#include "../test/utils.h" #include "gtk-utils.h" #define NUM_GRADIENTS 9 #define NUM_STOPS 3 #define NUM_REPEAT 4 #define SIZE 128 #define WIDTH (SIZE * NUM_GRADIENTS) #define HEIGHT (SIZE * NUM_REPEAT) /* * We want to test all the possible relative positions of the start * and end circle: * * - The start circle can be smaller/equal/bigger than the end * circle. A radial gradient can be classified in one of these * three cases depending on the sign of dr. * * - The smaller circle can be completely inside/internally * tangent/outside (at least in part) of the bigger circle. This * classification is the same as the one which can be computed by * examining the sign of a = (dx^2 + dy^2 - dr^2). * * - If the two circles have the same size, neither can be inside or * internally tangent * * This test draws radial gradients whose circles always have the same * centers (0, 0) and (1, 0), but with different radiuses. From left * to right: * * - Degenerate start circle completely inside the end circle * 0.00 -> 1.75; dr = 1.75 > 0; a = 1 - 1.75^2 < 0 * * - Small start circle completely inside the end circle * 0.25 -> 1.75; dr = 1.5 > 0; a = 1 - 1.50^2 < 0 * * - Small start circle internally tangent to the end circle * 0.50 -> 1.50; dr = 1.0 > 0; a = 1 - 1.00^2 = 0 * * - Small start circle outside of the end circle * 0.50 -> 1.00; dr = 0.5 > 0; a = 1 - 0.50^2 > 0 * * - Start circle with the same size as the end circle * 1.00 -> 1.00; dr = 0.0 = 0; a = 1 - 0.00^2 > 0 * * - Small end circle outside of the start circle * 1.00 -> 0.50; dr = -0.5 > 0; a = 1 - 0.50^2 > 0 * * - Small end circle internally tangent to the start circle * 1.50 -> 0.50; dr = -1.0 > 0; a = 1 - 1.00^2 = 0 * * - Small end circle completely inside the start circle * 1.75 -> 0.25; dr = -1.5 > 0; a = 1 - 1.50^2 < 0 * * - Degenerate end circle completely inside the start circle * 0.00 -> 1.75; dr = 1.75 > 0; a = 1 - 1.75^2 < 0 * */ const static double radiuses[NUM_GRADIENTS] = { 0.00, 0.25, 0.50, 0.50, 1.00, 1.00, 1.50, 1.75, 1.75 }; #define double_to_color(x) \ (((uint32_t) ((x)*65536)) - (((uint32_t) ((x)*65536)) >> 16)) #define PIXMAN_STOP(offset,r,g,b,a) \ { pixman_double_to_fixed (offset), \ { \ double_to_color (r), \ double_to_color (g), \ double_to_color (b), \ double_to_color (a) \ } \ } static const pixman_gradient_stop_t stops[NUM_STOPS] = { PIXMAN_STOP (0.0, 1, 0, 0, 0.75), PIXMAN_STOP (0.70710678, 0, 1, 0, 0), PIXMAN_STOP (1.0, 0, 0, 1, 1) }; static pixman_image_t * create_radial (int index) { pixman_point_fixed_t p0, p1; pixman_fixed_t r0, r1; double x0, x1, radius0, radius1, left, right, center; x0 = 0; x1 = 1; radius0 = radiuses[index]; radius1 = radiuses[NUM_GRADIENTS - index - 1]; /* center the gradient */ left = MIN (x0 - radius0, x1 - radius1); right = MAX (x0 + radius0, x1 + radius1); center = (left + right) * 0.5; x0 -= center; x1 -= center; /* scale to make it fit within a 1x1 rect centered in (0,0) */ x0 *= 0.25; x1 *= 0.25; radius0 *= 0.25; radius1 *= 0.25; p0.x = pixman_double_to_fixed (x0); p0.y = pixman_double_to_fixed (0); p1.x = pixman_double_to_fixed (x1); p1.y = pixman_double_to_fixed (0); r0 = pixman_double_to_fixed (radius0); r1 = pixman_double_to_fixed (radius1); return pixman_image_create_radial_gradient (&p0, &p1, r0, r1, stops, NUM_STOPS); } static const pixman_repeat_t repeat[NUM_REPEAT] = { PIXMAN_REPEAT_NONE, PIXMAN_REPEAT_NORMAL, PIXMAN_REPEAT_REFLECT, PIXMAN_REPEAT_PAD }; int main (int argc, char **argv) { pixman_transform_t transform; pixman_image_t *src_img, *dest_img; int i, j; enable_divbyzero_exceptions (); dest_img = pixman_image_create_bits (PIXMAN_a8r8g8b8, WIDTH, HEIGHT, NULL, 0); draw_checkerboard (dest_img, 25, 0xffaaaaaa, 0xffbbbbbb); pixman_transform_init_identity (&transform); /* * The create_radial() function returns gradients centered in the * origin and whose interesting part fits a 1x1 square. We want to * paint these gradients on a SIZExSIZE square and to make things * easier we want the origin in the top-left corner of the square * we want to see. */ pixman_transform_translate (NULL, &transform, pixman_double_to_fixed (0.5), pixman_double_to_fixed (0.5)); pixman_transform_scale (NULL, &transform, pixman_double_to_fixed (SIZE), pixman_double_to_fixed (SIZE)); /* * Gradients are evaluated at the center of each pixel, so we need * to translate by half a pixel to trigger some interesting * cornercases. In particular, the original implementation of PDF * radial gradients tried to divide by 0 when using this transform * on the "tangent circles" cases. */ pixman_transform_translate (NULL, &transform, pixman_double_to_fixed (0.5), pixman_double_to_fixed (0.5)); for (i = 0; i < NUM_GRADIENTS; i++) { src_img = create_radial (i); pixman_image_set_transform (src_img, &transform); for (j = 0; j < NUM_REPEAT; j++) { pixman_image_set_repeat (src_img, repeat[j]); pixman_image_composite32 (PIXMAN_OP_OVER, src_img, NULL, dest_img, 0, 0, 0, 0, i * SIZE, j * SIZE, SIZE, SIZE); } pixman_image_unref (src_img); } show_image (dest_img); pixman_image_unref (dest_img); return 0; }