: * @G_TEST_TRAP_SILENCE_STDOUT: Redirect stdout of the test child to * /dev/null so it cannot be observed on the * console during test runs. The actual output is still captured * though to allow later tests with g_test_trap_assert_stdout(). * @G_TEST_TRAP_SILENCE_STDERR: Redirect stderr of the test child to * /dev/null so it cannot be observed on the * console during test runs. The actual output is still captured * though to allow later tests with g_test_trap_assert_stderr(). * @G_TEST_TRAP_INHERIT_STDIN: If this flag is given, stdin of the * forked child process is shared with stdin of its parent process. * It is redirected to /dev/null otherwise. * * Test traps are guards around forked tests. * These flags determine what traps to set. */ /** * g_test_trap_assert_passed: * * Assert that the last forked test passed. * See g_test_trap_fork(). * * Since: 2.16 */ /** * g_test_trap_assert_failed: * * Assert that the last forked test failed. * See g_test_trap_fork(). * * This is sometimes used to test situations that are formally considered to * be undefined behaviour, like inputs that fail a g_return_if_fail() * check. In these situations you should skip the entire test, including the * call to g_test_trap_fork(), unless g_test_undefined() returns %TRUE * to indicate that undefined behaviour may be tested. * * Since: 2.16 */ /** * g_test_trap_assert_stdout: * @soutpattern: a glob-style * pattern * * Assert that the stdout output of the last forked test matches * @soutpattern. See g_test_trap_fork(). * * Since: 2.16 */ /** * g_test_trap_assert_stdout_unmatched: * @soutpattern: a glob-style * pattern * * Assert that the stdout output of the last forked test * does not match @soutpattern. See g_test_trap_fork(). * * Since: 2.16 */ /** * g_test_trap_assert_stderr: * @serrpattern: a glob-style * pattern * * Assert that the stderr output of the last forked test * matches @serrpattern. See g_test_trap_fork(). * * This is sometimes used to test situations that are formally considered to * be undefined behaviour, like inputs that fail a g_return_if_fail() * check. In these situations you should skip the entire test, including the * call to g_test_trap_fork(), unless g_test_undefined() returns %TRUE * to indicate that undefined behaviour may be tested. * * Since: 2.16 */ /** * g_test_trap_assert_stderr_unmatched: * @serrpattern: a glob-style * pattern * * Assert that the stderr output of the last forked test * does not match @serrpattern. See g_test_trap_fork(). * * Since: 2.16 */ /** * g_test_rand_bit: * * Get a reproducible random bit (0 or 1), see g_test_rand_int() * for details on test case random numbers. * * Since: 2.16 */ /** * g_assert: * @expr: the expression to check * * Debugging macro to terminate the application if the assertion * fails. If the assertion fails (i.e. the expression is not true), * an error message is logged and the application is terminated. * * The macro can be turned off in final releases of code by defining * G_DISABLE_ASSERT when compiling the application. */ /** * g_assert_not_reached: * * Debugging macro to terminate the application if it is ever * reached. If it is reached, an error message is logged and the * application is terminated. * * The macro can be turned off in final releases of code by defining * G_DISABLE_ASSERT when compiling the application. */ /** * g_assert_cmpstr: * @s1: a string (may be %NULL) * @cmp: The comparison operator to use. * One of ==, !=, <, >, <=, >=. * @s2: another string (may be %NULL) * * Debugging macro to terminate the application with a warning * message if a string comparison fails. The strings are compared * using g_strcmp0(). * * The effect of g_assert_cmpstr (s1, op, s2) is * the same as g_assert (g_strcmp0 (s1, s2) op 0). * The advantage of this macro is that it can produce a message that * includes the actual values of @s1 and @s2. * * |[ * g_assert_cmpstr (mystring, ==, "fubar"); * ]| * * Since: 2.16 */ /** * g_assert_cmpint: * @n1: an integer * @cmp: The comparison operator to use. * One of ==, !=, <, >, <=, >=. * @n2: another integer * * Debugging macro to terminate the application with a warning * message if an integer comparison fails. * * The effect of g_assert_cmpint (n1, op, n2) is * the same as g_assert (n1 op n2). The advantage * of this macro is that it can produce a message that includes the * actual values of @n1 and @n2. * * Since: 2.16 */ /** * g_assert_cmpuint: * @n1: an unsigned integer * @cmp: The comparison operator to use. * One of ==, !=, <, >, <=, >=. * @n2: another unsigned integer * * Debugging macro to terminate the application with a warning * message if an unsigned integer comparison fails. * * The effect of g_assert_cmpuint (n1, op, n2) is * the same as g_assert (n1 op n2). The advantage * of this macro is that it can produce a message that includes the * actual values of @n1 and @n2. * * Since: 2.16 */ /** * g_assert_cmphex: * @n1: an unsigned integer * @cmp: The comparison operator to use. * One of ==, !=, <, >, <=, >=. * @n2: another unsigned integer * * Debugging macro to terminate the application with a warning * message if an unsigned integer comparison fails. * * This is a variant of g_assert_cmpuint() that displays the numbers * in hexadecimal notation in the message. * * Since: 2.16 */ /** * g_assert_cmpfloat: * @n1: an floating point number * @cmp: The comparison operator to use. * One of ==, !=, <, >, <=, >=. * @n2: another floating point number * * Debugging macro to terminate the application with a warning * message if a floating point number comparison fails. * * The effect of g_assert_cmpfloat (n1, op, n2) is * the same as g_assert (n1 op n2). The advantage * of this macro is that it can produce a message that includes the * actual values of @n1 and @n2. * * Since: 2.16 */ /** * g_assert_no_error: * @err: a #GError, possibly %NULL * * Debugging macro to terminate the application with a warning * message if a method has returned a #GError. * * The effect of g_assert_no_error (err) is * the same as g_assert (err == NULL). The advantage * of this macro is that it can produce a message that includes * the error message and code. * * Since: 2.20 */ /** * g_assert_error: * @err: a #GError, possibly %NULL * @dom: the expected error domain (a #GQuark) * @c: the expected error code * * Debugging macro to terminate the application with a warning * message if a method has not returned the correct #GError. * * The effect of g_assert_error (err, dom, c) is * the same as g_assert (err != NULL && err->domain * == dom && err->code == c). The advantage of this * macro is that it can produce a message that includes the incorrect * error message and code. * * This can only be used to test for a specific error. If you want to * test that @err is set, but don't care what it's set to, just use * g_assert (err != NULL) * * Since: 2.20 */ /** * GTestCase: * * An opaque structure representing a test case. */ /** * GTestSuite: * * An opaque structure representing a test suite. */ /* Global variable for storing assertion messages; this is the counterpart to * glibc's (private) __abort_msg variable, and allows developers and crash * analysis systems like Apport and ABRT to fish out assertion messages from * core dumps, instead of having to catch them on screen output. */ char *__glib_assert_msg = NULL; /* --- structures --- */ struct GTestCase { gchar *name; guint fixture_size; void (*fixture_setup) (void*, gconstpointer); void (*fixture_test) (void*, gconstpointer); void (*fixture_teardown) (void*, gconstpointer); gpointer test_data; }; struct GTestSuite { gchar *name; GSList *suites; GSList *cases; }; typedef struct DestroyEntry DestroyEntry; struct DestroyEntry { DestroyEntry *next; GDestroyNotify destroy_func; gpointer destroy_data; }; /* --- prototypes --- */ static void test_run_seed (const gchar *rseed); static void test_trap_clear (void); static guint8* g_test_log_dump (GTestLogMsg *msg, guint *len); static void gtest_default_log_handler (const gchar *log_domain, GLogLevelFlags log_level, const gchar *message, gpointer unused_data); /* --- variables --- */ static int test_log_fd = -1; static gboolean test_mode_fatal = TRUE; static gboolean g_test_run_once = TRUE; static gboolean test_run_list = FALSE; static gchar *test_run_seedstr = NULL; static GRand *test_run_rand = NULL; static gchar *test_run_name = ""; static guint test_run_forks = 0; static guint test_run_count = 0; static guint test_run_success = FALSE; static guint test_skip_count = 0; static GTimer *test_user_timer = NULL; static double test_user_stamp = 0; static GSList *test_paths = NULL; static GSList *test_paths_skipped = NULL; static GTestSuite *test_suite_root = NULL; static int test_trap_last_status = 0; static int test_trap_last_pid = 0; static char *test_trap_last_stdout = NULL; static char *test_trap_last_stderr = NULL; static char *test_uri_base = NULL; static gboolean test_debug_log = FALSE; static DestroyEntry *test_destroy_queue = NULL; static GTestConfig mutable_test_config_vars = { FALSE, /* test_initialized */ TRUE, /* test_quick */ FALSE, /* test_perf */ FALSE, /* test_verbose */ FALSE, /* test_quiet */ TRUE, /* test_undefined */ }; const GTestConfig * const g_test_config_vars = &mutable_test_config_vars; /* --- functions --- */ const char* g_test_log_type_name (GTestLogType log_type) { switch (log_type) { case G_TEST_LOG_NONE: return "none"; case G_TEST_LOG_ERROR: return "error"; case G_TEST_LOG_START_BINARY: return "binary"; case G_TEST_LOG_LIST_CASE: return "list"; case G_TEST_LOG_SKIP_CASE: return "skip"; case G_TEST_LOG_START_CASE: return "start"; case G_TEST_LOG_STOP_CASE: return "stop"; case G_TEST_LOG_MIN_RESULT: return "minperf"; case G_TEST_LOG_MAX_RESULT: return "maxperf"; case G_TEST_LOG_MESSAGE: return "message"; } return "???"; } static void g_test_log_send (guint n_bytes, const guint8 *buffer) { if (test_log_fd >= 0) { int r; do r = write (test_log_fd, buffer, n_bytes); while (r < 0 && errno == EINTR); } if (test_debug_log) { GTestLogBuffer *lbuffer = g_test_log_buffer_new (); GTestLogMsg *msg; guint ui; g_test_log_buffer_push (lbuffer, n_bytes, buffer); msg = g_test_log_buffer_pop (lbuffer); g_warn_if_fail (msg != NULL); g_warn_if_fail (lbuffer->data->len == 0); g_test_log_buffer_free (lbuffer); /* print message */ g_printerr ("{*LOG(%s)", g_test_log_type_name (msg->log_type)); for (ui = 0; ui < msg->n_strings; ui++) g_printerr (":{%s}", msg->strings[ui]); if (msg->n_nums) { g_printerr (":("); for (ui = 0; ui < msg->n_nums; ui++) g_printerr ("%s%.16Lg", ui ? ";" : "", msg->nums[ui]); g_printerr (")"); } g_printerr (":LOG*}\n"); g_test_log_msg_free (msg); } } static void g_test_log (GTestLogType lbit, const gchar *string1, const gchar *string2, guint n_args, long double *largs) { gboolean fail = lbit == G_TEST_LOG_STOP_CASE && largs[0] != 0; GTestLogMsg msg; gchar *astrings[3] = { NULL, NULL, NULL }; guint8 *dbuffer; guint32 dbufferlen; switch (lbit) { case G_TEST_LOG_START_BINARY: if (g_test_verbose()) g_print ("GTest: random seed: %s\n", string2); break; case G_TEST_LOG_STOP_CASE: if (g_test_verbose()) g_print ("GTest: result: %s\n", fail ? "FAIL" : "OK"); else if (!g_test_quiet()) g_print ("%s\n", fail ? "FAIL" : "OK"); if (fail && test_mode_fatal) abort(); break; case G_TEST_LOG_MIN_RESULT: if (g_test_verbose()) g_print ("(MINPERF:%s)\n", string1); break; case G_TEST_LOG_MAX_RESULT: if (g_test_verbose()) g_print ("(MAXPERF:%s)\n", string1); break; case G_TEST_LOG_MESSAGE: if (g_test_verbose()) g_print ("(MSG: %s)\n", string1); break; default: ; } msg.log_type = lbit; msg.n_strings = (string1 != NULL) + (string1 && string2); msg.strings = astrings; astrings[0] = (gchar*) string1; astrings[1] = astrings[0] ? (gchar*) string2 : NULL; msg.n_nums = n_args; msg.nums = largs; dbuffer = g_test_log_dump (&msg, &dbufferlen); g_test_log_send (dbufferlen, dbuffer); g_free (dbuffer); switch (lbit) { case G_TEST_LOG_START_CASE: if (g_test_verbose()) g_print ("GTest: run: %s\n", string1); else if (!g_test_quiet()) g_print ("%s: ", string1); break; default: ; } } /* We intentionally parse the command line without GOptionContext * because otherwise you would never be able to test it. */ static void parse_args (gint *argc_p, gchar ***argv_p) { guint argc = *argc_p; gchar **argv = *argv_p; guint i, e; /* parse known args */ for (i = 1; i < argc; i++) { if (strcmp (argv[i], "--g-fatal-warnings") == 0) { GLogLevelFlags fatal_mask = (GLogLevelFlags) g_log_set_always_fatal ((GLogLevelFlags) G_LOG_FATAL_MASK); fatal_mask = (GLogLevelFlags) (fatal_mask | G_LOG_LEVEL_WARNING | G_LOG_LEVEL_CRITICAL); g_log_set_always_fatal (fatal_mask); argv[i] = NULL; } else if (strcmp (argv[i], "--keep-going") == 0 || strcmp (argv[i], "-k") == 0) { test_mode_fatal = FALSE; argv[i] = NULL; } else if (strcmp (argv[i], "--debug-log") == 0) { test_debug_log = TRUE; argv[i] = NULL; } else if (strcmp ("--GTestLogFD", argv[i]) == 0 || strncmp ("--GTestLogFD=", argv[i], 13) == 0) { gchar *equal = argv[i] + 12; if (*equal == '=') test_log_fd = g_ascii_strtoull (equal + 1, NULL, 0); else if (i + 1 < argc) { argv[i++] = NULL; test_log_fd = g_ascii_strtoull (argv[i], NULL, 0); } argv[i] = NULL; } else if (strcmp ("--GTestSkipCount", argv[i]) == 0 || strncmp ("--GTestSkipCount=", argv[i], 17) == 0) { gchar *equal = argv[i] + 16; if (*equal == '=') test_skip_count = g_ascii_strtoull (equal + 1, NULL, 0); else if (i + 1 < argc) { argv[i++] = NULL; test_skip_count = g_ascii_strtoull (argv[i], NULL, 0); } argv[i] = NULL; } else if (strcmp ("-p", argv[i]) == 0 || strncmp ("-p=", argv[i], 3) == 0) { gchar *equal = argv[i] + 2; if (*equal == '=') test_paths = g_slist_prepend (test_paths, equal + 1); else if (i + 1 < argc) { argv[i++] = NULL; test_paths = g_slist_prepend (test_paths, argv[i]); } argv[i] = NULL; } else if (strcmp ("-s", argv[i]) == 0 || strncmp ("-s=", argv[i], 3) == 0) { gchar *equal = argv[i] + 2; if (*equal == '=') test_paths_skipped = g_slist_prepend (test_paths_skipped, equal + 1); else if (i + 1 < argc) { argv[i++] = NULL; test_paths_skipped = g_slist_prepend (test_paths_skipped, argv[i]); } argv[i] = NULL; } else if (strcmp ("-m", argv[i]) == 0 || strncmp ("-m=", argv[i], 3) == 0) { gchar *equal = argv[i] + 2; const gchar *mode = ""; if (*equal == '=') mode = equal + 1; else if (i + 1 < argc) { argv[i++] = NULL; mode = argv[i]; } if (strcmp (mode, "perf") == 0) mutable_test_config_vars.test_perf = TRUE; else if (strcmp (mode, "slow") == 0) mutable_test_config_vars.test_quick = FALSE; else if (strcmp (mode, "thorough") == 0) mutable_test_config_vars.test_quick = FALSE; else if (strcmp (mode, "quick") == 0) { mutable_test_config_vars.test_quick = TRUE; mutable_test_config_vars.test_perf = FALSE; } else if (strcmp (mode, "undefined") == 0) mutable_test_config_vars.test_undefined = TRUE; else if (strcmp (mode, "no-undefined") == 0) mutable_test_config_vars.test_undefined = FALSE; else g_error ("unknown test mode: -m %s", mode); argv[i] = NULL; } else if (strcmp ("-q", argv[i]) == 0 || strcmp ("--quiet", argv[i]) == 0) { mutable_test_config_vars.test_quiet = TRUE; mutable_test_config_vars.test_verbose = FALSE; argv[i] = NULL; } else if (strcmp ("--verbose", argv[i]) == 0) { mutable_test_config_vars.test_quiet = FALSE; mutable_test_config_vars.test_verbose = TRUE; argv[i] = NULL; } else if (strcmp ("-l", argv[i]) == 0) { test_run_list = TRUE; argv[i] = NULL; } else if (strcmp ("--seed", argv[i]) == 0 || strncmp ("--seed=", argv[i], 7) == 0) { gchar *equal = argv[i] + 6; if (*equal == '=') test_run_seedstr = equal + 1; else if (i + 1 < argc) { argv[i++] = NULL; test_run_seedstr = argv[i]; } argv[i] = NULL; } else if (strcmp ("-?", argv[i]) == 0 || strcmp ("--help", argv[i]) == 0) { printf ("Usage:\n" " %s [OPTION...]\n\n" "Help Options:\n" " -?, --help Show help options\n" "Test Options:\n" " -l List test cases available in a test executable\n" " -seed=RANDOMSEED Provide a random seed to reproduce test\n" " runs using random numbers\n" " --verbose Run tests verbosely\n" " -q, --quiet Run tests quietly\n" " -p TESTPATH execute all tests matching TESTPATH\n" " -s TESTPATH skip all tests matching TESTPATH\n" " -m {perf|slow|thorough|quick} Execute tests according modes\n" " -m {undefined|no-undefined} Execute tests according modes\n" " --debug-log debug test logging output\n" " -k, --keep-going gtester-specific argument\n" " --GTestLogFD=N gtester-specific argument\n" " --GTestSkipCount=N gtester-specific argument\n", argv[0]); exit (0); } } /* collapse argv */ e = 1; for (i = 1; i < argc; i++) if (argv[i]) { argv[e++] = argv[i]; if (i >= e) argv[i] = NULL; } *argc_p = e; } /** * g_test_init: * @argc: Address of the @argc parameter of the main() function. * Changed if any arguments were handled. * @argv: Address of the @argv parameter of main(). * Any parameters understood by g_test_init() stripped before return. * @...: Reserved for future extension. Currently, you must pass %NULL. * * Initialize the GLib testing framework, e.g. by seeding the * test random number generator, the name for g_get_prgname() * and parsing test related command line args. * So far, the following arguments are understood: * * * * * list test cases available in a test executable. * * * * * * provide a random seed to reproduce test runs using random numbers. * * * * * run tests verbosely. * * * , * run tests quietly. * * * * * execute all tests matching TESTPATH. * * * * * * execute tests according to these test modes: * * * perf * * performance tests, may take long and report results. * * * * slow, thorough * * slow and thorough tests, may take quite long and * maximize coverage. * * * * quick * * quick tests, should run really quickly and give good coverage. * * * * undefined * * tests for undefined behaviour, may provoke programming errors * under g_test_trap_fork() to check that appropriate assertions * or warnings are given * * * * no-undefined * * avoid tests for undefined behaviour * * * * * * * * debug test logging output. * * * , * gtester-specific argument. * * * * gtester-specific argument. * * * * gtester-specific argument. * * * * Since: 2.16 */ void g_test_init (int *argc, char ***argv, ...) { static char seedstr[4 + 4 * 8 + 1]; va_list args; gpointer vararg1; /* make warnings and criticals fatal for all test programs */ GLogLevelFlags fatal_mask = (GLogLevelFlags) g_log_set_always_fatal ((GLogLevelFlags) G_LOG_FATAL_MASK); fatal_mask = (GLogLevelFlags) (fatal_mask | G_LOG_LEVEL_WARNING | G_LOG_LEVEL_CRITICAL); g_log_set_always_fatal (fatal_mask); /* check caller args */ g_return_if_fail (argc != NULL); g_return_if_fail (argv != NULL); g_return_if_fail (g_test_config_vars->test_initialized == FALSE); mutable_test_config_vars.test_initialized = TRUE; va_start (args, argv); vararg1 = va_arg (args, gpointer); /* reserved for future extensions */ va_end (args); g_return_if_fail (vararg1 == NULL); /* setup random seed string */ g_snprintf (seedstr, sizeof (seedstr), "R02S%08x%08x%08x%08x", g_random_int(), g_random_int(), g_random_int(), g_random_int()); test_run_seedstr = seedstr; /* parse args, sets up mode, changes seed, etc. */ parse_args (argc, argv); if (!g_get_prgname()) g_set_prgname ((*argv)[0]); /* verify GRand reliability, needed for reliable seeds */ if (1) { GRand *rg = g_rand_new_with_seed (0xc8c49fb6); guint32 t1 = g_rand_int (rg), t2 = g_rand_int (rg), t3 = g_rand_int (rg), t4 = g_rand_int (rg); /* g_print ("GRand-current: 0x%x 0x%x 0x%x 0x%x\n", t1, t2, t3, t4); */ if (t1 != 0xfab39f9b || t2 != 0xb948fb0e || t3 != 0x3d31be26 || t4 != 0x43a19d66) g_warning ("random numbers are not GRand-2.2 compatible, seeds may be broken (check $G_RANDOM_VERSION)"); g_rand_free (rg); } /* check rand seed */ test_run_seed (test_run_seedstr); /* report program start */ g_log_set_default_handler (gtest_default_log_handler, NULL); g_test_log (G_TEST_LOG_START_BINARY, g_get_prgname(), test_run_seedstr, 0, NULL); } static void test_run_seed (const gchar *rseed) { guint seed_failed = 0; if (test_run_rand) g_rand_free (test_run_rand); test_run_rand = NULL; while (strchr (" \t\v\r\n\f", *rseed)) rseed++; if (strncmp (rseed, "R02S", 4) == 0) /* seed for random generator 02 (GRand-2.2) */ { const char *s = rseed + 4; if (strlen (s) >= 32) /* require 4 * 8 chars */ { guint32 seedarray[4]; gchar *p, hexbuf[9] = { 0, }; memcpy (hexbuf, s + 0, 8); seedarray[0] = g_ascii_strtoull (hexbuf, &p, 16); seed_failed += p != NULL && *p != 0; memcpy (hexbuf, s + 8, 8); seedarray[1] = g_ascii_strtoull (hexbuf, &p, 16); seed_failed += p != NULL && *p != 0; memcpy (hexbuf, s + 16, 8); seedarray[2] = g_ascii_strtoull (hexbuf, &p, 16); seed_failed += p != NULL && *p != 0; memcpy (hexbuf, s + 24, 8); seedarray[3] = g_ascii_strtoull (hexbuf, &p, 16); seed_failed += p != NULL && *p != 0; if (!seed_failed) { test_run_rand = g_rand_new_with_seed_array (seedarray, 4); return; } } } g_error ("Unknown or invalid random seed: %s", rseed); } /** * g_test_rand_int: * * Get a reproducible random integer number. * * The random numbers generated by the g_test_rand_*() family of functions * change with every new test program start, unless the --seed option is * given when starting test programs. * * For individual test cases however, the random number generator is * reseeded, to avoid dependencies between tests and to make --seed * effective for all test cases. * * Returns: a random number from the seeded random number generator. * * Since: 2.16 */ gint32 g_test_rand_int (void) { return g_rand_int (test_run_rand); } /** * g_test_rand_int_range: * @begin: the minimum value returned by this function * @end: the smallest value not to be returned by this function * * Get a reproducible random integer number out of a specified range, * see g_test_rand_int() for details on test case random numbers. * * Returns: a number with @begin <= number < @end. * * Since: 2.16 */ gint32 g_test_rand_int_range (gint32 begin, gint32 end) { return g_rand_int_range (test_run_rand, begin, end); } /** * g_test_rand_double: * * Get a reproducible random floating point number, * see g_test_rand_int() for details on test case random numbers. * * Returns: a random number from the seeded random number generator. * * Since: 2.16 */ double g_test_rand_double (void) { return g_rand_double (test_run_rand); } /** * g_test_rand_double_range: * @range_start: the minimum value returned by this function * @range_end: the minimum value not returned by this function * * Get a reproducible random floating pointer number out of a specified range, * see g_test_rand_int() for details on test case random numbers. * * Returns: a number with @range_start <= number < @range_end. * * Since: 2.16 */ double g_test_rand_double_range (double range_start, double range_end) { return g_rand_double_range (test_run_rand, range_start, range_end); } /** * g_test_timer_start: * * Start a timing test. Call g_test_timer_elapsed() when the task is supposed * to be done. Call this function again to restart the timer. * * Since: 2.16 */ void g_test_timer_start (void) { if (!test_user_timer) test_user_timer = g_timer_new(); test_user_stamp = 0; g_timer_start (test_user_timer); } /** * g_test_timer_elapsed: * * Get the time since the last start of the timer with g_test_timer_start(). * * Returns: the time since the last start of the timer, as a double * * Since: 2.16 */ double g_test_timer_elapsed (void) { test_user_stamp = test_user_timer ? g_timer_elapsed (test_user_timer, NULL) : 0; return test_user_stamp; } /** * g_test_timer_last: * * Report the last result of g_test_timer_elapsed(). * * Returns: the last result of g_test_timer_elapsed(), as a double * * Since: 2.16 */ double g_test_timer_last (void) { return test_user_stamp; } /** * g_test_minimized_result: * @minimized_quantity: the reported value * @format: the format string of the report message * @...: arguments to pass to the printf() function * * Report the result of a performance or measurement test. * The test should generally strive to minimize the reported * quantities (smaller values are better than larger ones), * this and @minimized_quantity can determine sorting * order for test result reports. * * Since: 2.16 */ void g_test_minimized_result (double minimized_quantity, const char *format, ...) { long double largs = minimized_quantity; gchar *buffer; va_list args; va_start (args, format); buffer = g_strdup_vprintf (format, args); va_end (args); g_test_log (G_TEST_LOG_MIN_RESULT, buffer, NULL, 1, &largs); g_free (buffer); } /** * g_test_maximized_result: * @maximized_quantity: the reported value * @format: the format string of the report message * @...: arguments to pass to the printf() function * * Report the result of a performance or measurement test. * The test should generally strive to maximize the reported * quantities (larger values are better than smaller ones), * this and @maximized_quantity can determine sorting * order for test result reports. * * Since: 2.16 */ void g_test_maximized_result (double maximized_quantity, const char *format, ...) { long double largs = maximized_quantity; gchar *buffer; va_list args; va_start (args, format); buffer = g_strdup_vprintf (format, args); va_end (args); g_test_log (G_TEST_LOG_MAX_RESULT, buffer, NULL, 1, &largs); g_free (buffer); } /** * g_test_message: * @format: the format string * @...: printf-like arguments to @format * * Add a message to the test report. * * Since: 2.16 */ void g_test_message (const char *format, ...) { gchar *buffer; va_list args; va_start (args, format); buffer = g_strdup_vprintf (format, args); va_end (args); g_test_log (G_TEST_LOG_MESSAGE, buffer, NULL, 0, NULL); g_free (buffer); } /** * g_test_bug_base: * @uri_pattern: the base pattern for bug URIs * * Specify the base URI for bug reports. * * The base URI is used to construct bug report messages for * g_test_message() when g_test_bug() is called. * Calling this function outside of a test case sets the * default base URI for all test cases. Calling it from within * a test case changes the base URI for the scope of the test * case only. * Bug URIs are constructed by appending a bug specific URI * portion to @uri_pattern, or by replacing the special string * '\%s' within @uri_pattern if that is present. * * Since: 2.16 */ void g_test_bug_base (const char *uri_pattern) { g_free (test_uri_base); test_uri_base = g_strdup (uri_pattern); } /** * g_test_bug: * @bug_uri_snippet: Bug specific bug tracker URI portion. * * This function adds a message to test reports that * associates a bug URI with a test case. * Bug URIs are constructed from a base URI set with g_test_bug_base() * and @bug_uri_snippet. * * Since: 2.16 */ void g_test_bug (const char *bug_uri_snippet) { char *c; g_return_if_fail (test_uri_base != NULL); g_return_if_fail (bug_uri_snippet != NULL); c = strstr (test_uri_base, "%s"); if (c) { char *b = g_strndup (test_uri_base, c - test_uri_base); char *s = g_strconcat (b, bug_uri_snippet, c + 2, NULL); g_free (b); g_test_message ("Bug Reference: %s", s); g_free (s); } else g_test_message ("Bug Reference: %s%s", test_uri_base, bug_uri_snippet); } /** * g_test_get_root: * * Get the toplevel test suite for the test path API. * * Returns: the toplevel #GTestSuite * * Since: 2.16 */ GTestSuite* g_test_get_root (void) { if (!test_suite_root) { test_suite_root = g_test_create_suite ("root"); g_free (test_suite_root->name); test_suite_root->name = g_strdup (""); } return test_suite_root; } /** * g_test_run: * * Runs all tests under the toplevel suite which can be retrieved * with g_test_get_root(). Similar to g_test_run_suite(), the test * cases to be run are filtered according to * test path arguments (-p testpath) as * parsed by g_test_init(). * g_test_run_suite() or g_test_run() may only be called once * in a program. * * Returns: 0 on success * * Since: 2.16 */ int g_test_run (void) { return g_test_run_suite (g_test_get_root()); } /** * g_test_create_case: * @test_name: the name for the test case * @data_size: the size of the fixture data structure * @test_data: test data argument for the test functions * @data_setup: the function to set up the fixture data * @data_test: the actual test function * @data_teardown: the function to teardown the fixture data * * Create a new #GTestCase, named @test_name, this API is fairly * low level, calling g_test_add() or g_test_add_func() is preferable. * When this test is executed, a fixture structure of size @data_size * will be allocated and filled with 0s. Then @data_setup is called * to initialize the fixture. After fixture setup, the actual test * function @data_test is called. Once the test run completed, the * fixture structure is torn down by calling @data_teardown and * after that the memory is released. * * Splitting up a test run into fixture setup, test function and * fixture teardown is most usful if the same fixture is used for * multiple tests. In this cases, g_test_create_case() will be * called with the same fixture, but varying @test_name and * @data_test arguments. * * Returns: a newly allocated #GTestCase. * * Since: 2.16 */ GTestCase* g_test_create_case (const char *test_name, gsize data_size, gconstpointer test_data, GTestFixtureFunc data_setup, GTestFixtureFunc data_test, GTestFixtureFunc data_teardown) { GTestCase *tc; g_return_val_if_fail (test_name != NULL, NULL); g_return_val_if_fail (strchr (test_name, '/') == NULL, NULL); g_return_val_if_fail (test_name[0] != 0, NULL); g_return_val_if_fail (data_test != NULL, NULL); tc = g_slice_new0 (GTestCase); tc->name = g_strdup (test_name); tc->test_data = (gpointer) test_data; tc->fixture_size = data_size; tc->fixture_setup = (void*) data_setup; tc->fixture_test = (void*) data_test; tc->fixture_teardown = (void*) data_teardown; return tc; } /** * GTestFixtureFunc: * @fixture: the test fixture * @user_data: the data provided when registering the test * * The type used for functions that operate on test fixtures. This is * used for the fixture setup and teardown functions as well as for the * testcases themselves. * * @user_data is a pointer to the data that was given when registering * the test case. * * @fixture will be a pointer to the area of memory allocated by the * test framework, of the size requested. If the requested size was * zero then @fixture will be equal to @user_data. * * Since: 2.28 */ void g_test_add_vtable (const char *testpath, gsize data_size, gconstpointer test_data, GTestFixtureFunc data_setup, GTestFixtureFunc fixture_test_func, GTestFixtureFunc data_teardown) { gchar **segments; guint ui; GTestSuite *suite; g_return_if_fail (testpath != NULL); g_return_if_fail (g_path_is_absolute (testpath)); g_return_if_fail (fixture_test_func != NULL); if (g_slist_find_custom (test_paths_skipped, testpath, (GCompareFunc)g_strcmp0)) return; suite = g_test_get_root(); segments = g_strsplit (testpath, "/", -1); for (ui = 0; segments[ui] != NULL; ui++) { const char *seg = segments[ui]; gboolean islast = segments[ui + 1] == NULL; if (islast && !seg[0]) g_error ("invalid test case path: %s", testpath); else if (!seg[0]) continue; /* initial or duplicate slash */ else if (!islast) { GTestSuite *csuite = g_test_create_suite (seg); g_test_suite_add_suite (suite, csuite); suite = csuite; } else /* islast */ { GTestCase *tc = g_test_create_case (seg, data_size, test_data, data_setup, fixture_test_func, data_teardown); g_test_suite_add (suite, tc); } } g_strfreev (segments); } /** * g_test_fail: * * Indicates that a test failed. This function can be called * multiple times from the same test. You can use this function * if your test failed in a recoverable way. * * Do not use this function if the failure of a test could cause * other tests to malfunction. * * Calling this function will not stop the test from running, you * need to return from the test function yourself. So you can * produce additional diagnostic messages or even continue running * the test. * * If not called from inside a test, this function does nothing. * * Since: 2.30 **/ void g_test_fail (void) { test_run_success = FALSE; } /** * GTestFunc: * * The type used for test case functions. * * Since: 2.28 */ /** * g_test_add_func: * @testpath: /-separated test case path name for the test. * @test_func: The test function to invoke for this test. * * Create a new test case, similar to g_test_create_case(). However * the test is assumed to use no fixture, and test suites are automatically * created on the fly and added to the root fixture, based on the * slash-separated portions of @testpath. * * Since: 2.16 */ void g_test_add_func (const char *testpath, GTestFunc test_func) { g_return_if_fail (testpath != NULL); g_return_if_fail (testpath[0] == '/'); g_return_if_fail (test_func != NULL); g_test_add_vtable (testpath, 0, NULL, NULL, (GTestFixtureFunc) test_func, NULL); } /** * GTestDataFunc: * @user_data: the data provided when registering the test * * The type used for test case functions that take an extra pointer * argument. * * Since: 2.28 */ /** * g_test_add_data_func: * @testpath: /-separated test case path name for the test. * @test_data: Test data argument for the test function. * @test_func: The test function to invoke for this test. * * Create a new test case, similar to g_test_create_case(). However * the test is assumed to use no fixture, and test suites are automatically * created on the fly and added to the root fixture, based on the * slash-separated portions of @testpath. The @test_data argument * will be passed as first argument to @test_func. * * Since: 2.16 */ void g_test_add_data_func (const char *testpath, gconstpointer test_data, GTestDataFunc test_func) { g_return_if_fail (testpath != NULL); g_return_if_fail (testpath[0] == '/'); g_return_if_fail (test_func != NULL); g_test_add_vtable (testpath, 0, test_data, NULL, (GTestFixtureFunc) test_func, NULL); } /** * g_test_create_suite: * @suite_name: a name for the suite * * Create a new test suite with the name @suite_name. * * Returns: A newly allocated #GTestSuite instance. * * Since: 2.16 */ GTestSuite* g_test_create_suite (const char *suite_name) { GTestSuite *ts; g_return_val_if_fail (suite_name != NULL, NULL); g_return_val_if_fail (strchr (suite_name, '/') == NULL, NULL); g_return_val_if_fail (suite_name[0] != 0, NULL); ts = g_slice_new0 (GTestSuite); ts->name = g_strdup (suite_name); return ts; } /** * g_test_suite_add: * @suite: a #GTestSuite * @test_case: a #GTestCase * * Adds @test_case to @suite. * * Since: 2.16 */ void g_test_suite_add (GTestSuite *suite, GTestCase *test_case) { g_return_if_fail (suite != NULL); g_return_if_fail (test_case != NULL); suite->cases = g_slist_prepend (suite->cases, test_case); } /** * g_test_suite_add_suite: * @suite: a #GTestSuite * @nestedsuite: another #GTestSuite * * Adds @nestedsuite to @suite. * * Since: 2.16 */ void g_test_suite_add_suite (GTestSuite *suite, GTestSuite *nestedsuite) { g_return_if_fail (suite != NULL); g_return_if_fail (nestedsuite != NULL); suite->suites = g_slist_prepend (suite->suites, nestedsuite); } /** * g_test_queue_free: * @gfree_pointer: the pointer to be stored. * * Enqueue a pointer to be released with g_free() during the next * teardown phase. This is equivalent to calling g_test_queue_destroy() * with a destroy callback of g_free(). * * Since: 2.16 */ void g_test_queue_free (gpointer gfree_pointer) { if (gfree_pointer) g_test_queue_destroy (g_free, gfree_pointer); } /** * g_test_queue_destroy: * @destroy_func: Destroy callback for teardown phase. * @destroy_data: Destroy callback data. * * This function enqueus a callback @destroy_func to be executed * during the next test case teardown phase. This is most useful * to auto destruct allocted test resources at the end of a test run. * Resources are released in reverse queue order, that means enqueueing * callback A before callback B will cause B() to be called before * A() during teardown. * * Since: 2.16 */ void g_test_queue_destroy (GDestroyNotify destroy_func, gpointer destroy_data) { DestroyEntry *dentry; g_return_if_fail (destroy_func != NULL); dentry = g_slice_new0 (DestroyEntry); dentry->destroy_func = destroy_func; dentry->destroy_data = destroy_data; dentry->next = test_destroy_queue; test_destroy_queue = dentry; } static gboolean test_case_run (GTestCase *tc) { gchar *old_name = test_run_name, *old_base = g_strdup (test_uri_base); gboolean success = TRUE; test_run_name = g_strconcat (old_name, "/", tc->name, NULL); if (++test_run_count <= test_skip_count) g_test_log (G_TEST_LOG_SKIP_CASE, test_run_name, NULL, 0, NULL); else if (test_run_list) { g_print ("%s\n", test_run_name); g_test_log (G_TEST_LOG_LIST_CASE, test_run_name, NULL, 0, NULL); } else { GTimer *test_run_timer = g_timer_new(); long double largs[3]; void *fixture; g_test_log (G_TEST_LOG_START_CASE, test_run_name, NULL, 0, NULL); test_run_forks = 0; test_run_success = TRUE; g_test_log_set_fatal_handler (NULL, NULL); g_timer_start (test_run_timer); fixture = tc->fixture_size ? g_malloc0 (tc->fixture_size) : tc->test_data; test_run_seed (test_run_seedstr); if (tc->fixture_setup) tc->fixture_setup (fixture, tc->test_data); tc->fixture_test (fixture, tc->test_data); test_trap_clear(); while (test_destroy_queue) { DestroyEntry *dentry = test_destroy_queue; test_destroy_queue = dentry->next; dentry->destroy_func (dentry->destroy_data); g_slice_free (DestroyEntry, dentry); } if (tc->fixture_teardown) tc->fixture_teardown (fixture, tc->test_data); if (tc->fixture_size) g_free (fixture); g_timer_stop (test_run_timer); success = test_run_success; test_run_success = FALSE; largs[0] = success ? 0 : 1; /* OK */ largs[1] = test_run_forks; largs[2] = g_timer_elapsed (test_run_timer, NULL); g_test_log (G_TEST_LOG_STOP_CASE, NULL, NULL, G_N_ELEMENTS (largs), largs); g_timer_destroy (test_run_timer); } g_free (test_run_name); test_run_name = old_name; g_free (test_uri_base); test_uri_base = old_base; return success; } static int g_test_run_suite_internal (GTestSuite *suite, const char *path) { guint n_bad = 0, l; gchar *rest, *old_name = test_run_name; GSList *slist, *reversed; g_return_val_if_fail (suite != NULL, -1); while (path[0] == '/') path++; l = strlen (path); rest = strchr (path, '/'); l = rest ? MIN (l, rest - path) : l; test_run_name = suite->name[0] == 0 ? g_strdup (test_run_name) : g_strconcat (old_name, "/", suite->name, NULL); reversed = g_slist_reverse (g_slist_copy (suite->cases)); for (slist = reversed; slist; slist = slist->next) { GTestCase *tc = slist->data; guint n = l ? strlen (tc->name) : 0; if (l == n && strncmp (path, tc->name, n) == 0) { if (!test_case_run (tc)) n_bad++; } } g_slist_free (reversed); reversed = g_slist_reverse (g_slist_copy (suite->suites)); for (slist = reversed; slist; slist = slist->next) { GTestSuite *ts = slist->data; guint n = l ? strlen (ts->name) : 0; if (l == n && strncmp (path, ts->name, n) == 0) n_bad += g_test_run_suite_internal (ts, rest ? rest : ""); } g_slist_free (reversed); g_free (test_run_name); test_run_name = old_name; return n_bad; } /** * g_test_run_suite: * @suite: a #GTestSuite * * Execute the tests within @suite and all nested #GTestSuites. * The test suites to be executed are filtered according to * test path arguments (-p testpath) * as parsed by g_test_init(). * g_test_run_suite() or g_test_run() may only be called once * in a program. * * Returns: 0 on success * * Since: 2.16 */ int g_test_run_suite (GTestSuite *suite) { guint n_bad = 0; g_return_val_if_fail (g_test_config_vars->test_initialized, -1); g_return_val_if_fail (g_test_run_once == TRUE, -1); g_test_run_once = FALSE; if (!test_paths) test_paths = g_slist_prepend (test_paths, ""); while (test_paths) { const char *rest, *path = test_paths->data; guint l, n = strlen (suite->name); test_paths = g_slist_delete_link (test_paths, test_paths); while (path[0] == '/') path++; if (!n) /* root suite, run unconditionally */ { n_bad += g_test_run_suite_internal (suite, path); continue; } /* regular suite, match path */ rest = strchr (path, '/'); l = strlen (path); l = rest ? MIN (l, rest - path) : l; if ((!l || l == n) && strncmp (path, suite->name, n) == 0) n_bad += g_test_run_suite_internal (suite, rest ? rest : ""); } return n_bad; } static void gtest_default_log_handler (const gchar *log_domain, GLogLevelFlags log_level, const gchar *message, gpointer unused_data) { const gchar *strv[16]; gboolean fatal = FALSE; gchar *msg; guint i = 0; if (log_domain) { strv[i++] = log_domain; strv[i++] = "-"; } if (log_level & G_LOG_FLAG_FATAL) { strv[i++] = "FATAL-"; fatal = TRUE; } if (log_level & G_LOG_FLAG_RECURSION) strv[i++] = "RECURSIVE-"; if (log_level & G_LOG_LEVEL_ERROR) strv[i++] = "ERROR"; if (log_level & G_LOG_LEVEL_CRITICAL) strv[i++] = "CRITICAL"; if (log_level & G_LOG_LEVEL_WARNING) strv[i++] = "WARNING"; if (log_level & G_LOG_LEVEL_MESSAGE) strv[i++] = "MESSAGE"; if (log_level & G_LOG_LEVEL_INFO) strv[i++] = "INFO"; if (log_level & G_LOG_LEVEL_DEBUG) strv[i++] = "DEBUG"; strv[i++] = ": "; strv[i++] = message; strv[i++] = NULL; msg = g_strjoinv ("", (gchar**) strv); g_test_log (fatal ? G_TEST_LOG_ERROR : G_TEST_LOG_MESSAGE, msg, NULL, 0, NULL); g_log_default_handler (log_domain, log_level, message, unused_data); g_free (msg); } void g_assertion_message (const char *domain, const char *file, int line, const char *func, const char *message) { char lstr[32]; char *s; if (!message) message = "code should not be reached"; g_snprintf (lstr, 32, "%d", line); s = g_strconcat (domain ? domain : "", domain && domain[0] ? ":" : "", "ERROR:", file, ":", lstr, ":", func, func[0] ? ":" : "", " ", message, NULL); g_printerr ("**\n%s\n", s); /* store assertion message in global variable, so that it can be found in a * core dump */ if (__glib_assert_msg != NULL) /* free the old one */ free (__glib_assert_msg); __glib_assert_msg = (char*) malloc (strlen (s) + 1); strcpy (__glib_assert_msg, s); g_test_log (G_TEST_LOG_ERROR, s, NULL, 0, NULL); g_free (s); abort(); } void g_assertion_message_expr (const char *domain, const char *file, int line, const char *func, const char *expr) { char *s = g_strconcat ("assertion failed: (", expr, ")", NULL); g_assertion_message (domain, file, line, func, s); g_free (s); } void g_assertion_message_cmpnum (const char *domain, const char *file, int line, const char *func, const char *expr, long double arg1, const char *cmp, long double arg2, char numtype) { char *s = NULL; switch (numtype) { case 'i': s = g_strdup_printf ("assertion failed (%s): (%.0Lf %s %.0Lf)", expr, arg1, cmp, arg2); break; case 'x': s = g_strdup_printf ("assertion failed (%s): (0x%08" G_GINT64_MODIFIER "x %s 0x%08" G_GINT64_MODIFIER "x)", expr, (guint64) arg1, cmp, (guint64) arg2); break; case 'f': s = g_strdup_printf ("assertion failed (%s): (%.9Lg %s %.9Lg)", expr, arg1, cmp, arg2); break; /* ideally use: floats=%.7g double=%.17g */ } g_assertion_message (domain, file, line, func, s); g_free (s); } void g_assertion_message_cmpstr (const char *domain, const char *file, int line, const char *func, const char *expr, const char *arg1, const char *cmp, const char *arg2) { char *a1, *a2, *s, *t1 = NULL, *t2 = NULL; a1 = arg1 ? g_strconcat ("\"", t1 = g_strescape (arg1, NULL), "\"", NULL) : g_strdup ("NULL"); a2 = arg2 ? g_strconcat ("\"", t2 = g_strescape (arg2, NULL), "\"", NULL) : g_strdup ("NULL"); g_free (t1); g_free (t2); s = g_strdup_printf ("assertion failed (%s): (%s %s %s)", expr, a1, cmp, a2); g_free (a1); g_free (a2); g_assertion_message (domain, file, line, func, s); g_free (s); } void g_assertion_message_error (const char *domain, const char *file, int line, const char *func, const char *expr, const GError *error, GQuark error_domain, int error_code) { GString *gstring; /* This is used by both g_assert_error() and g_assert_no_error(), so there * are three cases: expected an error but got the wrong error, expected * an error but got no error, and expected no error but got an error. */ gstring = g_string_new ("assertion failed "); if (error_domain) g_string_append_printf (gstring, "(%s == (%s, %d)): ", expr, g_quark_to_string (error_domain), error_code); else g_string_append_printf (gstring, "(%s == NULL): ", expr); if (error) g_string_append_printf (gstring, "%s (%s, %d)", error->message, g_quark_to_string (error->domain), error->code); else g_string_append_printf (gstring, "%s is NULL", expr); g_assertion_message (domain, file, line, func, gstring->str); g_string_free (gstring, TRUE); } /** * g_strcmp0: * @str1: (allow-none): a C string or %NULL * @str2: (allow-none): another C string or %NULL * * Compares @str1 and @str2 like strcmp(). Handles %NULL * gracefully by sorting it before non-%NULL strings. * Comparing two %NULL pointers returns 0. * * Returns: -1, 0 or 1, if @str1 is <, == or > than @str2. * * Since: 2.16 */ int g_strcmp0 (const char *str1, const char *str2) { if (!str1) return -(str1 != str2); if (!str2) return str1 != str2; return strcmp (str1, str2); } #ifdef G_OS_UNIX static int /* 0 on success */ kill_child (int pid, int *status, int patience) { int wr; if (patience >= 3) /* try graceful reap */ { if (waitpid (pid, status, WNOHANG) > 0) return 0; } if (patience >= 2) /* try SIGHUP */ { kill (pid, SIGHUP); if (waitpid (pid, status, WNOHANG) > 0) return 0; g_usleep (20 * 1000); /* give it some scheduling/shutdown time */ if (waitpid (pid, status, WNOHANG) > 0) return 0; g_usleep (50 * 1000); /* give it some scheduling/shutdown time */ if (waitpid (pid, status, WNOHANG) > 0) return 0; g_usleep (100 * 1000); /* give it some scheduling/shutdown time */ if (waitpid (pid, status, WNOHANG) > 0) return 0; } if (patience >= 1) /* try SIGTERM */ { kill (pid, SIGTERM); if (waitpid (pid, status, WNOHANG) > 0) return 0; g_usleep (200 * 1000); /* give it some scheduling/shutdown time */ if (waitpid (pid, status, WNOHANG) > 0) return 0; g_usleep (400 * 1000); /* give it some scheduling/shutdown time */ if (waitpid (pid, status, WNOHANG) > 0) return 0; } /* finish it off */ kill (pid, SIGKILL); do wr = waitpid (pid, status, 0); while (wr < 0 && errno == EINTR); return wr; } #endif static inline int g_string_must_read (GString *gstring, int fd) { #define STRING_BUFFER_SIZE 4096 char buf[STRING_BUFFER_SIZE]; gssize bytes; again: bytes = read (fd, buf, sizeof (buf)); if (bytes == 0) return 0; /* EOF, calling this function assumes data is available */ else if (bytes > 0) { g_string_append_len (gstring, buf, bytes); return 1; } else if (bytes < 0 && errno == EINTR) goto again; else /* bytes < 0 */ { g_warning ("failed to read() from child process (%d): %s", test_trap_last_pid, g_strerror (errno)); return 1; /* ignore error after warning */ } } static inline void g_string_write_out (GString *gstring, int outfd, int *stringpos) { if (*stringpos < gstring->len) { int r; do r = write (outfd, gstring->str + *stringpos, gstring->len - *stringpos); while (r < 0 && errno == EINTR); *stringpos += MAX (r, 0); } } static void test_trap_clear (void) { test_trap_last_status = 0; test_trap_last_pid = 0; g_free (test_trap_last_stdout); test_trap_last_stdout = NULL; g_free (test_trap_last_stderr); test_trap_last_stderr = NULL; } #ifdef G_OS_UNIX static int sane_dup2 (int fd1, int fd2) { int ret; do ret = dup2 (fd1, fd2); while (ret < 0 && errno == EINTR); return ret; } static guint64 test_time_stamp (void) { GTimeVal tv; guint64 stamp; g_get_current_time (&tv); stamp = tv.tv_sec; stamp = stamp * 1000000 + tv.tv_usec; return stamp; } #endif /** * g_test_trap_fork: * @usec_timeout: Timeout for the forked test in micro seconds. * @test_trap_flags: Flags to modify forking behaviour. * * Fork the current test program to execute a test case that might * not return or that might abort. The forked test case is aborted * and considered failing if its run time exceeds @usec_timeout. * * The forking behavior can be configured with the #GTestTrapFlags flags. * * In the following example, the test code forks, the forked child * process produces some sample output and exits successfully. * The forking parent process then asserts successful child program * termination and validates child program outputs. * * |[ * static void * test_fork_patterns (void) * { * if (g_test_trap_fork (0, G_TEST_TRAP_SILENCE_STDOUT | G_TEST_TRAP_SILENCE_STDERR)) * { * g_print ("some stdout text: somagic17\n"); * g_printerr ("some stderr text: semagic43\n"); * exit (0); /* successful test run */ * } * g_test_trap_assert_passed(); * g_test_trap_assert_stdout ("*somagic17*"); * g_test_trap_assert_stderr ("*semagic43*"); * } * ]| * * This function is implemented only on Unix platforms. * * Returns: %TRUE for the forked child and %FALSE for the executing parent process. * * Since: 2.16 */ gboolean g_test_trap_fork (guint64 usec_timeout, GTestTrapFlags test_trap_flags) { #ifdef G_OS_UNIX gboolean pass_on_forked_log = FALSE; int stdout_pipe[2] = { -1, -1 }; int stderr_pipe[2] = { -1, -1 }; int stdtst_pipe[2] = { -1, -1 }; test_trap_clear(); if (pipe (stdout_pipe) < 0 || pipe (stderr_pipe) < 0 || pipe (stdtst_pipe) < 0) g_error ("failed to create pipes to fork test program: %s", g_strerror (errno)); signal (SIGCHLD, SIG_DFL); test_trap_last_pid = fork (); if (test_trap_last_pid < 0) g_error ("failed to fork test program: %s", g_strerror (errno)); if (test_trap_last_pid == 0) /* child */ { int fd0 = -1; close (stdout_pipe[0]); close (stderr_pipe[0]); close (stdtst_pipe[0]); if (!(test_trap_flags & G_TEST_TRAP_INHERIT_STDIN)) fd0 = open ("/dev/null", O_RDONLY); if (sane_dup2 (stdout_pipe[1], 1) < 0 || sane_dup2 (stderr_pipe[1], 2) < 0 || (fd0 >= 0 && sane_dup2 (fd0, 0) < 0)) g_error ("failed to dup2() in forked test program: %s", g_strerror (errno)); if (fd0 >= 3) close (fd0); if (stdout_pipe[1] >= 3) close (stdout_pipe[1]); if (stderr_pipe[1] >= 3) close (stderr_pipe[1]); test_log_fd = stdtst_pipe[1]; return TRUE; } else /* parent */ { GString *sout = g_string_new (NULL); GString *serr = g_string_new (NULL); guint64 sstamp; int soutpos = 0, serrpos = 0, wr, need_wait = TRUE; test_run_forks++; close (stdout_pipe[1]); close (stderr_pipe[1]); close (stdtst_pipe[1]); sstamp = test_time_stamp(); /* read data until we get EOF on all pipes */ while (stdout_pipe[0] >= 0 || stderr_pipe[0] >= 0 || stdtst_pipe[0] > 0) { fd_set fds; struct timeval tv; int ret; FD_ZERO (&fds); if (stdout_pipe[0] >= 0) FD_SET (stdout_pipe[0], &fds); if (stderr_pipe[0] >= 0) FD_SET (stderr_pipe[0], &fds); if (stdtst_pipe[0] >= 0) FD_SET (stdtst_pipe[0], &fds); tv.tv_sec = 0; tv.tv_usec = MIN (usec_timeout ? usec_timeout : 1000000, 100 * 1000); /* sleep at most 0.5 seconds to catch clock skews, etc. */ ret = select (MAX (MAX (stdout_pipe[0], stderr_pipe[0]), stdtst_pipe[0]) + 1, &fds, NULL, NULL, &tv); if (ret < 0 && errno != EINTR) { g_warning ("Unexpected error in select() while reading from child process (%d): %s", test_trap_last_pid, g_strerror (errno)); break; } if (stdout_pipe[0] >= 0 && FD_ISSET (stdout_pipe[0], &fds) && g_string_must_read (sout, stdout_pipe[0]) == 0) { close (stdout_pipe[0]); stdout_pipe[0] = -1; } if (stderr_pipe[0] >= 0 && FD_ISSET (stderr_pipe[0], &fds) && g_string_must_read (serr, stderr_pipe[0]) == 0) { close (stderr_pipe[0]); stderr_pipe[0] = -1; } if (stdtst_pipe[0] >= 0 && FD_ISSET (stdtst_pipe[0], &fds)) { guint8 buffer[4096]; gint l, r = read (stdtst_pipe[0], buffer, sizeof (buffer)); if (r > 0 && test_log_fd > 0) do l = write (pass_on_forked_log ? test_log_fd : -1, buffer, r); while (l < 0 && errno == EINTR); if (r == 0 || (r < 0 && errno != EINTR && errno != EAGAIN)) { close (stdtst_pipe[0]); stdtst_pipe[0] = -1; } } if (!(test_trap_flags & G_TEST_TRAP_SILENCE_STDOUT)) g_string_write_out (sout, 1, &soutpos); if (!(test_trap_flags & G_TEST_TRAP_SILENCE_STDERR)) g_string_write_out (serr, 2, &serrpos); if (usec_timeout) { guint64 nstamp = test_time_stamp(); int status = 0; sstamp = MIN (sstamp, nstamp); /* guard against backwards clock skews */ if (usec_timeout < nstamp - sstamp) { /* timeout reached, need to abort the child now */ kill_child (test_trap_last_pid, &status, 3); test_trap_last_status = 1024; /* timeout */ if (0 && WIFSIGNALED (status)) g_printerr ("%s: child timed out and received: %s\n", G_STRFUNC, g_strsignal (WTERMSIG (status))); need_wait = FALSE; break; } } } if (stdout_pipe[0] != -1) close (stdout_pipe[0]); if (stderr_pipe[0] != -1) close (stderr_pipe[0]); if (stdtst_pipe[0] != -1) close (stdtst_pipe[0]); if (need_wait) { int status = 0; do wr = waitpid (test_trap_last_pid, &status, 0); while (wr < 0 && errno == EINTR); if (WIFEXITED (status)) /* normal exit */ test_trap_last_status = WEXITSTATUS (status); /* 0..255 */ else if (WIFSIGNALED (status)) test_trap_last_status = (WTERMSIG (status) << 12); /* signalled */ else /* WCOREDUMP (status) */ test_trap_last_status = 512; /* coredump */ } test_trap_last_stdout = g_string_free (sout, FALSE); test_trap_last_stderr = g_string_free (serr, FALSE); return FALSE; } #else g_message ("Not implemented: g_test_trap_fork"); return FALSE; #endif } /** * g_test_trap_has_passed: * * Check the result of the last g_test_trap_fork() call. * * Returns: %TRUE if the last forked child terminated successfully. * * Since: 2.16 */ gboolean g_test_trap_has_passed (void) { return test_trap_last_status == 0; /* exit_status == 0 && !signal && !coredump */ } /** * g_test_trap_reached_timeout: * * Check the result of the last g_test_trap_fork() call. * * Returns: %TRUE if the last forked child got killed due to a fork timeout. * * Since: 2.16 */ gboolean g_test_trap_reached_timeout (void) { return 0 != (test_trap_last_status & 1024); /* timeout flag */ } void g_test_trap_assertions (const char *domain, const char *file, int line, const char *func, guint64 assertion_flags, /* 0-pass, 1-fail, 2-outpattern, 4-errpattern */ const char *pattern) { #ifdef G_OS_UNIX gboolean must_pass = assertion_flags == 0; gboolean must_fail = assertion_flags == 1; gboolean match_result = 0 == (assertion_flags & 1); const char *stdout_pattern = (assertion_flags & 2) ? pattern : NULL; const char *stderr_pattern = (assertion_flags & 4) ? pattern : NULL; const char *match_error = match_result ? "failed to match" : "contains invalid match"; if (test_trap_last_pid == 0) g_error ("child process failed to exit after g_test_trap_fork() and before g_test_trap_assert*()"); if (must_pass && !g_test_trap_has_passed()) { char *msg = g_strdup_printf ("child process (%d) of test trap failed unexpectedly", test_trap_last_pid); g_assertion_message (domain, file, line, func, msg); g_free (msg); } if (must_fail && g_test_trap_has_passed()) { char *msg = g_strdup_printf ("child process (%d) did not fail as expected", test_trap_last_pid); g_assertion_message (domain, file, line, func, msg); g_free (msg); } if (stdout_pattern && match_result == !g_pattern_match_simple (stdout_pattern, test_trap_last_stdout)) { char *msg = g_strdup_printf ("stdout of child process (%d) %s: %s", test_trap_last_pid, match_error, stdout_pattern); g_assertion_message (domain, file, line, func, msg); g_free (msg); } if (stderr_pattern && match_result == !g_pattern_match_simple (stderr_pattern, test_trap_last_stderr)) { char *msg = g_strdup_printf ("stderr of child process (%d) %s: %s", test_trap_last_pid, match_error, stderr_pattern); g_assertion_message (domain, file, line, func, msg); g_free (msg); } #endif } static void gstring_overwrite_int (GString *gstring, guint pos, guint32 vuint) { vuint = g_htonl (vuint); g_string_overwrite_len (gstring, pos, (const gchar*) &vuint, 4); } static void gstring_append_int (GString *gstring, guint32 vuint) { vuint = g_htonl (vuint); g_string_append_len (gstring, (const gchar*) &vuint, 4); } static void gstring_append_double (GString *gstring, double vdouble) { union { double vdouble; guint64 vuint64; } u; u.vdouble = vdouble; u.vuint64 = GUINT64_TO_BE (u.vuint64); g_string_append_len (gstring, (const gchar*) &u.vuint64, 8); } static guint8* g_test_log_dump (GTestLogMsg *msg, guint *len) { GString *gstring = g_string_sized_new (1024); guint ui; gstring_append_int (gstring, 0); /* message length */ gstring_append_int (gstring, msg->log_type); gstring_append_int (gstring, msg->n_strings); gstring_append_int (gstring, msg->n_nums); gstring_append_int (gstring, 0); /* reserved */ for (ui = 0; ui < msg->n_strings; ui++) { guint l = strlen (msg->strings[ui]); gstring_append_int (gstring, l); g_string_append_len (gstring, msg->strings[ui], l); } for (ui = 0; ui < msg->n_nums; ui++) gstring_append_double (gstring, msg->nums[ui]); *len = gstring->len; gstring_overwrite_int (gstring, 0, *len); /* message length */ return (guint8*) g_string_free (gstring, FALSE); } static inline long double net_double (const gchar **ipointer) { union { guint64 vuint64; double vdouble; } u; guint64 aligned_int64; memcpy (&aligned_int64, *ipointer, 8); *ipointer += 8; u.vuint64 = GUINT64_FROM_BE (aligned_int64); return u.vdouble; } static inline guint32 net_int (const gchar **ipointer) { guint32 aligned_int; memcpy (&aligned_int, *ipointer, 4); *ipointer += 4; return g_ntohl (aligned_int); } static gboolean g_test_log_extract (GTestLogBuffer *tbuffer) { const gchar *p = tbuffer->data->str; GTestLogMsg msg; guint mlength; if (tbuffer->data->len < 4 * 5) return FALSE; mlength = net_int (&p); if (tbuffer->data->len < mlength) return FALSE; msg.log_type = net_int (&p); msg.n_strings = net_int (&p); msg.n_nums = net_int (&p); if (net_int (&p) == 0) { guint ui; msg.strings = g_new0 (gchar*, msg.n_strings + 1); msg.nums = g_new0 (long double, msg.n_nums); for (ui = 0; ui < msg.n_strings; ui++) { guint sl = net_int (&p); msg.strings[ui] = g_strndup (p, sl); p += sl; } for (ui = 0; ui < msg.n_nums; ui++) msg.nums[ui] = net_double (&p); if (p <= tbuffer->data->str + mlength) { g_string_erase (tbuffer->data, 0, mlength); tbuffer->msgs = g_slist_prepend (tbuffer->msgs, g_memdup (&msg, sizeof (msg))); return TRUE; } } g_free (msg.nums); g_strfreev (msg.strings); g_error ("corrupt log stream from test program"); return FALSE; } /** * g_test_log_buffer_new: * * Internal function for gtester to decode test log messages, no ABI guarantees provided. */ GTestLogBuffer* g_test_log_buffer_new (void) { GTestLogBuffer *tb = g_new0 (GTestLogBuffer, 1); tb->data = g_string_sized_new (1024); return tb; } /** * g_test_log_buffer_free: * * Internal function for gtester to free test log messages, no ABI guarantees provided. */ void g_test_log_buffer_free (GTestLogBuffer *tbuffer) { g_return_if_fail (tbuffer != NULL); while (tbuffer->msgs) g_test_log_msg_free (g_test_log_buffer_pop (tbuffer)); g_string_free (tbuffer->data, TRUE); g_free (tbuffer); } /** * g_test_log_buffer_push: * * Internal function for gtester to decode test log messages, no ABI guarantees provided. */ void g_test_log_buffer_push (GTestLogBuffer *tbuffer, guint n_bytes, const guint8 *bytes) { g_return_if_fail (tbuffer != NULL); if (n_bytes) { gboolean more_messages; g_return_if_fail (bytes != NULL); g_string_append_len (tbuffer->data, (const gchar*) bytes, n_bytes); do more_messages = g_test_log_extract (tbuffer); while (more_messages); } } /** * g_test_log_buffer_pop: * * Internal function for gtester to retrieve test log messages, no ABI guarantees provided. */ GTestLogMsg* g_test_log_buffer_pop (GTestLogBuffer *tbuffer) { GTestLogMsg *msg = NULL; g_return_val_if_fail (tbuffer != NULL, NULL); if (tbuffer->msgs) { GSList *slist = g_slist_last (tbuffer->msgs); msg = slist->data; tbuffer->msgs = g_slist_delete_link (tbuffer->msgs, slist); } return msg; } /** * g_test_log_msg_free: * * Internal function for gtester to free test log messages, no ABI guarantees provided. */ void g_test_log_msg_free (GTestLogMsg *tmsg) { g_return_if_fail (tmsg != NULL); g_strfreev (tmsg->strings); g_free (tmsg->nums); g_free (tmsg); } /* --- macros docs START --- */ /** * g_test_add: * @testpath: The test path for a new test case. * @Fixture: The type of a fixture data structure. * @tdata: Data argument for the test functions. * @fsetup: The function to set up the fixture data. * @ftest: The actual test function. * @fteardown: The function to tear down the fixture data. * * Hook up a new test case at @testpath, similar to g_test_add_func(). * A fixture data structure with setup and teardown function may be provided * though, similar to g_test_create_case(). * g_test_add() is implemented as a macro, so that the fsetup(), ftest() and * fteardown() callbacks can expect a @Fixture pointer as first argument in * a type safe manner. * * Since: 2.16 **/ /* --- macros docs END --- */