/* * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc. * 2005 Lars Knoll & Zack Rusin, Trolltech * 2008 Aaron Plattner, NVIDIA Corporation * Copyright © 2000 SuSE, Inc. * Copyright © 2007, 2009 Red Hat, Inc. * Copyright © 2008 André Tupinambá * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of Keith Packard not be used in * advertising or publicity pertaining to distribution of the software without * specific, written prior permission. Keith Packard makes no * representations about the suitability of this software for any purpose. It * is provided "as is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS * SOFTWARE. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "pixman-private.h" #include "pixman-combine32.h" #include "pixman-inlines.h" static uint32_t * _pixman_image_get_scanline_generic_float (pixman_iter_t * iter, const uint32_t *mask) { pixman_iter_get_scanline_t fetch_32 = iter->data; uint32_t *buffer = iter->buffer; fetch_32 (iter, NULL); pixman_expand_to_float ((argb_t *)buffer, buffer, PIXMAN_a8r8g8b8, iter->width); return iter->buffer; } /* Fetch functions */ static force_inline uint32_t fetch_pixel_no_alpha (bits_image_t *image, int x, int y, pixman_bool_t check_bounds) { if (check_bounds && (x < 0 || x >= image->width || y < 0 || y >= image->height)) { return 0; } return image->fetch_pixel_32 (image, x, y); } typedef uint32_t (* get_pixel_t) (bits_image_t *image, int x, int y, pixman_bool_t check_bounds); static force_inline uint32_t bits_image_fetch_pixel_nearest (bits_image_t *image, pixman_fixed_t x, pixman_fixed_t y, get_pixel_t get_pixel) { int x0 = pixman_fixed_to_int (x - pixman_fixed_e); int y0 = pixman_fixed_to_int (y - pixman_fixed_e); if (image->common.repeat != PIXMAN_REPEAT_NONE) { repeat (image->common.repeat, &x0, image->width); repeat (image->common.repeat, &y0, image->height); return get_pixel (image, x0, y0, FALSE); } else { return get_pixel (image, x0, y0, TRUE); } } static force_inline uint32_t bits_image_fetch_pixel_bilinear (bits_image_t *image, pixman_fixed_t x, pixman_fixed_t y, get_pixel_t get_pixel) { pixman_repeat_t repeat_mode = image->common.repeat; int width = image->width; int height = image->height; int x1, y1, x2, y2; uint32_t tl, tr, bl, br; int32_t distx, disty; x1 = x - pixman_fixed_1 / 2; y1 = y - pixman_fixed_1 / 2; distx = pixman_fixed_to_bilinear_weight (x1); disty = pixman_fixed_to_bilinear_weight (y1); x1 = pixman_fixed_to_int (x1); y1 = pixman_fixed_to_int (y1); x2 = x1 + 1; y2 = y1 + 1; if (repeat_mode != PIXMAN_REPEAT_NONE) { repeat (repeat_mode, &x1, width); repeat (repeat_mode, &y1, height); repeat (repeat_mode, &x2, width); repeat (repeat_mode, &y2, height); tl = get_pixel (image, x1, y1, FALSE); bl = get_pixel (image, x1, y2, FALSE); tr = get_pixel (image, x2, y1, FALSE); br = get_pixel (image, x2, y2, FALSE); } else { tl = get_pixel (image, x1, y1, TRUE); tr = get_pixel (image, x2, y1, TRUE); bl = get_pixel (image, x1, y2, TRUE); br = get_pixel (image, x2, y2, TRUE); } return bilinear_interpolation (tl, tr, bl, br, distx, disty); } static force_inline uint32_t bits_image_fetch_pixel_convolution (bits_image_t *image, pixman_fixed_t x, pixman_fixed_t y, get_pixel_t get_pixel) { pixman_fixed_t *params = image->common.filter_params; int x_off = (params[0] - pixman_fixed_1) >> 1; int y_off = (params[1] - pixman_fixed_1) >> 1; int32_t cwidth = pixman_fixed_to_int (params[0]); int32_t cheight = pixman_fixed_to_int (params[1]); int32_t i, j, x1, x2, y1, y2; pixman_repeat_t repeat_mode = image->common.repeat; int width = image->width; int height = image->height; int srtot, sgtot, sbtot, satot; params += 2; x1 = pixman_fixed_to_int (x - pixman_fixed_e - x_off); y1 = pixman_fixed_to_int (y - pixman_fixed_e - y_off); x2 = x1 + cwidth; y2 = y1 + cheight; srtot = sgtot = sbtot = satot = 0; for (i = y1; i < y2; ++i) { for (j = x1; j < x2; ++j) { int rx = j; int ry = i; pixman_fixed_t f = *params; if (f) { uint32_t pixel; if (repeat_mode != PIXMAN_REPEAT_NONE) { repeat (repeat_mode, &rx, width); repeat (repeat_mode, &ry, height); pixel = get_pixel (image, rx, ry, FALSE); } else { pixel = get_pixel (image, rx, ry, TRUE); } srtot += (int)RED_8 (pixel) * f; sgtot += (int)GREEN_8 (pixel) * f; sbtot += (int)BLUE_8 (pixel) * f; satot += (int)ALPHA_8 (pixel) * f; } params++; } } satot = (satot + 0x8000) >> 16; srtot = (srtot + 0x8000) >> 16; sgtot = (sgtot + 0x8000) >> 16; sbtot = (sbtot + 0x8000) >> 16; satot = CLIP (satot, 0, 0xff); srtot = CLIP (srtot, 0, 0xff); sgtot = CLIP (sgtot, 0, 0xff); sbtot = CLIP (sbtot, 0, 0xff); return ((satot << 24) | (srtot << 16) | (sgtot << 8) | (sbtot)); } static uint32_t bits_image_fetch_pixel_separable_convolution (bits_image_t *image, pixman_fixed_t x, pixman_fixed_t y, get_pixel_t get_pixel) { pixman_fixed_t *params = image->common.filter_params; pixman_repeat_t repeat_mode = image->common.repeat; int width = image->width; int height = image->height; int cwidth = pixman_fixed_to_int (params[0]); int cheight = pixman_fixed_to_int (params[1]); int x_phase_bits = pixman_fixed_to_int (params[2]); int y_phase_bits = pixman_fixed_to_int (params[3]); int x_phase_shift = 16 - x_phase_bits; int y_phase_shift = 16 - y_phase_bits; int x_off = ((cwidth << 16) - pixman_fixed_1) >> 1; int y_off = ((cheight << 16) - pixman_fixed_1) >> 1; pixman_fixed_t *y_params; int srtot, sgtot, sbtot, satot; int32_t x1, x2, y1, y2; int32_t px, py; int i, j; /* Round x and y to the middle of the closest phase before continuing. This * ensures that the convolution matrix is aligned right, since it was * positioned relative to a particular phase (and not relative to whatever * exact fraction we happen to get here). */ x = ((x >> x_phase_shift) << x_phase_shift) + ((1 << x_phase_shift) >> 1); y = ((y >> y_phase_shift) << y_phase_shift) + ((1 << y_phase_shift) >> 1); px = (x & 0xffff) >> x_phase_shift; py = (y & 0xffff) >> y_phase_shift; y_params = params + 4 + (1 << x_phase_bits) * cwidth + py * cheight; x1 = pixman_fixed_to_int (x - pixman_fixed_e - x_off); y1 = pixman_fixed_to_int (y - pixman_fixed_e - y_off); x2 = x1 + cwidth; y2 = y1 + cheight; srtot = sgtot = sbtot = satot = 0; for (i = y1; i < y2; ++i) { pixman_fixed_48_16_t fy = *y_params++; pixman_fixed_t *x_params = params + 4 + px * cwidth; if (fy) { for (j = x1; j < x2; ++j) { pixman_fixed_t fx = *x_params++; int rx = j; int ry = i; if (fx) { pixman_fixed_t f; uint32_t pixel; if (repeat_mode != PIXMAN_REPEAT_NONE) { repeat (repeat_mode, &rx, width); repeat (repeat_mode, &ry, height); pixel = get_pixel (image, rx, ry, FALSE); } else { pixel = get_pixel (image, rx, ry, TRUE); } f = (fy * fx + 0x8000) >> 16; srtot += (int)RED_8 (pixel) * f; sgtot += (int)GREEN_8 (pixel) * f; sbtot += (int)BLUE_8 (pixel) * f; satot += (int)ALPHA_8 (pixel) * f; } } } } satot = (satot + 0x8000) >> 16; srtot = (srtot + 0x8000) >> 16; sgtot = (sgtot + 0x8000) >> 16; sbtot = (sbtot + 0x8000) >> 16; satot = CLIP (satot, 0, 0xff); srtot = CLIP (srtot, 0, 0xff); sgtot = CLIP (sgtot, 0, 0xff); sbtot = CLIP (sbtot, 0, 0xff); return ((satot << 24) | (srtot << 16) | (sgtot << 8) | (sbtot)); } static force_inline uint32_t bits_image_fetch_pixel_filtered (bits_image_t *image, pixman_fixed_t x, pixman_fixed_t y, get_pixel_t get_pixel) { switch (image->common.filter) { case PIXMAN_FILTER_NEAREST: case PIXMAN_FILTER_FAST: return bits_image_fetch_pixel_nearest (image, x, y, get_pixel); break; case PIXMAN_FILTER_BILINEAR: case PIXMAN_FILTER_GOOD: case PIXMAN_FILTER_BEST: return bits_image_fetch_pixel_bilinear (image, x, y, get_pixel); break; case PIXMAN_FILTER_CONVOLUTION: return bits_image_fetch_pixel_convolution (image, x, y, get_pixel); break; case PIXMAN_FILTER_SEPARABLE_CONVOLUTION: return bits_image_fetch_pixel_separable_convolution (image, x, y, get_pixel); break; default: break; } return 0; } static uint32_t * bits_image_fetch_affine_no_alpha (pixman_iter_t * iter, const uint32_t * mask) { pixman_image_t *image = iter->image; int offset = iter->x; int line = iter->y++; int width = iter->width; uint32_t * buffer = iter->buffer; pixman_fixed_t x, y; pixman_fixed_t ux, uy; pixman_vector_t v; int i; /* reference point is the center of the pixel */ v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2; v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2; v.vector[2] = pixman_fixed_1; if (image->common.transform) { if (!pixman_transform_point_3d (image->common.transform, &v)) return iter->buffer; ux = image->common.transform->matrix[0][0]; uy = image->common.transform->matrix[1][0]; } else { ux = pixman_fixed_1; uy = 0; } x = v.vector[0]; y = v.vector[1]; for (i = 0; i < width; ++i) { if (!mask || mask[i]) { buffer[i] = bits_image_fetch_pixel_filtered ( &image->bits, x, y, fetch_pixel_no_alpha); } x += ux; y += uy; } return buffer; } /* General fetcher */ static force_inline uint32_t fetch_pixel_general (bits_image_t *image, int x, int y, pixman_bool_t check_bounds) { uint32_t pixel; if (check_bounds && (x < 0 || x >= image->width || y < 0 || y >= image->height)) { return 0; } pixel = image->fetch_pixel_32 (image, x, y); if (image->common.alpha_map) { uint32_t pixel_a; x -= image->common.alpha_origin_x; y -= image->common.alpha_origin_y; if (x < 0 || x >= image->common.alpha_map->width || y < 0 || y >= image->common.alpha_map->height) { pixel_a = 0; } else { pixel_a = image->common.alpha_map->fetch_pixel_32 ( image->common.alpha_map, x, y); pixel_a = ALPHA_8 (pixel_a); } pixel &= 0x00ffffff; pixel |= (pixel_a << 24); } return pixel; } static uint32_t * bits_image_fetch_general (pixman_iter_t *iter, const uint32_t *mask) { pixman_image_t *image = iter->image; int offset = iter->x; int line = iter->y++; int width = iter->width; uint32_t * buffer = iter->buffer; pixman_fixed_t x, y, w; pixman_fixed_t ux, uy, uw; pixman_vector_t v; int i; /* reference point is the center of the pixel */ v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2; v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2; v.vector[2] = pixman_fixed_1; if (image->common.transform) { if (!pixman_transform_point_3d (image->common.transform, &v)) return buffer; ux = image->common.transform->matrix[0][0]; uy = image->common.transform->matrix[1][0]; uw = image->common.transform->matrix[2][0]; } else { ux = pixman_fixed_1; uy = 0; uw = 0; } x = v.vector[0]; y = v.vector[1]; w = v.vector[2]; for (i = 0; i < width; ++i) { pixman_fixed_t x0, y0; if (!mask || mask[i]) { if (w != 0) { x0 = ((pixman_fixed_48_16_t)x << 16) / w; y0 = ((pixman_fixed_48_16_t)y << 16) / w; } else { x0 = 0; y0 = 0; } buffer[i] = bits_image_fetch_pixel_filtered ( &image->bits, x0, y0, fetch_pixel_general); } x += ux; y += uy; w += uw; } return buffer; } static void replicate_pixel_32 (bits_image_t * bits, int x, int y, int width, uint32_t * buffer) { uint32_t color; uint32_t *end; color = bits->fetch_pixel_32 (bits, x, y); end = buffer + width; while (buffer < end) *(buffer++) = color; } static void replicate_pixel_float (bits_image_t * bits, int x, int y, int width, uint32_t * b) { argb_t color; argb_t *buffer = (argb_t *)b; argb_t *end; color = bits->fetch_pixel_float (bits, x, y); end = buffer + width; while (buffer < end) *(buffer++) = color; } static void bits_image_fetch_untransformed_repeat_none (bits_image_t *image, pixman_bool_t wide, int x, int y, int width, uint32_t * buffer) { uint32_t w; if (y < 0 || y >= image->height) { memset (buffer, 0, width * (wide? sizeof (argb_t) : 4)); return; } if (x < 0) { w = MIN (width, -x); memset (buffer, 0, w * (wide ? sizeof (argb_t) : 4)); width -= w; buffer += w * (wide? 4 : 1); x += w; } if (x < image->width) { w = MIN (width, image->width - x); if (wide) image->fetch_scanline_float (image, x, y, w, buffer, NULL); else image->fetch_scanline_32 (image, x, y, w, buffer, NULL); width -= w; buffer += w * (wide? 4 : 1); x += w; } memset (buffer, 0, width * (wide ? sizeof (argb_t) : 4)); } static void bits_image_fetch_untransformed_repeat_normal (bits_image_t *image, pixman_bool_t wide, int x, int y, int width, uint32_t * buffer) { uint32_t w; while (y < 0) y += image->height; while (y >= image->height) y -= image->height; if (image->width == 1) { if (wide) replicate_pixel_float (image, 0, y, width, buffer); else replicate_pixel_32 (image, 0, y, width, buffer); return; } while (width) { while (x < 0) x += image->width; while (x >= image->width) x -= image->width; w = MIN (width, image->width - x); if (wide) image->fetch_scanline_float (image, x, y, w, buffer, NULL); else image->fetch_scanline_32 (image, x, y, w, buffer, NULL); buffer += w * (wide? 4 : 1); x += w; width -= w; } } static uint32_t * bits_image_fetch_untransformed_32 (pixman_iter_t * iter, const uint32_t *mask) { pixman_image_t *image = iter->image; int x = iter->x; int y = iter->y; int width = iter->width; uint32_t * buffer = iter->buffer; if (image->common.repeat == PIXMAN_REPEAT_NONE) { bits_image_fetch_untransformed_repeat_none ( &image->bits, FALSE, x, y, width, buffer); } else { bits_image_fetch_untransformed_repeat_normal ( &image->bits, FALSE, x, y, width, buffer); } iter->y++; return buffer; } static uint32_t * bits_image_fetch_untransformed_float (pixman_iter_t * iter, const uint32_t *mask) { pixman_image_t *image = iter->image; int x = iter->x; int y = iter->y; int width = iter->width; uint32_t * buffer = iter->buffer; if (image->common.repeat == PIXMAN_REPEAT_NONE) { bits_image_fetch_untransformed_repeat_none ( &image->bits, TRUE, x, y, width, buffer); } else { bits_image_fetch_untransformed_repeat_normal ( &image->bits, TRUE, x, y, width, buffer); } iter->y++; return buffer; } typedef struct { pixman_format_code_t format; uint32_t flags; pixman_iter_get_scanline_t get_scanline_32; pixman_iter_get_scanline_t get_scanline_float; } fetcher_info_t; static const fetcher_info_t fetcher_info[] = { { PIXMAN_any, (FAST_PATH_NO_ALPHA_MAP | FAST_PATH_ID_TRANSFORM | FAST_PATH_NO_CONVOLUTION_FILTER | FAST_PATH_NO_PAD_REPEAT | FAST_PATH_NO_REFLECT_REPEAT), bits_image_fetch_untransformed_32, bits_image_fetch_untransformed_float }, /* Affine, no alpha */ { PIXMAN_any, (FAST_PATH_NO_ALPHA_MAP | FAST_PATH_HAS_TRANSFORM | FAST_PATH_AFFINE_TRANSFORM), bits_image_fetch_affine_no_alpha, _pixman_image_get_scanline_generic_float }, /* General */ { PIXMAN_any, 0, bits_image_fetch_general, _pixman_image_get_scanline_generic_float }, { PIXMAN_null }, }; static void bits_image_property_changed (pixman_image_t *image) { _pixman_bits_image_setup_accessors (&image->bits); } void _pixman_bits_image_src_iter_init (pixman_image_t *image, pixman_iter_t *iter) { pixman_format_code_t format = image->common.extended_format_code; uint32_t flags = image->common.flags; const fetcher_info_t *info; for (info = fetcher_info; info->format != PIXMAN_null; ++info) { if ((info->format == format || info->format == PIXMAN_any) && (info->flags & flags) == info->flags) { if (iter->iter_flags & ITER_NARROW) { iter->get_scanline = info->get_scanline_32; } else { iter->data = info->get_scanline_32; iter->get_scanline = info->get_scanline_float; } return; } } /* Just in case we somehow didn't find a scanline function */ iter->get_scanline = _pixman_iter_get_scanline_noop; } static uint32_t * dest_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask) { pixman_image_t *image = iter->image; int x = iter->x; int y = iter->y; int width = iter->width; uint32_t * buffer = iter->buffer; image->bits.fetch_scanline_32 (&image->bits, x, y, width, buffer, mask); if (image->common.alpha_map) { uint32_t *alpha; if ((alpha = malloc (width * sizeof (uint32_t)))) { int i; x -= image->common.alpha_origin_x; y -= image->common.alpha_origin_y; image->common.alpha_map->fetch_scanline_32 ( image->common.alpha_map, x, y, width, alpha, mask); for (i = 0; i < width; ++i) { buffer[i] &= ~0xff000000; buffer[i] |= (alpha[i] & 0xff000000); } free (alpha); } } return iter->buffer; } static uint32_t * dest_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask) { bits_image_t * image = &iter->image->bits; int x = iter->x; int y = iter->y; int width = iter->width; argb_t * buffer = (argb_t *)iter->buffer; image->fetch_scanline_float ( image, x, y, width, (uint32_t *)buffer, mask); if (image->common.alpha_map) { argb_t *alpha; if ((alpha = malloc (width * sizeof (argb_t)))) { int i; x -= image->common.alpha_origin_x; y -= image->common.alpha_origin_y; image->common.alpha_map->fetch_scanline_float ( image->common.alpha_map, x, y, width, (uint32_t *)alpha, mask); for (i = 0; i < width; ++i) buffer[i].a = alpha[i].a; free (alpha); } } return iter->buffer; } static void dest_write_back_narrow (pixman_iter_t *iter) { bits_image_t * image = &iter->image->bits; int x = iter->x; int y = iter->y; int width = iter->width; const uint32_t *buffer = iter->buffer; image->store_scanline_32 (image, x, y, width, buffer); if (image->common.alpha_map) { x -= image->common.alpha_origin_x; y -= image->common.alpha_origin_y; image->common.alpha_map->store_scanline_32 ( image->common.alpha_map, x, y, width, buffer); } iter->y++; } static void dest_write_back_wide (pixman_iter_t *iter) { bits_image_t * image = &iter->image->bits; int x = iter->x; int y = iter->y; int width = iter->width; const uint32_t *buffer = iter->buffer; image->store_scanline_float (image, x, y, width, buffer); if (image->common.alpha_map) { x -= image->common.alpha_origin_x; y -= image->common.alpha_origin_y; image->common.alpha_map->store_scanline_float ( image->common.alpha_map, x, y, width, buffer); } iter->y++; } void _pixman_bits_image_dest_iter_init (pixman_image_t *image, pixman_iter_t *iter) { if (iter->iter_flags & ITER_NARROW) { if ((iter->iter_flags & (ITER_IGNORE_RGB | ITER_IGNORE_ALPHA)) == (ITER_IGNORE_RGB | ITER_IGNORE_ALPHA)) { iter->get_scanline = _pixman_iter_get_scanline_noop; } else { iter->get_scanline = dest_get_scanline_narrow; } iter->write_back = dest_write_back_narrow; } else { iter->get_scanline = dest_get_scanline_wide; iter->write_back = dest_write_back_wide; } } static uint32_t * create_bits (pixman_format_code_t format, int width, int height, int * rowstride_bytes, pixman_bool_t clear) { int stride; size_t buf_size; int bpp; /* what follows is a long-winded way, avoiding any possibility of integer * overflows, of saying: * stride = ((width * bpp + 0x1f) >> 5) * sizeof (uint32_t); */ bpp = PIXMAN_FORMAT_BPP (format); if (_pixman_multiply_overflows_int (width, bpp)) return NULL; stride = width * bpp; if (_pixman_addition_overflows_int (stride, 0x1f)) return NULL; stride += 0x1f; stride >>= 5; stride *= sizeof (uint32_t); if (_pixman_multiply_overflows_size (height, stride)) return NULL; buf_size = (size_t)height * stride; if (rowstride_bytes) *rowstride_bytes = stride; if (clear) return calloc (buf_size, 1); else return malloc (buf_size); } pixman_bool_t _pixman_bits_image_init (pixman_image_t * image, pixman_format_code_t format, int width, int height, uint32_t * bits, int rowstride, pixman_bool_t clear) { uint32_t *free_me = NULL; if (!bits && width && height) { int rowstride_bytes; free_me = bits = create_bits (format, width, height, &rowstride_bytes, clear); if (!bits) return FALSE; rowstride = rowstride_bytes / (int) sizeof (uint32_t); } _pixman_image_init (image); image->type = BITS; image->bits.format = format; image->bits.width = width; image->bits.height = height; image->bits.bits = bits; image->bits.free_me = free_me; image->bits.read_func = NULL; image->bits.write_func = NULL; image->bits.rowstride = rowstride; image->bits.indexed = NULL; image->common.property_changed = bits_image_property_changed; _pixman_image_reset_clip_region (image); return TRUE; } static pixman_image_t * create_bits_image_internal (pixman_format_code_t format, int width, int height, uint32_t * bits, int rowstride_bytes, pixman_bool_t clear) { pixman_image_t *image; /* must be a whole number of uint32_t's */ return_val_if_fail ( bits == NULL || (rowstride_bytes % sizeof (uint32_t)) == 0, NULL); return_val_if_fail (PIXMAN_FORMAT_BPP (format) >= PIXMAN_FORMAT_DEPTH (format), NULL); image = _pixman_image_allocate (); if (!image) return NULL; if (!_pixman_bits_image_init (image, format, width, height, bits, rowstride_bytes / (int) sizeof (uint32_t), clear)) { free (image); return NULL; } return image; } /* If bits is NULL, a buffer will be allocated and initialized to 0 */ PIXMAN_EXPORT pixman_image_t * pixman_image_create_bits (pixman_format_code_t format, int width, int height, uint32_t * bits, int rowstride_bytes) { return create_bits_image_internal ( format, width, height, bits, rowstride_bytes, TRUE); } /* If bits is NULL, a buffer will be allocated and _not_ initialized */ PIXMAN_EXPORT pixman_image_t * pixman_image_create_bits_no_clear (pixman_format_code_t format, int width, int height, uint32_t * bits, int rowstride_bytes) { return create_bits_image_internal ( format, width, height, bits, rowstride_bytes, FALSE); }