/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * * This PA-RISC 2.0 function computes the product of two unsigned integers, * and adds the result to a previously computed integer. The multiplicand * is a 512-bit (64-byte, eight doubleword) unsigned integer, stored in * memory in little-double-wordian order. The multiplier is an unsigned * 64-bit integer. The previously computed integer to which the product is * added is located in the result ("res") area, and is assumed to be a * 576-bit (72-byte, nine doubleword) unsigned integer, stored in memory * in little-double-wordian order. This value normally will be the result * of a previously computed nine doubleword result. It is not necessary * to pad the multiplicand with an additional 64-bit zero doubleword. * * Multiplicand, multiplier, and addend ideally should be aligned at * 16-byte boundaries for best performance. The code will function * correctly for alignment at eight-byte boundaries which are not 16-byte * boundaries, but the execution may be slightly slower due to even/odd * bank conflicts on PA-RISC 8000 processors. * * This function is designed to accept the same calling sequence as Bill * Ackerman's "maxpy_little" function. The carry from the ninth doubleword * of the result is written to the tenth word of the result, as is done by * Bill Ackerman's function. The final carry also is returned as an * integer, which may be ignored. The function prototype may be either * of the following: * * void multacc512( int l, chunk* m, const chunk* a, chunk* res ); * or * int multacc512( int l, chunk* m, const chunk* a, chunk* res ); * * where: "l" originally denoted vector lengths. This parameter is * ignored. This function always assumes a multiplicand length of * 512 bits (eight doublewords), and addend and result lengths of * 576 bits (nine doublewords). * * "m" is a pointer to the doubleword multiplier, ideally aligned * on a 16-byte boundary. * * "a" is a pointer to the eight-doubleword multiplicand, stored * in little-double-wordian order, and ideally aligned on a 16-byte * boundary. * * "res" is a pointer to the nine doubleword addend, and to the * nine-doubleword product computed by this function. The result * also is stored in little-double-wordian order, and ideally is * aligned on a 16-byte boundary. It is expected that the alignment * of the "res" area may alternate between even/odd doubleword * boundaries for successive calls for 512-bit x 512-bit * multiplications. * * The code for this function has been scheduled to use the parallelism * of the PA-RISC 8000 series microprocessors as well as the author was * able. Comments and/or suggestions for improvement are welcomed. * * The code is "64-bit safe". This means it may be called in either * the 32ILP context or the 64LP context. All 64-bits of registers are * saved and restored. * * This code is self-contained. It requires no other header files in order * to compile and to be linkable on a PA-RISC 2.0 machine. Symbolic * definitions for registers and stack offsets are included within this * one source file. * * This is a leaf routine. As such, minimal use is made of the stack area. * Of the 192 bytes allocated, 64 bytes are used for saving/restoring eight * general registers, and 128 bytes are used to move intermediate products * from the floating-point registers to the general registers. Stack * protocols assure proper alignment of these areas. * */ /* ====================================================================*/ /* symbolic definitions for PA-RISC registers */ /* in the MIPS style, avoids lots of case shifts */ /* assigments (except t4) preserve register number parity */ /* ====================================================================*/ #define zero %r0 /* permanent zero */ #define t5 %r1 /* temp register, altered by addil */ #define rp %r2 /* return pointer */ #define s1 %r3 /* callee saves register*/ #define s0 %r4 /* callee saves register*/ #define s3 %r5 /* callee saves register*/ #define s2 %r6 /* callee saves register*/ #define s5 %r7 /* callee saves register*/ #define s4 %r8 /* callee saves register*/ #define s7 %r9 /* callee saves register*/ #define s6 %r10 /* callee saves register*/ #define t1 %r19 /* caller saves register*/ #define t0 %r20 /* caller saves register*/ #define t3 %r21 /* caller saves register*/ #define t2 %r22 /* caller saves register*/ #define a3 %r23 /* fourth argument register, high word */ #define a2 %r24 /* third argument register, low word*/ #define a1 %r25 /* second argument register, high word*/ #define a0 %r26 /* first argument register, low word*/ #define v0 %r28 /* high order return value*/ #define v1 %r29 /* low order return value*/ #define sp %r30 /* stack pointer*/ #define t4 %r31 /* temporary register */ #define fa0 %fr4 /* first argument register*/ #define fa1 %fr5 /* second argument register*/ #define fa2 %fr6 /* third argument register*/ #define fa3 %fr7 /* fourth argument register*/ #define fa0r %fr4R /* first argument register*/ #define fa1r %fr5R /* second argument register*/ #define fa2r %fr6R /* third argument register*/ #define fa3r %fr7R /* fourth argument register*/ #define ft0 %fr8 /* caller saves register*/ #define ft1 %fr9 /* caller saves register*/ #define ft2 %fr10 /* caller saves register*/ #define ft3 %fr11 /* caller saves register*/ #define ft0r %fr8R /* caller saves register*/ #define ft1r %fr9R /* caller saves register*/ #define ft2r %fr10R /* caller saves register*/ #define ft3r %fr11R /* caller saves register*/ #define ft4 %fr22 /* caller saves register*/ #define ft5 %fr23 /* caller saves register*/ #define ft6 %fr24 /* caller saves register*/ #define ft7 %fr25 /* caller saves register*/ #define ft8 %fr26 /* caller saves register*/ #define ft9 %fr27 /* caller saves register*/ #define ft10 %fr28 /* caller saves register*/ #define ft11 %fr29 /* caller saves register*/ #define ft12 %fr30 /* caller saves register*/ #define ft13 %fr31 /* caller saves register*/ #define ft4r %fr22R /* caller saves register*/ #define ft5r %fr23R /* caller saves register*/ #define ft6r %fr24R /* caller saves register*/ #define ft7r %fr25R /* caller saves register*/ #define ft8r %fr26R /* caller saves register*/ #define ft9r %fr27R /* caller saves register*/ #define ft10r %fr28R /* caller saves register*/ #define ft11r %fr29R /* caller saves register*/ #define ft12r %fr30R /* caller saves register*/ #define ft13r %fr31R /* caller saves register*/ /* ================================================================== */ /* functional definitions for PA-RISC registers */ /* ================================================================== */ /* general registers */ #define T1 a0 /* temp, (length parameter ignored) */ #define pM a1 /* -> 64-bit multiplier */ #define T2 a1 /* temp, (after fetching multiplier) */ #define pA a2 /* -> multiplicand vector (8 64-bit words) */ #define T3 a2 /* temp, (after fetching multiplicand) */ #define pR a3 /* -> addend vector (8 64-bit doublewords, result vector (9 64-bit words) */ #define S0 s0 /* callee saves summand registers */ #define S1 s1 #define S2 s2 #define S3 s3 #define S4 s4 #define S5 s5 #define S6 s6 #define S7 s7 #define S8 v0 /* caller saves summand registers */ #define S9 v1 #define S10 t0 #define S11 t1 #define S12 t2 #define S13 t3 #define S14 t4 #define S15 t5 /* floating-point registers */ #define M fa0 /* multiplier double word */ #define MR fa0r /* low order half of multiplier double word */ #define ML fa0 /* high order half of multiplier double word */ #define A0 fa2 /* multiplicand double word 0 */ #define A0R fa2r /* low order half of multiplicand double word */ #define A0L fa2 /* high order half of multiplicand double word */ #define A1 fa3 /* multiplicand double word 1 */ #define A1R fa3r /* low order half of multiplicand double word */ #define A1L fa3 /* high order half of multiplicand double word */ #define A2 ft0 /* multiplicand double word 2 */ #define A2R ft0r /* low order half of multiplicand double word */ #define A2L ft0 /* high order half of multiplicand double word */ #define A3 ft1 /* multiplicand double word 3 */ #define A3R ft1r /* low order half of multiplicand double word */ #define A3L ft1 /* high order half of multiplicand double word */ #define A4 ft2 /* multiplicand double word 4 */ #define A4R ft2r /* low order half of multiplicand double word */ #define A4L ft2 /* high order half of multiplicand double word */ #define A5 ft3 /* multiplicand double word 5 */ #define A5R ft3r /* low order half of multiplicand double word */ #define A5L ft3 /* high order half of multiplicand double word */ #define A6 ft4 /* multiplicand double word 6 */ #define A6R ft4r /* low order half of multiplicand double word */ #define A6L ft4 /* high order half of multiplicand double word */ #define A7 ft5 /* multiplicand double word 7 */ #define A7R ft5r /* low order half of multiplicand double word */ #define A7L ft5 /* high order half of multiplicand double word */ #define P0 ft6 /* product word 0 */ #define P1 ft7 /* product word 0 */ #define P2 ft8 /* product word 0 */ #define P3 ft9 /* product word 0 */ #define P4 ft10 /* product word 0 */ #define P5 ft11 /* product word 0 */ #define P6 ft12 /* product word 0 */ #define P7 ft13 /* product word 0 */ /* ====================================================================== */ /* symbolic definitions for HP-UX stack offsets */ /* symbolic definitions for memory NOPs */ /* ====================================================================== */ #define ST_SZ 192 /* stack area total size */ #define SV0 -192(sp) /* general register save area */ #define SV1 -184(sp) #define SV2 -176(sp) #define SV3 -168(sp) #define SV4 -160(sp) #define SV5 -152(sp) #define SV6 -144(sp) #define SV7 -136(sp) #define XF0 -128(sp) /* data transfer area */ #define XF1 -120(sp) /* for floating-pt to integer regs */ #define XF2 -112(sp) #define XF3 -104(sp) #define XF4 -96(sp) #define XF5 -88(sp) #define XF6 -80(sp) #define XF7 -72(sp) #define XF8 -64(sp) #define XF9 -56(sp) #define XF10 -48(sp) #define XF11 -40(sp) #define XF12 -32(sp) #define XF13 -24(sp) #define XF14 -16(sp) #define XF15 -8(sp) #define mnop proberi (sp),3,zero /* memory NOP */ /* ====================================================================== */ /* assembler formalities */ /* ====================================================================== */ #ifdef __LP64__ .level 2.0W #else .level 2.0 #endif .space $TEXT$ .subspa $CODE$ .align 16 /* ====================================================================== */ /* here to compute 64-bit x 512-bit product + 512-bit addend */ /* ====================================================================== */ multacc512 .PROC .CALLINFO .ENTRY fldd 0(pM),M ; multiplier double word ldo ST_SZ(sp),sp ; push stack fldd 0(pA),A0 ; multiplicand double word 0 std S1,SV1 ; save s1 fldd 16(pA),A2 ; multiplicand double word 2 std S3,SV3 ; save s3 fldd 32(pA),A4 ; multiplicand double word 4 std S5,SV5 ; save s5 fldd 48(pA),A6 ; multiplicand double word 6 std S7,SV7 ; save s7 std S0,SV0 ; save s0 fldd 8(pA),A1 ; multiplicand double word 1 xmpyu MR,A0L,P0 ; A0 cross 32-bit word products xmpyu ML,A0R,P2 std S2,SV2 ; save s2 fldd 24(pA),A3 ; multiplicand double word 3 xmpyu MR,A2L,P4 ; A2 cross 32-bit word products xmpyu ML,A2R,P6 std S4,SV4 ; save s4 fldd 40(pA),A5 ; multiplicand double word 5 std S6,SV6 ; save s6 fldd 56(pA),A7 ; multiplicand double word 7 fstd P0,XF0 ; MR * A0L xmpyu MR,A0R,P0 ; A0 right 32-bit word product xmpyu MR,A1L,P1 ; A1 cross 32-bit word product fstd P2,XF2 ; ML * A0R xmpyu ML,A0L,P2 ; A0 left 32-bit word product xmpyu ML,A1R,P3 ; A1 cross 32-bit word product fstd P4,XF4 ; MR * A2L xmpyu MR,A2R,P4 ; A2 right 32-bit word product xmpyu MR,A3L,P5 ; A3 cross 32-bit word product fstd P6,XF6 ; ML * A2R xmpyu ML,A2L,P6 ; A2 parallel 32-bit word product xmpyu ML,A3R,P7 ; A3 cross 32-bit word product ldd XF0,S0 ; MR * A0L fstd P1,XF1 ; MR * A1L ldd XF2,S2 ; ML * A0R fstd P3,XF3 ; ML * A1R ldd XF4,S4 ; MR * A2L fstd P5,XF5 ; MR * A3L xmpyu MR,A1R,P1 ; A1 parallel 32-bit word products xmpyu ML,A1L,P3 ldd XF6,S6 ; ML * A2R fstd P7,XF7 ; ML * A3R xmpyu MR,A3R,P5 ; A3 parallel 32-bit word products xmpyu ML,A3L,P7 fstd P0,XF0 ; MR * A0R ldd XF1,S1 ; MR * A1L nop add S0,S2,T1 ; A0 cross product sum fstd P2,XF2 ; ML * A0L ldd XF3,S3 ; ML * A1R add,dc zero,zero,S0 ; A0 cross product sum carry depd,z T1,31,32,S2 ; A0 cross product sum << 32 fstd P4,XF4 ; MR * A2R ldd XF5,S5 ; MR * A3L shrpd S0,T1,32,S0 ; A0 carry | cross product sum >> 32 add S4,S6,T3 ; A2 cross product sum fstd P6,XF6 ; ML * A2L ldd XF7,S7 ; ML * A3R add,dc zero,zero,S4 ; A2 cross product sum carry depd,z T3,31,32,S6 ; A2 cross product sum << 32 ldd XF0,S8 ; MR * A0R fstd P1,XF1 ; MR * A1R xmpyu MR,A4L,P0 ; A4 cross 32-bit word product xmpyu MR,A5L,P1 ; A5 cross 32-bit word product ldd XF2,S10 ; ML * A0L fstd P3,XF3 ; ML * A1L xmpyu ML,A4R,P2 ; A4 cross 32-bit word product xmpyu ML,A5R,P3 ; A5 cross 32-bit word product ldd XF4,S12 ; MR * A2R fstd P5,XF5 ; MR * A3L xmpyu MR,A6L,P4 ; A6 cross 32-bit word product xmpyu MR,A7L,P5 ; A7 cross 32-bit word product ldd XF6,S14 ; ML * A2L fstd P7,XF7 ; ML * A3L xmpyu ML,A6R,P6 ; A6 cross 32-bit word product xmpyu ML,A7R,P7 ; A7 cross 32-bit word product fstd P0,XF0 ; MR * A4L ldd XF1,S9 ; MR * A1R shrpd S4,T3,32,S4 ; A2 carry | cross product sum >> 32 add S1,S3,T1 ; A1 cross product sum fstd P2,XF2 ; ML * A4R ldd XF3,S11 ; ML * A1L add,dc zero,zero,S1 ; A1 cross product sum carry depd,z T1,31,32,S3 ; A1 cross product sum << 32 fstd P4,XF4 ; MR * A6L ldd XF5,S13 ; MR * A3R shrpd S1,T1,32,S1 ; A1 carry | cross product sum >> 32 add S5,S7,T3 ; A3 cross product sum fstd P6,XF6 ; ML * A6R ldd XF7,S15 ; ML * A3L add,dc zero,zero,S5 ; A3 cross product sum carry depd,z T3,31,32,S7 ; A3 cross product sum << 32 shrpd S5,T3,32,S5 ; A3 carry | cross product sum >> 32 add S2,S8,S8 ; M * A0 right doubleword, P0 doubleword add,dc S0,S10,S10 ; M * A0 left doubleword add S3,S9,S9 ; M * A1 right doubleword add,dc S1,S11,S11 ; M * A1 left doubleword add S6,S12,S12 ; M * A2 right doubleword ldd 24(pR),S3 ; Addend word 3 fstd P1,XF1 ; MR * A5L add,dc S4,S14,S14 ; M * A2 left doubleword xmpyu MR,A5R,P1 ; A5 right 32-bit word product ldd 8(pR),S1 ; Addend word 1 fstd P3,XF3 ; ML * A5R add S7,S13,S13 ; M * A3 right doubleword xmpyu ML,A5L,P3 ; A5 left 32-bit word product ldd 0(pR),S7 ; Addend word 0 fstd P5,XF5 ; MR * A7L add,dc S5,S15,S15 ; M * A3 left doubleword xmpyu MR,A7R,P5 ; A7 right 32-bit word product ldd 16(pR),S5 ; Addend word 2 fstd P7,XF7 ; ML * A7R add S10,S9,S9 ; P1 doubleword xmpyu ML,A7L,P7 ; A7 left 32-bit word products ldd XF0,S0 ; MR * A4L fstd P1,XF9 ; MR * A5R add,dc S11,S12,S12 ; P2 doubleword xmpyu MR,A4R,P0 ; A4 right 32-bit word product ldd XF2,S2 ; ML * A4R fstd P3,XF11 ; ML * A5L add,dc S14,S13,S13 ; P3 doubleword xmpyu ML,A4L,P2 ; A4 left 32-bit word product ldd XF6,S6 ; ML * A6R fstd P5,XF13 ; MR * A7R add,dc zero,S15,T2 ; P4 partial doubleword xmpyu MR,A6R,P4 ; A6 right 32-bit word product ldd XF4,S4 ; MR * A6L fstd P7,XF15 ; ML * A7L add S7,S8,S8 ; R0 + P0, new R0 doubleword xmpyu ML,A6L,P6 ; A6 left 32-bit word product fstd P0,XF0 ; MR * A4R ldd XF7,S7 ; ML * A7R add,dc S1,S9,S9 ; c + R1 + P1, new R1 doubleword fstd P2,XF2 ; ML * A4L ldd XF1,S1 ; MR * A5L add,dc S5,S12,S12 ; c + R2 + P2, new R2 doubleword fstd P4,XF4 ; MR * A6R ldd XF5,S5 ; MR * A7L add,dc S3,S13,S13 ; c + R3 + P3, new R3 doubleword fstd P6,XF6 ; ML * A6L ldd XF3,S3 ; ML * A5R add,dc zero,T2,T2 ; c + partial P4 add S0,S2,T1 ; A4 cross product sum std S8,0(pR) ; save R0 add,dc zero,zero,S0 ; A4 cross product sum carry depd,z T1,31,32,S2 ; A4 cross product sum << 32 std S9,8(pR) ; save R1 shrpd S0,T1,32,S0 ; A4 carry | cross product sum >> 32 add S4,S6,T3 ; A6 cross product sum std S12,16(pR) ; save R2 add,dc zero,zero,S4 ; A6 cross product sum carry depd,z T3,31,32,S6 ; A6 cross product sum << 32 std S13,24(pR) ; save R3 shrpd S4,T3,32,S4 ; A6 carry | cross product sum >> 32 add S1,S3,T1 ; A5 cross product sum ldd XF0,S8 ; MR * A4R add,dc zero,zero,S1 ; A5 cross product sum carry depd,z T1,31,32,S3 ; A5 cross product sum << 32 ldd XF2,S10 ; ML * A4L ldd XF9,S9 ; MR * A5R shrpd S1,T1,32,S1 ; A5 carry | cross product sum >> 32 add S5,S7,T3 ; A7 cross product sum ldd XF4,S12 ; MR * A6R ldd XF11,S11 ; ML * A5L add,dc zero,zero,S5 ; A7 cross product sum carry depd,z T3,31,32,S7 ; A7 cross product sum << 32 ldd XF6,S14 ; ML * A6L ldd XF13,S13 ; MR * A7R shrpd S5,T3,32,S5 ; A7 carry | cross product sum >> 32 add S2,S8,S8 ; M * A4 right doubleword ldd XF15,S15 ; ML * A7L add,dc S0,S10,S10 ; M * A4 left doubleword add S3,S9,S9 ; M * A5 right doubleword add,dc S1,S11,S11 ; M * A5 left doubleword add S6,S12,S12 ; M * A6 right doubleword ldd 32(pR),S0 ; Addend word 4 ldd 40(pR),S1 ; Addend word 5 add,dc S4,S14,S14 ; M * A6 left doubleword add S7,S13,S13 ; M * A7 right doubleword ldd 48(pR),S2 ; Addend word 6 ldd 56(pR),S3 ; Addend word 7 add,dc S5,S15,S15 ; M * A7 left doubleword add S8,T2,S8 ; P4 doubleword ldd 64(pR),S4 ; Addend word 8 ldd SV5,s5 ; restore s5 add,dc S10,S9,S9 ; P5 doubleword add,dc S11,S12,S12 ; P6 doubleword ldd SV6,s6 ; restore s6 ldd SV7,s7 ; restore s7 add,dc S14,S13,S13 ; P7 doubleword add,dc zero,S15,S15 ; P8 doubleword add S0,S8,S8 ; new R4 doubleword ldd SV0,s0 ; restore s0 std S8,32(pR) ; save R4 add,dc S1,S9,S9 ; new R5 doubleword ldd SV1,s1 ; restore s1 std S9,40(pR) ; save R5 add,dc S2,S12,S12 ; new R6 doubleword ldd SV2,s2 ; restore s2 std S12,48(pR) ; save R6 add,dc S3,S13,S13 ; new R7 doubleword ldd SV3,s3 ; restore s3 std S13,56(pR) ; save R7 add,dc S4,S15,S15 ; new R8 doubleword ldd SV4,s4 ; restore s4 std S15,64(pR) ; save result[8] add,dc zero,zero,v0 ; return carry from R8 CMPIB,*= 0,v0,$L0 ; if no overflow, exit LDO 8(pR),pR $FINAL1 ; Final carry propagation LDD 64(pR),v0 LDO 8(pR),pR ADDI 1,v0,v0 CMPIB,*= 0,v0,$FINAL1 ; Keep looping if there is a carry. STD v0,56(pR) $L0 bv zero(rp) ; -> caller ldo -ST_SZ(sp),sp ; pop stack /* ====================================================================== */ /* end of module */ /* ====================================================================== */ bve (rp) .EXIT nop .PROCEND .SPACE $TEXT$ .SUBSPA $CODE$ .EXPORT multacc512,ENTRY .end