/* $Id: tif_getimage.c,v 1.114 2017-11-17 20:21:00 erouault Exp $ */ /* * Copyright (c) 1991-1997 Sam Leffler * Copyright (c) 1991-1997 Silicon Graphics, Inc. * * Permission to use, copy, modify, distribute, and sell this software and * its documentation for any purpose is hereby granted without fee, provided * that (i) the above copyright notices and this permission notice appear in * all copies of the software and related documentation, and (ii) the names of * Sam Leffler and Silicon Graphics may not be used in any advertising or * publicity relating to the software without the specific, prior written * permission of Sam Leffler and Silicon Graphics. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ /* * TIFF Library * * Read and return a packed RGBA image. */ #include "tiffiop.h" #include static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); static int PickContigCase(TIFFRGBAImage*); static int PickSeparateCase(TIFFRGBAImage*); static int BuildMapUaToAa(TIFFRGBAImage* img); static int BuildMapBitdepth16To8(TIFFRGBAImage* img); static const char photoTag[] = "PhotometricInterpretation"; /* * Helper constants used in Orientation tag handling */ #define FLIP_VERTICALLY 0x01 #define FLIP_HORIZONTALLY 0x02 /* * Color conversion constants. We will define display types here. */ static const TIFFDisplay display_sRGB = { { /* XYZ -> luminance matrix */ { 3.2410F, -1.5374F, -0.4986F }, { -0.9692F, 1.8760F, 0.0416F }, { 0.0556F, -0.2040F, 1.0570F } }, 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ 255, 255, 255, /* Pixel values for ref. white */ 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ }; /* * Check the image to see if TIFFReadRGBAImage can deal with it. * 1/0 is returned according to whether or not the image can * be handled. If 0 is returned, emsg contains the reason * why it is being rejected. */ int TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) { TIFFDirectory* td = &tif->tif_dir; uint16 photometric; int colorchannels; if (!tif->tif_decodestatus) { sprintf(emsg, "Sorry, requested compression method is not configured"); return (0); } switch (td->td_bitspersample) { case 1: case 2: case 4: case 8: case 16: break; default: sprintf(emsg, "Sorry, can not handle images with %d-bit samples", td->td_bitspersample); return (0); } if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) { sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples"); return (0); } colorchannels = td->td_samplesperpixel - td->td_extrasamples; if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { switch (colorchannels) { case 1: photometric = PHOTOMETRIC_MINISBLACK; break; case 3: photometric = PHOTOMETRIC_RGB; break; default: sprintf(emsg, "Missing needed %s tag", photoTag); return (0); } } switch (photometric) { case PHOTOMETRIC_MINISWHITE: case PHOTOMETRIC_MINISBLACK: case PHOTOMETRIC_PALETTE: if (td->td_planarconfig == PLANARCONFIG_CONTIG && td->td_samplesperpixel != 1 && td->td_bitspersample < 8 ) { sprintf(emsg, "Sorry, can not handle contiguous data with %s=%d, " "and %s=%d and Bits/Sample=%d", photoTag, photometric, "Samples/pixel", td->td_samplesperpixel, td->td_bitspersample); return (0); } /* * We should likely validate that any extra samples are either * to be ignored, or are alpha, and if alpha we should try to use * them. But for now we won't bother with this. */ break; case PHOTOMETRIC_YCBCR: /* * TODO: if at all meaningful and useful, make more complete * support check here, or better still, refactor to let supporting * code decide whether there is support and what meaningful * error to return */ break; case PHOTOMETRIC_RGB: if (colorchannels < 3) { sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", "Color channels", colorchannels); return (0); } break; case PHOTOMETRIC_SEPARATED: { uint16 inkset; TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); if (inkset != INKSET_CMYK) { sprintf(emsg, "Sorry, can not handle separated image with %s=%d", "InkSet", inkset); return 0; } if (td->td_samplesperpixel < 4) { sprintf(emsg, "Sorry, can not handle separated image with %s=%d", "Samples/pixel", td->td_samplesperpixel); return 0; } break; } case PHOTOMETRIC_LOGL: if (td->td_compression != COMPRESSION_SGILOG) { sprintf(emsg, "Sorry, LogL data must have %s=%d", "Compression", COMPRESSION_SGILOG); return (0); } break; case PHOTOMETRIC_LOGLUV: if (td->td_compression != COMPRESSION_SGILOG && td->td_compression != COMPRESSION_SGILOG24) { sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); return (0); } if (td->td_planarconfig != PLANARCONFIG_CONTIG) { sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", "Planarconfiguration", td->td_planarconfig); return (0); } if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) { sprintf(emsg, "Sorry, can not handle image with %s=%d, %s=%d", "Samples/pixel", td->td_samplesperpixel, "colorchannels", colorchannels); return 0; } break; case PHOTOMETRIC_CIELAB: if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) { sprintf(emsg, "Sorry, can not handle image with %s=%d, %s=%d and %s=%d", "Samples/pixel", td->td_samplesperpixel, "colorchannels", colorchannels, "Bits/sample", td->td_bitspersample); return 0; } break; default: sprintf(emsg, "Sorry, can not handle image with %s=%d", photoTag, photometric); return (0); } return (1); } void TIFFRGBAImageEnd(TIFFRGBAImage* img) { if (img->Map) { _TIFFfree(img->Map); img->Map = NULL; } if (img->BWmap) { _TIFFfree(img->BWmap); img->BWmap = NULL; } if (img->PALmap) { _TIFFfree(img->PALmap); img->PALmap = NULL; } if (img->ycbcr) { _TIFFfree(img->ycbcr); img->ycbcr = NULL; } if (img->cielab) { _TIFFfree(img->cielab); img->cielab = NULL; } if (img->UaToAa) { _TIFFfree(img->UaToAa); img->UaToAa = NULL; } if (img->Bitdepth16To8) { _TIFFfree(img->Bitdepth16To8); img->Bitdepth16To8 = NULL; } if( img->redcmap ) { _TIFFfree( img->redcmap ); _TIFFfree( img->greencmap ); _TIFFfree( img->bluecmap ); img->redcmap = img->greencmap = img->bluecmap = NULL; } } static int isCCITTCompression(TIFF* tif) { uint16 compress; TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); return (compress == COMPRESSION_CCITTFAX3 || compress == COMPRESSION_CCITTFAX4 || compress == COMPRESSION_CCITTRLE || compress == COMPRESSION_CCITTRLEW); } int TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) { uint16* sampleinfo; uint16 extrasamples; uint16 planarconfig; uint16 compress; int colorchannels; uint16 *red_orig, *green_orig, *blue_orig; int n_color; if( !TIFFRGBAImageOK(tif, emsg) ) return 0; /* Initialize to normal values */ img->row_offset = 0; img->col_offset = 0; img->redcmap = NULL; img->greencmap = NULL; img->bluecmap = NULL; img->Map = NULL; img->BWmap = NULL; img->PALmap = NULL; img->ycbcr = NULL; img->cielab = NULL; img->UaToAa = NULL; img->Bitdepth16To8 = NULL; img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ img->tif = tif; img->stoponerr = stop; TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); switch (img->bitspersample) { case 1: case 2: case 4: case 8: case 16: break; default: sprintf(emsg, "Sorry, can not handle images with %d-bit samples", img->bitspersample); goto fail_return; } img->alpha = 0; TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, &extrasamples, &sampleinfo); if (extrasamples >= 1) { switch (sampleinfo[0]) { case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */ if (img->samplesperpixel > 3) /* correct info about alpha channel */ img->alpha = EXTRASAMPLE_ASSOCALPHA; break; case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ img->alpha = sampleinfo[0]; break; } } #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) img->photometric = PHOTOMETRIC_MINISWHITE; if( extrasamples == 0 && img->samplesperpixel == 4 && img->photometric == PHOTOMETRIC_RGB ) { img->alpha = EXTRASAMPLE_ASSOCALPHA; extrasamples = 1; } #endif colorchannels = img->samplesperpixel - extrasamples; TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { switch (colorchannels) { case 1: if (isCCITTCompression(tif)) img->photometric = PHOTOMETRIC_MINISWHITE; else img->photometric = PHOTOMETRIC_MINISBLACK; break; case 3: img->photometric = PHOTOMETRIC_RGB; break; default: sprintf(emsg, "Missing needed %s tag", photoTag); goto fail_return; } } switch (img->photometric) { case PHOTOMETRIC_PALETTE: if (!TIFFGetField(tif, TIFFTAG_COLORMAP, &red_orig, &green_orig, &blue_orig)) { sprintf(emsg, "Missing required \"Colormap\" tag"); goto fail_return; } /* copy the colormaps so we can modify them */ n_color = (1U << img->bitspersample); img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); if( !img->redcmap || !img->greencmap || !img->bluecmap ) { sprintf(emsg, "Out of memory for colormap copy"); goto fail_return; } _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); /* fall through... */ case PHOTOMETRIC_MINISWHITE: case PHOTOMETRIC_MINISBLACK: if (planarconfig == PLANARCONFIG_CONTIG && img->samplesperpixel != 1 && img->bitspersample < 8 ) { sprintf(emsg, "Sorry, can not handle contiguous data with %s=%d, " "and %s=%d and Bits/Sample=%d", photoTag, img->photometric, "Samples/pixel", img->samplesperpixel, img->bitspersample); goto fail_return; } break; case PHOTOMETRIC_YCBCR: /* It would probably be nice to have a reality check here. */ if (planarconfig == PLANARCONFIG_CONTIG) /* can rely on libjpeg to convert to RGB */ /* XXX should restore current state on exit */ switch (compress) { case COMPRESSION_JPEG: /* * TODO: when complete tests verify complete desubsampling * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in * favor of tif_getimage.c native handling */ TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); img->photometric = PHOTOMETRIC_RGB; break; default: /* do nothing */; break; } /* * TODO: if at all meaningful and useful, make more complete * support check here, or better still, refactor to let supporting * code decide whether there is support and what meaningful * error to return */ break; case PHOTOMETRIC_RGB: if (colorchannels < 3) { sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", "Color channels", colorchannels); goto fail_return; } break; case PHOTOMETRIC_SEPARATED: { uint16 inkset; TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); if (inkset != INKSET_CMYK) { sprintf(emsg, "Sorry, can not handle separated image with %s=%d", "InkSet", inkset); goto fail_return; } if (img->samplesperpixel < 4) { sprintf(emsg, "Sorry, can not handle separated image with %s=%d", "Samples/pixel", img->samplesperpixel); goto fail_return; } } break; case PHOTOMETRIC_LOGL: if (compress != COMPRESSION_SGILOG) { sprintf(emsg, "Sorry, LogL data must have %s=%d", "Compression", COMPRESSION_SGILOG); goto fail_return; } TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ img->bitspersample = 8; break; case PHOTOMETRIC_LOGLUV: if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); goto fail_return; } if (planarconfig != PLANARCONFIG_CONTIG) { sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", "Planarconfiguration", planarconfig); return (0); } TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); img->photometric = PHOTOMETRIC_RGB; /* little white lie */ img->bitspersample = 8; break; case PHOTOMETRIC_CIELAB: break; default: sprintf(emsg, "Sorry, can not handle image with %s=%d", photoTag, img->photometric); goto fail_return; } TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); img->isContig = !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1); if (img->isContig) { if (!PickContigCase(img)) { sprintf(emsg, "Sorry, can not handle image"); goto fail_return; } } else { if (!PickSeparateCase(img)) { sprintf(emsg, "Sorry, can not handle image"); goto fail_return; } } return 1; fail_return: TIFFRGBAImageEnd( img ); return 0; } int TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) { if (img->get == NULL) { TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup"); return (0); } if (img->put.any == NULL) { TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"put\" routine setupl; probably can not handle image format"); return (0); } return (*img->get)(img, raster, w, h); } /* * Read the specified image into an ABGR-format rastertaking in account * specified orientation. */ int TIFFReadRGBAImageOriented(TIFF* tif, uint32 rwidth, uint32 rheight, uint32* raster, int orientation, int stop) { char emsg[1024] = ""; TIFFRGBAImage img; int ok; if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) { img.req_orientation = (uint16)orientation; /* XXX verify rwidth and rheight against width and height */ ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, rwidth, img.height); TIFFRGBAImageEnd(&img); } else { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); ok = 0; } return (ok); } /* * Read the specified image into an ABGR-format raster. Use bottom left * origin for raster by default. */ int TIFFReadRGBAImage(TIFF* tif, uint32 rwidth, uint32 rheight, uint32* raster, int stop) { return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, ORIENTATION_BOTLEFT, stop); } static int setorientation(TIFFRGBAImage* img) { switch (img->orientation) { case ORIENTATION_TOPLEFT: case ORIENTATION_LEFTTOP: if (img->req_orientation == ORIENTATION_TOPRIGHT || img->req_orientation == ORIENTATION_RIGHTTOP) return FLIP_HORIZONTALLY; else if (img->req_orientation == ORIENTATION_BOTRIGHT || img->req_orientation == ORIENTATION_RIGHTBOT) return FLIP_HORIZONTALLY | FLIP_VERTICALLY; else if (img->req_orientation == ORIENTATION_BOTLEFT || img->req_orientation == ORIENTATION_LEFTBOT) return FLIP_VERTICALLY; else return 0; case ORIENTATION_TOPRIGHT: case ORIENTATION_RIGHTTOP: if (img->req_orientation == ORIENTATION_TOPLEFT || img->req_orientation == ORIENTATION_LEFTTOP) return FLIP_HORIZONTALLY; else if (img->req_orientation == ORIENTATION_BOTRIGHT || img->req_orientation == ORIENTATION_RIGHTBOT) return FLIP_VERTICALLY; else if (img->req_orientation == ORIENTATION_BOTLEFT || img->req_orientation == ORIENTATION_LEFTBOT) return FLIP_HORIZONTALLY | FLIP_VERTICALLY; else return 0; case ORIENTATION_BOTRIGHT: case ORIENTATION_RIGHTBOT: if (img->req_orientation == ORIENTATION_TOPLEFT || img->req_orientation == ORIENTATION_LEFTTOP) return FLIP_HORIZONTALLY | FLIP_VERTICALLY; else if (img->req_orientation == ORIENTATION_TOPRIGHT || img->req_orientation == ORIENTATION_RIGHTTOP) return FLIP_VERTICALLY; else if (img->req_orientation == ORIENTATION_BOTLEFT || img->req_orientation == ORIENTATION_LEFTBOT) return FLIP_HORIZONTALLY; else return 0; case ORIENTATION_BOTLEFT: case ORIENTATION_LEFTBOT: if (img->req_orientation == ORIENTATION_TOPLEFT || img->req_orientation == ORIENTATION_LEFTTOP) return FLIP_VERTICALLY; else if (img->req_orientation == ORIENTATION_TOPRIGHT || img->req_orientation == ORIENTATION_RIGHTTOP) return FLIP_HORIZONTALLY | FLIP_VERTICALLY; else if (img->req_orientation == ORIENTATION_BOTRIGHT || img->req_orientation == ORIENTATION_RIGHTBOT) return FLIP_HORIZONTALLY; else return 0; default: /* NOTREACHED */ return 0; } } /* * Get an tile-organized image that has * PlanarConfiguration contiguous if SamplesPerPixel > 1 * or * SamplesPerPixel == 1 */ static int gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) { TIFF* tif = img->tif; tileContigRoutine put = img->put.contig; uint32 col, row, y, rowstoread; tmsize_t pos; uint32 tw, th; unsigned char* buf = NULL; int32 fromskew, toskew; uint32 nrow; int ret = 1, flip; uint32 this_tw, tocol; int32 this_toskew, leftmost_toskew; int32 leftmost_fromskew; uint32 leftmost_tw; tmsize_t bufsize; bufsize = TIFFTileSize(tif); if (bufsize == 0) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer"); return (0); } TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); flip = setorientation(img); if (flip & FLIP_VERTICALLY) { y = h - 1; toskew = -(int32)(tw + w); } else { y = 0; toskew = -(int32)(tw - w); } /* * Leftmost tile is clipped on left side if col_offset > 0. */ leftmost_fromskew = img->col_offset % tw; leftmost_tw = tw - leftmost_fromskew; leftmost_toskew = toskew + leftmost_fromskew; for (row = 0; ret != 0 && row < h; row += nrow) { rowstoread = th - (row + img->row_offset) % th; nrow = (row + rowstoread > h ? h - row : rowstoread); fromskew = leftmost_fromskew; this_tw = leftmost_tw; this_toskew = leftmost_toskew; tocol = 0; col = img->col_offset; while (tocol < w) { if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col, row+img->row_offset, 0, 0)==(tmsize_t)(-1) && (buf == NULL || img->stoponerr)) { ret = 0; break; } pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \ ((tmsize_t) fromskew * img->samplesperpixel); if (tocol + this_tw > w) { /* * Rightmost tile is clipped on right side. */ fromskew = tw - (w - tocol); this_tw = tw - fromskew; this_toskew = toskew + fromskew; } (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos); tocol += this_tw; col += this_tw; /* * After the leftmost tile, tiles are no longer clipped on left side. */ fromskew = 0; this_tw = tw; this_toskew = toskew; } y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow); } _TIFFfree(buf); if (flip & FLIP_HORIZONTALLY) { uint32 line; for (line = 0; line < h; line++) { uint32 *left = raster + (line * w); uint32 *right = left + w - 1; while ( left < right ) { uint32 temp = *left; *left = *right; *right = temp; left++; right--; } } } return (ret); } /* * Get an tile-organized image that has * SamplesPerPixel > 1 * PlanarConfiguration separated * We assume that all such images are RGB. */ static int gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) { TIFF* tif = img->tif; tileSeparateRoutine put = img->put.separate; uint32 col, row, y, rowstoread; tmsize_t pos; uint32 tw, th; unsigned char* buf = NULL; unsigned char* p0 = NULL; unsigned char* p1 = NULL; unsigned char* p2 = NULL; unsigned char* pa = NULL; tmsize_t tilesize; tmsize_t bufsize; int32 fromskew, toskew; int alpha = img->alpha; uint32 nrow; int ret = 1, flip; uint16 colorchannels; uint32 this_tw, tocol; int32 this_toskew, leftmost_toskew; int32 leftmost_fromskew; uint32 leftmost_tw; tilesize = TIFFTileSize(tif); bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize); if (bufsize == 0) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate"); return (0); } TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); flip = setorientation(img); if (flip & FLIP_VERTICALLY) { y = h - 1; toskew = -(int32)(tw + w); } else { y = 0; toskew = -(int32)(tw - w); } switch( img->photometric ) { case PHOTOMETRIC_MINISWHITE: case PHOTOMETRIC_MINISBLACK: case PHOTOMETRIC_PALETTE: colorchannels = 1; break; default: colorchannels = 3; break; } /* * Leftmost tile is clipped on left side if col_offset > 0. */ leftmost_fromskew = img->col_offset % tw; leftmost_tw = tw - leftmost_fromskew; leftmost_toskew = toskew + leftmost_fromskew; for (row = 0; ret != 0 && row < h; row += nrow) { rowstoread = th - (row + img->row_offset) % th; nrow = (row + rowstoread > h ? h - row : rowstoread); fromskew = leftmost_fromskew; this_tw = leftmost_tw; this_toskew = leftmost_toskew; tocol = 0; col = img->col_offset; while (tocol < w) { if( buf == NULL ) { if (_TIFFReadTileAndAllocBuffer( tif, (void**) &buf, bufsize, col, row+img->row_offset,0,0)==(tmsize_t)(-1) && (buf == NULL || img->stoponerr)) { ret = 0; break; } p0 = buf; if( colorchannels == 1 ) { p2 = p1 = p0; pa = (alpha?(p0+3*tilesize):NULL); } else { p1 = p0 + tilesize; p2 = p1 + tilesize; pa = (alpha?(p2+tilesize):NULL); } } else if (TIFFReadTile(tif, p0, col, row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } if (colorchannels > 1 && TIFFReadTile(tif, p1, col, row+img->row_offset,0,1) == (tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } if (colorchannels > 1 && TIFFReadTile(tif, p2, col, row+img->row_offset,0,2) == (tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } if (alpha && TIFFReadTile(tif,pa,col, row+img->row_offset,0,colorchannels) == (tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \ ((tmsize_t) fromskew * img->samplesperpixel); if (tocol + this_tw > w) { /* * Rightmost tile is clipped on right side. */ fromskew = tw - (w - tocol); this_tw = tw - fromskew; this_toskew = toskew + fromskew; } (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \ p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL)); tocol += this_tw; col += this_tw; /* * After the leftmost tile, tiles are no longer clipped on left side. */ fromskew = 0; this_tw = tw; this_toskew = toskew; } y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow); } if (flip & FLIP_HORIZONTALLY) { uint32 line; for (line = 0; line < h; line++) { uint32 *left = raster + (line * w); uint32 *right = left + w - 1; while ( left < right ) { uint32 temp = *left; *left = *right; *right = temp; left++; right--; } } } _TIFFfree(buf); return (ret); } /* * Get a strip-organized image that has * PlanarConfiguration contiguous if SamplesPerPixel > 1 * or * SamplesPerPixel == 1 */ static int gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) { TIFF* tif = img->tif; tileContigRoutine put = img->put.contig; uint32 row, y, nrow, nrowsub, rowstoread; tmsize_t pos; unsigned char* buf = NULL; uint32 rowsperstrip; uint16 subsamplinghor,subsamplingver; uint32 imagewidth = img->width; tmsize_t scanline; int32 fromskew, toskew; int ret = 1, flip; tmsize_t maxstripsize; TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver); if( subsamplingver == 0 ) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling"); return (0); } maxstripsize = TIFFStripSize(tif); flip = setorientation(img); if (flip & FLIP_VERTICALLY) { y = h - 1; toskew = -(int32)(w + w); } else { y = 0; toskew = -(int32)(w - w); } TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); scanline = TIFFScanlineSize(tif); fromskew = (w < imagewidth ? imagewidth - w : 0); for (row = 0; row < h; row += nrow) { rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; nrow = (row + rowstoread > h ? h - row : rowstoread); nrowsub = nrow; if ((nrowsub%subsamplingver)!=0) nrowsub+=subsamplingver-nrowsub%subsamplingver; if (_TIFFReadEncodedStripAndAllocBuffer(tif, TIFFComputeStrip(tif,row+img->row_offset, 0), (void**)(&buf), maxstripsize, ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1) && (buf == NULL || img->stoponerr)) { ret = 0; break; } pos = ((row + img->row_offset) % rowsperstrip) * scanline + \ ((tmsize_t) img->col_offset * img->samplesperpixel); (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos); y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow); } if (flip & FLIP_HORIZONTALLY) { uint32 line; for (line = 0; line < h; line++) { uint32 *left = raster + (line * w); uint32 *right = left + w - 1; while ( left < right ) { uint32 temp = *left; *left = *right; *right = temp; left++; right--; } } } _TIFFfree(buf); return (ret); } /* * Get a strip-organized image with * SamplesPerPixel > 1 * PlanarConfiguration separated * We assume that all such images are RGB. */ static int gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) { TIFF* tif = img->tif; tileSeparateRoutine put = img->put.separate; unsigned char *buf = NULL; unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL; uint32 row, y, nrow, rowstoread; tmsize_t pos; tmsize_t scanline; uint32 rowsperstrip, offset_row; uint32 imagewidth = img->width; tmsize_t stripsize; tmsize_t bufsize; int32 fromskew, toskew; int alpha = img->alpha; int ret = 1, flip; uint16 colorchannels; stripsize = TIFFStripSize(tif); bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize); if (bufsize == 0) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate"); return (0); } flip = setorientation(img); if (flip & FLIP_VERTICALLY) { y = h - 1; toskew = -(int32)(w + w); } else { y = 0; toskew = -(int32)(w - w); } switch( img->photometric ) { case PHOTOMETRIC_MINISWHITE: case PHOTOMETRIC_MINISBLACK: case PHOTOMETRIC_PALETTE: colorchannels = 1; break; default: colorchannels = 3; break; } TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); scanline = TIFFScanlineSize(tif); fromskew = (w < imagewidth ? imagewidth - w : 0); for (row = 0; row < h; row += nrow) { rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; nrow = (row + rowstoread > h ? h - row : rowstoread); offset_row = row + img->row_offset; if( buf == NULL ) { if (_TIFFReadEncodedStripAndAllocBuffer( tif, TIFFComputeStrip(tif, offset_row, 0), (void**) &buf, bufsize, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) && (buf == NULL || img->stoponerr)) { ret = 0; break; } p0 = buf; if( colorchannels == 1 ) { p2 = p1 = p0; pa = (alpha?(p0+3*stripsize):NULL); } else { p1 = p0 + stripsize; p2 = p1 + stripsize; pa = (alpha?(p2+stripsize):NULL); } } else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } if (colorchannels > 1 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } if (colorchannels > 1 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } if (alpha) { if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels), pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) && img->stoponerr) { ret = 0; break; } } pos = ((row + img->row_offset) % rowsperstrip) * scanline + \ ((tmsize_t) img->col_offset * img->samplesperpixel); (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL)); y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow); } if (flip & FLIP_HORIZONTALLY) { uint32 line; for (line = 0; line < h; line++) { uint32 *left = raster + (line * w); uint32 *right = left + w - 1; while ( left < right ) { uint32 temp = *left; *left = *right; *right = temp; left++; right--; } } } _TIFFfree(buf); return (ret); } /* * The following routines move decoded data returned * from the TIFF library into rasters filled with packed * ABGR pixels (i.e. suitable for passing to lrecwrite.) * * The routines have been created according to the most * important cases and optimized. PickContigCase and * PickSeparateCase analyze the parameters and select * the appropriate "get" and "put" routine to use. */ #define REPEAT8(op) REPEAT4(op); REPEAT4(op) #define REPEAT4(op) REPEAT2(op); REPEAT2(op) #define REPEAT2(op) op; op #define CASE8(x,op) \ switch (x) { \ case 7: op; /*-fallthrough*/ \ case 6: op; /*-fallthrough*/ \ case 5: op; /*-fallthrough*/ \ case 4: op; /*-fallthrough*/ \ case 3: op; /*-fallthrough*/ \ case 2: op; /*-fallthrough*/ \ case 1: op; \ } #define CASE4(x,op) switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; } #define NOP #define UNROLL8(w, op1, op2) { \ uint32 _x; \ for (_x = w; _x >= 8; _x -= 8) { \ op1; \ REPEAT8(op2); \ } \ if (_x > 0) { \ op1; \ CASE8(_x,op2); \ } \ } #define UNROLL4(w, op1, op2) { \ uint32 _x; \ for (_x = w; _x >= 4; _x -= 4) { \ op1; \ REPEAT4(op2); \ } \ if (_x > 0) { \ op1; \ CASE4(_x,op2); \ } \ } #define UNROLL2(w, op1, op2) { \ uint32 _x; \ for (_x = w; _x >= 2; _x -= 2) { \ op1; \ REPEAT2(op2); \ } \ if (_x) { \ op1; \ op2; \ } \ } #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } #define A1 (((uint32)0xffL)<<24) #define PACK(r,g,b) \ ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) #define PACK4(r,g,b,a) \ ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) #define W2B(v) (((v)>>8)&0xff) /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */ #define PACKW(r,g,b) \ ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) #define PACKW4(r,g,b,a) \ ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) #define DECLAREContigPutFunc(name) \ static void name(\ TIFFRGBAImage* img, \ uint32* cp, \ uint32 x, uint32 y, \ uint32 w, uint32 h, \ int32 fromskew, int32 toskew, \ unsigned char* pp \ ) /* * 8-bit palette => colormap/RGB */ DECLAREContigPutFunc(put8bitcmaptile) { uint32** PALmap = img->PALmap; int samplesperpixel = img->samplesperpixel; (void) y; for( ; h > 0; --h) { for (x = w; x > 0; --x) { *cp++ = PALmap[*pp][0]; pp += samplesperpixel; } cp += toskew; pp += fromskew; } } /* * 4-bit palette => colormap/RGB */ DECLAREContigPutFunc(put4bitcmaptile) { uint32** PALmap = img->PALmap; (void) x; (void) y; fromskew /= 2; for( ; h > 0; --h) { uint32* bw; UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); cp += toskew; pp += fromskew; } } /* * 2-bit palette => colormap/RGB */ DECLAREContigPutFunc(put2bitcmaptile) { uint32** PALmap = img->PALmap; (void) x; (void) y; fromskew /= 4; for( ; h > 0; --h) { uint32* bw; UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); cp += toskew; pp += fromskew; } } /* * 1-bit palette => colormap/RGB */ DECLAREContigPutFunc(put1bitcmaptile) { uint32** PALmap = img->PALmap; (void) x; (void) y; fromskew /= 8; for( ; h > 0; --h) { uint32* bw; UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); cp += toskew; pp += fromskew; } } /* * 8-bit greyscale => colormap/RGB */ DECLAREContigPutFunc(putgreytile) { int samplesperpixel = img->samplesperpixel; uint32** BWmap = img->BWmap; (void) y; for( ; h > 0; --h) { for (x = w; x > 0; --x) { *cp++ = BWmap[*pp][0]; pp += samplesperpixel; } cp += toskew; pp += fromskew; } } /* * 8-bit greyscale with associated alpha => colormap/RGBA */ DECLAREContigPutFunc(putagreytile) { int samplesperpixel = img->samplesperpixel; uint32** BWmap = img->BWmap; (void) y; for( ; h > 0; --h) { for (x = w; x > 0; --x) { *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1); pp += samplesperpixel; } cp += toskew; pp += fromskew; } } /* * 16-bit greyscale => colormap/RGB */ DECLAREContigPutFunc(put16bitbwtile) { int samplesperpixel = img->samplesperpixel; uint32** BWmap = img->BWmap; (void) y; for( ; h > 0; --h) { uint16 *wp = (uint16 *) pp; for (x = w; x > 0; --x) { /* use high order byte of 16bit value */ *cp++ = BWmap[*wp >> 8][0]; pp += 2 * samplesperpixel; wp += samplesperpixel; } cp += toskew; pp += fromskew; } } /* * 1-bit bilevel => colormap/RGB */ DECLAREContigPutFunc(put1bitbwtile) { uint32** BWmap = img->BWmap; (void) x; (void) y; fromskew /= 8; for( ; h > 0; --h) { uint32* bw; UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); cp += toskew; pp += fromskew; } } /* * 2-bit greyscale => colormap/RGB */ DECLAREContigPutFunc(put2bitbwtile) { uint32** BWmap = img->BWmap; (void) x; (void) y; fromskew /= 4; for( ; h > 0; --h) { uint32* bw; UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); cp += toskew; pp += fromskew; } } /* * 4-bit greyscale => colormap/RGB */ DECLAREContigPutFunc(put4bitbwtile) { uint32** BWmap = img->BWmap; (void) x; (void) y; fromskew /= 2; for( ; h > 0; --h) { uint32* bw; UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); cp += toskew; pp += fromskew; } } /* * 8-bit packed samples, no Map => RGB */ DECLAREContigPutFunc(putRGBcontig8bittile) { int samplesperpixel = img->samplesperpixel; (void) x; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { UNROLL8(w, NOP, *cp++ = PACK(pp[0], pp[1], pp[2]); pp += samplesperpixel); cp += toskew; pp += fromskew; } } /* * 8-bit packed samples => RGBA w/ associated alpha * (known to have Map == NULL) */ DECLAREContigPutFunc(putRGBAAcontig8bittile) { int samplesperpixel = img->samplesperpixel; (void) x; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { UNROLL8(w, NOP, *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); pp += samplesperpixel); cp += toskew; pp += fromskew; } } /* * 8-bit packed samples => RGBA w/ unassociated alpha * (known to have Map == NULL) */ DECLAREContigPutFunc(putRGBUAcontig8bittile) { int samplesperpixel = img->samplesperpixel; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { uint32 r, g, b, a; uint8* m; for (x = w; x > 0; --x) { a = pp[3]; m = img->UaToAa+((size_t) a<<8); r = m[pp[0]]; g = m[pp[1]]; b = m[pp[2]]; *cp++ = PACK4(r,g,b,a); pp += samplesperpixel; } cp += toskew; pp += fromskew; } } /* * 16-bit packed samples => RGB */ DECLAREContigPutFunc(putRGBcontig16bittile) { int samplesperpixel = img->samplesperpixel; uint16 *wp = (uint16 *)pp; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { for (x = w; x > 0; --x) { *cp++ = PACK(img->Bitdepth16To8[wp[0]], img->Bitdepth16To8[wp[1]], img->Bitdepth16To8[wp[2]]); wp += samplesperpixel; } cp += toskew; wp += fromskew; } } /* * 16-bit packed samples => RGBA w/ associated alpha * (known to have Map == NULL) */ DECLAREContigPutFunc(putRGBAAcontig16bittile) { int samplesperpixel = img->samplesperpixel; uint16 *wp = (uint16 *)pp; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { for (x = w; x > 0; --x) { *cp++ = PACK4(img->Bitdepth16To8[wp[0]], img->Bitdepth16To8[wp[1]], img->Bitdepth16To8[wp[2]], img->Bitdepth16To8[wp[3]]); wp += samplesperpixel; } cp += toskew; wp += fromskew; } } /* * 16-bit packed samples => RGBA w/ unassociated alpha * (known to have Map == NULL) */ DECLAREContigPutFunc(putRGBUAcontig16bittile) { int samplesperpixel = img->samplesperpixel; uint16 *wp = (uint16 *)pp; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { uint32 r,g,b,a; uint8* m; for (x = w; x > 0; --x) { a = img->Bitdepth16To8[wp[3]]; m = img->UaToAa+((size_t) a<<8); r = m[img->Bitdepth16To8[wp[0]]]; g = m[img->Bitdepth16To8[wp[1]]]; b = m[img->Bitdepth16To8[wp[2]]]; *cp++ = PACK4(r,g,b,a); wp += samplesperpixel; } cp += toskew; wp += fromskew; } } /* * 8-bit packed CMYK samples w/o Map => RGB * * NB: The conversion of CMYK->RGB is *very* crude. */ DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) { int samplesperpixel = img->samplesperpixel; uint16 r, g, b, k; (void) x; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { UNROLL8(w, NOP, k = 255 - pp[3]; r = (k*(255-pp[0]))/255; g = (k*(255-pp[1]))/255; b = (k*(255-pp[2]))/255; *cp++ = PACK(r, g, b); pp += samplesperpixel); cp += toskew; pp += fromskew; } } /* * 8-bit packed CMYK samples w/Map => RGB * * NB: The conversion of CMYK->RGB is *very* crude. */ DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) { int samplesperpixel = img->samplesperpixel; TIFFRGBValue* Map = img->Map; uint16 r, g, b, k; (void) y; fromskew *= samplesperpixel; for( ; h > 0; --h) { for (x = w; x > 0; --x) { k = 255 - pp[3]; r = (k*(255-pp[0]))/255; g = (k*(255-pp[1]))/255; b = (k*(255-pp[2]))/255; *cp++ = PACK(Map[r], Map[g], Map[b]); pp += samplesperpixel; } pp += fromskew; cp += toskew; } } #define DECLARESepPutFunc(name) \ static void name(\ TIFFRGBAImage* img,\ uint32* cp,\ uint32 x, uint32 y, \ uint32 w, uint32 h,\ int32 fromskew, int32 toskew,\ unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ ) /* * 8-bit unpacked samples => RGB */ DECLARESepPutFunc(putRGBseparate8bittile) { (void) img; (void) x; (void) y; (void) a; for( ; h > 0; --h) { UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); SKEW(r, g, b, fromskew); cp += toskew; } } /* * 8-bit unpacked samples => RGBA w/ associated alpha */ DECLARESepPutFunc(putRGBAAseparate8bittile) { (void) img; (void) x; (void) y; for( ; h > 0; --h) { UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); SKEW4(r, g, b, a, fromskew); cp += toskew; } } /* * 8-bit unpacked CMYK samples => RGBA */ DECLARESepPutFunc(putCMYKseparate8bittile) { (void) img; (void) y; for( ; h > 0; --h) { uint32 rv, gv, bv, kv; for (x = w; x > 0; --x) { kv = 255 - *a++; rv = (kv*(255-*r++))/255; gv = (kv*(255-*g++))/255; bv = (kv*(255-*b++))/255; *cp++ = PACK4(rv,gv,bv,255); } SKEW4(r, g, b, a, fromskew); cp += toskew; } } /* * 8-bit unpacked samples => RGBA w/ unassociated alpha */ DECLARESepPutFunc(putRGBUAseparate8bittile) { (void) img; (void) y; for( ; h > 0; --h) { uint32 rv, gv, bv, av; uint8* m; for (x = w; x > 0; --x) { av = *a++; m = img->UaToAa+((size_t) av<<8); rv = m[*r++]; gv = m[*g++]; bv = m[*b++]; *cp++ = PACK4(rv,gv,bv,av); } SKEW4(r, g, b, a, fromskew); cp += toskew; } } /* * 16-bit unpacked samples => RGB */ DECLARESepPutFunc(putRGBseparate16bittile) { uint16 *wr = (uint16*) r; uint16 *wg = (uint16*) g; uint16 *wb = (uint16*) b; (void) img; (void) y; (void) a; for( ; h > 0; --h) { for (x = 0; x < w; x++) *cp++ = PACK(img->Bitdepth16To8[*wr++], img->Bitdepth16To8[*wg++], img->Bitdepth16To8[*wb++]); SKEW(wr, wg, wb, fromskew); cp += toskew; } } /* * 16-bit unpacked samples => RGBA w/ associated alpha */ DECLARESepPutFunc(putRGBAAseparate16bittile) { uint16 *wr = (uint16*) r; uint16 *wg = (uint16*) g; uint16 *wb = (uint16*) b; uint16 *wa = (uint16*) a; (void) img; (void) y; for( ; h > 0; --h) { for (x = 0; x < w; x++) *cp++ = PACK4(img->Bitdepth16To8[*wr++], img->Bitdepth16To8[*wg++], img->Bitdepth16To8[*wb++], img->Bitdepth16To8[*wa++]); SKEW4(wr, wg, wb, wa, fromskew); cp += toskew; } } /* * 16-bit unpacked samples => RGBA w/ unassociated alpha */ DECLARESepPutFunc(putRGBUAseparate16bittile) { uint16 *wr = (uint16*) r; uint16 *wg = (uint16*) g; uint16 *wb = (uint16*) b; uint16 *wa = (uint16*) a; (void) img; (void) y; for( ; h > 0; --h) { uint32 r2,g2,b2,a2; uint8* m; for (x = w; x > 0; --x) { a2 = img->Bitdepth16To8[*wa++]; m = img->UaToAa+((size_t) a2<<8); r2 = m[img->Bitdepth16To8[*wr++]]; g2 = m[img->Bitdepth16To8[*wg++]]; b2 = m[img->Bitdepth16To8[*wb++]]; *cp++ = PACK4(r2,g2,b2,a2); } SKEW4(wr, wg, wb, wa, fromskew); cp += toskew; } } /* * 8-bit packed CIE L*a*b 1976 samples => RGB */ DECLAREContigPutFunc(putcontig8bitCIELab) { float X, Y, Z; uint32 r, g, b; (void) y; fromskew *= 3; for( ; h > 0; --h) { for (x = w; x > 0; --x) { TIFFCIELabToXYZ(img->cielab, (unsigned char)pp[0], (signed char)pp[1], (signed char)pp[2], &X, &Y, &Z); TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); *cp++ = PACK(r, g, b); pp += 3; } cp += toskew; pp += fromskew; } } /* * YCbCr -> RGB conversion and packing routines. */ #define YCbCrtoRGB(dst, Y) { \ uint32 r, g, b; \ TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ dst = PACK(r, g, b); \ } /* * 8-bit packed YCbCr samples => RGB * This function is generic for different sampling sizes, * and can handle blocks sizes that aren't multiples of the * sampling size. However, it is substantially less optimized * than the specific sampling cases. It is used as a fallback * for difficult blocks. */ #ifdef notdef static void putcontig8bitYCbCrGenericTile( TIFFRGBAImage* img, uint32* cp, uint32 x, uint32 y, uint32 w, uint32 h, int32 fromskew, int32 toskew, unsigned char* pp, int h_group, int v_group ) { uint32* cp1 = cp+w+toskew; uint32* cp2 = cp1+w+toskew; uint32* cp3 = cp2+w+toskew; int32 incr = 3*w+4*toskew; int32 Cb, Cr; int group_size = v_group * h_group + 2; (void) y; fromskew = (fromskew * group_size) / h_group; for( yy = 0; yy < h; yy++ ) { unsigned char *pp_line; int y_line_group = yy / v_group; int y_remainder = yy - y_line_group * v_group; pp_line = pp + v_line_group * for( xx = 0; xx < w; xx++ ) { Cb = pp } } for (; h >= 4; h -= 4) { x = w>>2; do { Cb = pp[16]; Cr = pp[17]; YCbCrtoRGB(cp [0], pp[ 0]); YCbCrtoRGB(cp [1], pp[ 1]); YCbCrtoRGB(cp [2], pp[ 2]); YCbCrtoRGB(cp [3], pp[ 3]); YCbCrtoRGB(cp1[0], pp[ 4]); YCbCrtoRGB(cp1[1], pp[ 5]); YCbCrtoRGB(cp1[2], pp[ 6]); YCbCrtoRGB(cp1[3], pp[ 7]); YCbCrtoRGB(cp2[0], pp[ 8]); YCbCrtoRGB(cp2[1], pp[ 9]); YCbCrtoRGB(cp2[2], pp[10]); YCbCrtoRGB(cp2[3], pp[11]); YCbCrtoRGB(cp3[0], pp[12]); YCbCrtoRGB(cp3[1], pp[13]); YCbCrtoRGB(cp3[2], pp[14]); YCbCrtoRGB(cp3[3], pp[15]); cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; pp += 18; } while (--x); cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; pp += fromskew; } } #endif /* * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB */ DECLAREContigPutFunc(putcontig8bitYCbCr44tile) { uint32* cp1 = cp+w+toskew; uint32* cp2 = cp1+w+toskew; uint32* cp3 = cp2+w+toskew; int32 incr = 3*w+4*toskew; (void) y; /* adjust fromskew */ fromskew = (fromskew / 4) * (4*2+2); if ((h & 3) == 0 && (w & 3) == 0) { for (; h >= 4; h -= 4) { x = w>>2; do { int32 Cb = pp[16]; int32 Cr = pp[17]; YCbCrtoRGB(cp [0], pp[ 0]); YCbCrtoRGB(cp [1], pp[ 1]); YCbCrtoRGB(cp [2], pp[ 2]); YCbCrtoRGB(cp [3], pp[ 3]); YCbCrtoRGB(cp1[0], pp[ 4]); YCbCrtoRGB(cp1[1], pp[ 5]); YCbCrtoRGB(cp1[2], pp[ 6]); YCbCrtoRGB(cp1[3], pp[ 7]); YCbCrtoRGB(cp2[0], pp[ 8]); YCbCrtoRGB(cp2[1], pp[ 9]); YCbCrtoRGB(cp2[2], pp[10]); YCbCrtoRGB(cp2[3], pp[11]); YCbCrtoRGB(cp3[0], pp[12]); YCbCrtoRGB(cp3[1], pp[13]); YCbCrtoRGB(cp3[2], pp[14]); YCbCrtoRGB(cp3[3], pp[15]); cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; pp += 18; } while (--x); cp += incr; cp1 += incr; cp2 += incr; cp3 += incr; pp += fromskew; } } else { while (h > 0) { for (x = w; x > 0;) { int32 Cb = pp[16]; int32 Cr = pp[17]; switch (x) { default: switch (h) { default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ } /* FALLTHROUGH */ case 3: switch (h) { default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ } /* FALLTHROUGH */ case 2: switch (h) { default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ } /* FALLTHROUGH */ case 1: switch (h) { default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ } /* FALLTHROUGH */ } if (x < 4) { cp += x; cp1 += x; cp2 += x; cp3 += x; x = 0; } else { cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; x -= 4; } pp += 18; } if (h <= 4) break; h -= 4; cp += incr; cp1 += incr; cp2 += incr; cp3 += incr; pp += fromskew; } } } /* * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB */ DECLAREContigPutFunc(putcontig8bitYCbCr42tile) { uint32* cp1 = cp+w+toskew; int32 incr = 2*toskew+w; (void) y; fromskew = (fromskew / 4) * (4*2+2); if ((w & 3) == 0 && (h & 1) == 0) { for (; h >= 2; h -= 2) { x = w>>2; do { int32 Cb = pp[8]; int32 Cr = pp[9]; YCbCrtoRGB(cp [0], pp[0]); YCbCrtoRGB(cp [1], pp[1]); YCbCrtoRGB(cp [2], pp[2]); YCbCrtoRGB(cp [3], pp[3]); YCbCrtoRGB(cp1[0], pp[4]); YCbCrtoRGB(cp1[1], pp[5]); YCbCrtoRGB(cp1[2], pp[6]); YCbCrtoRGB(cp1[3], pp[7]); cp += 4; cp1 += 4; pp += 10; } while (--x); cp += incr; cp1 += incr; pp += fromskew; } } else { while (h > 0) { for (x = w; x > 0;) { int32 Cb = pp[8]; int32 Cr = pp[9]; switch (x) { default: switch (h) { default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ } /* FALLTHROUGH */ case 3: switch (h) { default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ } /* FALLTHROUGH */ case 2: switch (h) { default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ } /* FALLTHROUGH */ case 1: switch (h) { default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ } /* FALLTHROUGH */ } if (x < 4) { cp += x; cp1 += x; x = 0; } else { cp += 4; cp1 += 4; x -= 4; } pp += 10; } if (h <= 2) break; h -= 2; cp += incr; cp1 += incr; pp += fromskew; } } } /* * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB */ DECLAREContigPutFunc(putcontig8bitYCbCr41tile) { (void) y; fromskew = (fromskew / 4) * (4*1+2); do { x = w>>2; while(x>0) { int32 Cb = pp[4]; int32 Cr = pp[5]; YCbCrtoRGB(cp [0], pp[0]); YCbCrtoRGB(cp [1], pp[1]); YCbCrtoRGB(cp [2], pp[2]); YCbCrtoRGB(cp [3], pp[3]); cp += 4; pp += 6; x--; } if( (w&3) != 0 ) { int32 Cb = pp[4]; int32 Cr = pp[5]; switch( (w&3) ) { case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/ case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/ case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/ case 0: break; } cp += (w&3); pp += 6; } cp += toskew; pp += fromskew; } while (--h); } /* * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB */ DECLAREContigPutFunc(putcontig8bitYCbCr22tile) { uint32* cp2; int32 incr = 2*toskew+w; (void) y; fromskew = (fromskew / 2) * (2*2+2); cp2 = cp+w+toskew; while (h>=2) { x = w; while (x>=2) { uint32 Cb = pp[4]; uint32 Cr = pp[5]; YCbCrtoRGB(cp[0], pp[0]); YCbCrtoRGB(cp[1], pp[1]); YCbCrtoRGB(cp2[0], pp[2]); YCbCrtoRGB(cp2[1], pp[3]); cp += 2; cp2 += 2; pp += 6; x -= 2; } if (x==1) { uint32 Cb = pp[4]; uint32 Cr = pp[5]; YCbCrtoRGB(cp[0], pp[0]); YCbCrtoRGB(cp2[0], pp[2]); cp ++ ; cp2 ++ ; pp += 6; } cp += incr; cp2 += incr; pp += fromskew; h-=2; } if (h==1) { x = w; while (x>=2) { uint32 Cb = pp[4]; uint32 Cr = pp[5]; YCbCrtoRGB(cp[0], pp[0]); YCbCrtoRGB(cp[1], pp[1]); cp += 2; cp2 += 2; pp += 6; x -= 2; } if (x==1) { uint32 Cb = pp[4]; uint32 Cr = pp[5]; YCbCrtoRGB(cp[0], pp[0]); } } } /* * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB */ DECLAREContigPutFunc(putcontig8bitYCbCr21tile) { (void) y; fromskew = (fromskew / 2) * (2*1+2); do { x = w>>1; while(x>0) { int32 Cb = pp[2]; int32 Cr = pp[3]; YCbCrtoRGB(cp[0], pp[0]); YCbCrtoRGB(cp[1], pp[1]); cp += 2; pp += 4; x --; } if( (w&1) != 0 ) { int32 Cb = pp[2]; int32 Cr = pp[3]; YCbCrtoRGB(cp[0], pp[0]); cp += 1; pp += 4; } cp += toskew; pp += fromskew; } while (--h); } /* * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB */ DECLAREContigPutFunc(putcontig8bitYCbCr12tile) { uint32* cp2; int32 incr = 2*toskew+w; (void) y; fromskew = (fromskew / 1) * (1 * 2 + 2); cp2 = cp+w+toskew; while (h>=2) { x = w; do { uint32 Cb = pp[2]; uint32 Cr = pp[3]; YCbCrtoRGB(cp[0], pp[0]); YCbCrtoRGB(cp2[0], pp[1]); cp ++; cp2 ++; pp += 4; } while (--x); cp += incr; cp2 += incr; pp += fromskew; h-=2; } if (h==1) { x = w; do { uint32 Cb = pp[2]; uint32 Cr = pp[3]; YCbCrtoRGB(cp[0], pp[0]); cp ++; pp += 4; } while (--x); } } /* * 8-bit packed YCbCr samples w/ no subsampling => RGB */ DECLAREContigPutFunc(putcontig8bitYCbCr11tile) { (void) y; fromskew = (fromskew / 1) * (1 * 1 + 2); do { x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ do { int32 Cb = pp[1]; int32 Cr = pp[2]; YCbCrtoRGB(*cp++, pp[0]); pp += 3; } while (--x); cp += toskew; pp += fromskew; } while (--h); } /* * 8-bit packed YCbCr samples w/ no subsampling => RGB */ DECLARESepPutFunc(putseparate8bitYCbCr11tile) { (void) y; (void) a; /* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */ for( ; h > 0; --h) { x = w; do { uint32 dr, dg, db; TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db); *cp++ = PACK(dr,dg,db); } while (--x); SKEW(r, g, b, fromskew); cp += toskew; } } #undef YCbCrtoRGB static int isInRefBlackWhiteRange(float f) { return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF; } static int initYCbCrConversion(TIFFRGBAImage* img) { static const char module[] = "initYCbCrConversion"; float *luma, *refBlackWhite; if (img->ycbcr == NULL) { img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)) + 4*256*sizeof (TIFFRGBValue) + 2*256*sizeof (int) + 3*256*sizeof (int32) ); if (img->ycbcr == NULL) { TIFFErrorExt(img->tif->tif_clientdata, module, "No space for YCbCr->RGB conversion state"); return (0); } } TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, &refBlackWhite); /* Do some validation to avoid later issues. Detect NaN for now */ /* and also if lumaGreen is zero since we divide by it later */ if( luma[0] != luma[0] || luma[1] != luma[1] || luma[1] == 0.0 || luma[2] != luma[2] ) { TIFFErrorExt(img->tif->tif_clientdata, module, "Invalid values for YCbCrCoefficients tag"); return (0); } if( !isInRefBlackWhiteRange(refBlackWhite[0]) || !isInRefBlackWhiteRange(refBlackWhite[1]) || !isInRefBlackWhiteRange(refBlackWhite[2]) || !isInRefBlackWhiteRange(refBlackWhite[3]) || !isInRefBlackWhiteRange(refBlackWhite[4]) || !isInRefBlackWhiteRange(refBlackWhite[5]) ) { TIFFErrorExt(img->tif->tif_clientdata, module, "Invalid values for ReferenceBlackWhite tag"); return (0); } if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) return(0); return (1); } static tileContigRoutine initCIELabConversion(TIFFRGBAImage* img) { static const char module[] = "initCIELabConversion"; float *whitePoint; float refWhite[3]; TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); if (whitePoint[1] == 0.0f ) { TIFFErrorExt(img->tif->tif_clientdata, module, "Invalid value for WhitePoint tag."); return NULL; } if (!img->cielab) { img->cielab = (TIFFCIELabToRGB *) _TIFFmalloc(sizeof(TIFFCIELabToRGB)); if (!img->cielab) { TIFFErrorExt(img->tif->tif_clientdata, module, "No space for CIE L*a*b*->RGB conversion state."); return NULL; } } refWhite[1] = 100.0F; refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) / whitePoint[1] * refWhite[1]; if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { TIFFErrorExt(img->tif->tif_clientdata, module, "Failed to initialize CIE L*a*b*->RGB conversion state."); _TIFFfree(img->cielab); return NULL; } return putcontig8bitCIELab; } /* * Greyscale images with less than 8 bits/sample are handled * with a table to avoid lots of shifts and masks. The table * is setup so that put*bwtile (below) can retrieve 8/bitspersample * pixel values simply by indexing into the table with one * number. */ static int makebwmap(TIFFRGBAImage* img) { TIFFRGBValue* Map = img->Map; int bitspersample = img->bitspersample; int nsamples = 8 / bitspersample; int i; uint32* p; if( nsamples == 0 ) nsamples = 1; img->BWmap = (uint32**) _TIFFmalloc( 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); if (img->BWmap == NULL) { TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table"); return (0); } p = (uint32*)(img->BWmap + 256); for (i = 0; i < 256; i++) { TIFFRGBValue c; img->BWmap[i] = p; switch (bitspersample) { #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); case 1: GREY(i>>7); GREY((i>>6)&1); GREY((i>>5)&1); GREY((i>>4)&1); GREY((i>>3)&1); GREY((i>>2)&1); GREY((i>>1)&1); GREY(i&1); break; case 2: GREY(i>>6); GREY((i>>4)&3); GREY((i>>2)&3); GREY(i&3); break; case 4: GREY(i>>4); GREY(i&0xf); break; case 8: case 16: GREY(i); break; } #undef GREY } return (1); } /* * Construct a mapping table to convert from the range * of the data samples to [0,255] --for display. This * process also handles inverting B&W images when needed. */ static int setupMap(TIFFRGBAImage* img) { int32 x, range; range = (int32)((1L<bitspersample)-1); /* treat 16 bit the same as eight bit */ if( img->bitspersample == 16 ) range = (int32) 255; img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); if (img->Map == NULL) { TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for photometric conversion table"); return (0); } if (img->photometric == PHOTOMETRIC_MINISWHITE) { for (x = 0; x <= range; x++) img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); } else { for (x = 0; x <= range; x++) img->Map[x] = (TIFFRGBValue) ((x * 255) / range); } if (img->bitspersample <= 16 && (img->photometric == PHOTOMETRIC_MINISBLACK || img->photometric == PHOTOMETRIC_MINISWHITE)) { /* * Use photometric mapping table to construct * unpacking tables for samples <= 8 bits. */ if (!makebwmap(img)) return (0); /* no longer need Map, free it */ _TIFFfree(img->Map); img->Map = NULL; } return (1); } static int checkcmap(TIFFRGBAImage* img) { uint16* r = img->redcmap; uint16* g = img->greencmap; uint16* b = img->bluecmap; long n = 1L<bitspersample; while (n-- > 0) if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) return (16); return (8); } static void cvtcmap(TIFFRGBAImage* img) { uint16* r = img->redcmap; uint16* g = img->greencmap; uint16* b = img->bluecmap; long i; for (i = (1L<bitspersample)-1; i >= 0; i--) { #define CVT(x) ((uint16)((x)>>8)) r[i] = CVT(r[i]); g[i] = CVT(g[i]); b[i] = CVT(b[i]); #undef CVT } } /* * Palette images with <= 8 bits/sample are handled * with a table to avoid lots of shifts and masks. The table * is setup so that put*cmaptile (below) can retrieve 8/bitspersample * pixel values simply by indexing into the table with one * number. */ static int makecmap(TIFFRGBAImage* img) { int bitspersample = img->bitspersample; int nsamples = 8 / bitspersample; uint16* r = img->redcmap; uint16* g = img->greencmap; uint16* b = img->bluecmap; uint32 *p; int i; img->PALmap = (uint32**) _TIFFmalloc( 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); if (img->PALmap == NULL) { TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table"); return (0); } p = (uint32*)(img->PALmap + 256); for (i = 0; i < 256; i++) { TIFFRGBValue c; img->PALmap[i] = p; #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); switch (bitspersample) { case 1: CMAP(i>>7); CMAP((i>>6)&1); CMAP((i>>5)&1); CMAP((i>>4)&1); CMAP((i>>3)&1); CMAP((i>>2)&1); CMAP((i>>1)&1); CMAP(i&1); break; case 2: CMAP(i>>6); CMAP((i>>4)&3); CMAP((i>>2)&3); CMAP(i&3); break; case 4: CMAP(i>>4); CMAP(i&0xf); break; case 8: CMAP(i); break; } #undef CMAP } return (1); } /* * Construct any mapping table used * by the associated put routine. */ static int buildMap(TIFFRGBAImage* img) { switch (img->photometric) { case PHOTOMETRIC_RGB: case PHOTOMETRIC_YCBCR: case PHOTOMETRIC_SEPARATED: if (img->bitspersample == 8) break; /* fall through... */ case PHOTOMETRIC_MINISBLACK: case PHOTOMETRIC_MINISWHITE: if (!setupMap(img)) return (0); break; case PHOTOMETRIC_PALETTE: /* * Convert 16-bit colormap to 8-bit (unless it looks * like an old-style 8-bit colormap). */ if (checkcmap(img) == 16) cvtcmap(img); else TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap"); /* * Use mapping table and colormap to construct * unpacking tables for samples < 8 bits. */ if (img->bitspersample <= 8 && !makecmap(img)) return (0); break; } return (1); } /* * Select the appropriate conversion routine for packed data. */ static int PickContigCase(TIFFRGBAImage* img) { img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig; img->put.contig = NULL; switch (img->photometric) { case PHOTOMETRIC_RGB: switch (img->bitspersample) { case 8: if (img->alpha == EXTRASAMPLE_ASSOCALPHA && img->samplesperpixel >= 4) img->put.contig = putRGBAAcontig8bittile; else if (img->alpha == EXTRASAMPLE_UNASSALPHA && img->samplesperpixel >= 4) { if (BuildMapUaToAa(img)) img->put.contig = putRGBUAcontig8bittile; } else if( img->samplesperpixel >= 3 ) img->put.contig = putRGBcontig8bittile; break; case 16: if (img->alpha == EXTRASAMPLE_ASSOCALPHA && img->samplesperpixel >=4 ) { if (BuildMapBitdepth16To8(img)) img->put.contig = putRGBAAcontig16bittile; } else if (img->alpha == EXTRASAMPLE_UNASSALPHA && img->samplesperpixel >=4 ) { if (BuildMapBitdepth16To8(img) && BuildMapUaToAa(img)) img->put.contig = putRGBUAcontig16bittile; } else if( img->samplesperpixel >=3 ) { if (BuildMapBitdepth16To8(img)) img->put.contig = putRGBcontig16bittile; } break; } break; case PHOTOMETRIC_SEPARATED: if (img->samplesperpixel >=4 && buildMap(img)) { if (img->bitspersample == 8) { if (!img->Map) img->put.contig = putRGBcontig8bitCMYKtile; else img->put.contig = putRGBcontig8bitCMYKMaptile; } } break; case PHOTOMETRIC_PALETTE: if (buildMap(img)) { switch (img->bitspersample) { case 8: img->put.contig = put8bitcmaptile; break; case 4: img->put.contig = put4bitcmaptile; break; case 2: img->put.contig = put2bitcmaptile; break; case 1: img->put.contig = put1bitcmaptile; break; } } break; case PHOTOMETRIC_MINISWHITE: case PHOTOMETRIC_MINISBLACK: if (buildMap(img)) { switch (img->bitspersample) { case 16: img->put.contig = put16bitbwtile; break; case 8: if (img->alpha && img->samplesperpixel == 2) img->put.contig = putagreytile; else img->put.contig = putgreytile; break; case 4: img->put.contig = put4bitbwtile; break; case 2: img->put.contig = put2bitbwtile; break; case 1: img->put.contig = put1bitbwtile; break; } } break; case PHOTOMETRIC_YCBCR: if ((img->bitspersample==8) && (img->samplesperpixel==3)) { if (initYCbCrConversion(img)!=0) { /* * The 6.0 spec says that subsampling must be * one of 1, 2, or 4, and that vertical subsampling * must always be <= horizontal subsampling; so * there are only a few possibilities and we just * enumerate the cases. * Joris: added support for the [1,2] case, nonetheless, to accommodate * some OJPEG files */ uint16 SubsamplingHor; uint16 SubsamplingVer; TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer); switch ((SubsamplingHor<<4)|SubsamplingVer) { case 0x44: img->put.contig = putcontig8bitYCbCr44tile; break; case 0x42: img->put.contig = putcontig8bitYCbCr42tile; break; case 0x41: img->put.contig = putcontig8bitYCbCr41tile; break; case 0x22: img->put.contig = putcontig8bitYCbCr22tile; break; case 0x21: img->put.contig = putcontig8bitYCbCr21tile; break; case 0x12: img->put.contig = putcontig8bitYCbCr12tile; break; case 0x11: img->put.contig = putcontig8bitYCbCr11tile; break; } } } break; case PHOTOMETRIC_CIELAB: if (img->samplesperpixel == 3 && buildMap(img)) { if (img->bitspersample == 8) img->put.contig = initCIELabConversion(img); break; } } return ((img->get!=NULL) && (img->put.contig!=NULL)); } /* * Select the appropriate conversion routine for unpacked data. * * NB: we assume that unpacked single channel data is directed * to the "packed routines. */ static int PickSeparateCase(TIFFRGBAImage* img) { img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate; img->put.separate = NULL; switch (img->photometric) { case PHOTOMETRIC_MINISWHITE: case PHOTOMETRIC_MINISBLACK: /* greyscale images processed pretty much as RGB by gtTileSeparate */ case PHOTOMETRIC_RGB: switch (img->bitspersample) { case 8: if (img->alpha == EXTRASAMPLE_ASSOCALPHA) img->put.separate = putRGBAAseparate8bittile; else if (img->alpha == EXTRASAMPLE_UNASSALPHA) { if (BuildMapUaToAa(img)) img->put.separate = putRGBUAseparate8bittile; } else img->put.separate = putRGBseparate8bittile; break; case 16: if (img->alpha == EXTRASAMPLE_ASSOCALPHA) { if (BuildMapBitdepth16To8(img)) img->put.separate = putRGBAAseparate16bittile; } else if (img->alpha == EXTRASAMPLE_UNASSALPHA) { if (BuildMapBitdepth16To8(img) && BuildMapUaToAa(img)) img->put.separate = putRGBUAseparate16bittile; } else { if (BuildMapBitdepth16To8(img)) img->put.separate = putRGBseparate16bittile; } break; } break; case PHOTOMETRIC_SEPARATED: if (img->bitspersample == 8 && img->samplesperpixel == 4) { img->alpha = 1; // Not alpha, but seems like the only way to get 4th band img->put.separate = putCMYKseparate8bittile; } break; case PHOTOMETRIC_YCBCR: if ((img->bitspersample==8) && (img->samplesperpixel==3)) { if (initYCbCrConversion(img)!=0) { uint16 hs, vs; TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); switch ((hs<<4)|vs) { case 0x11: img->put.separate = putseparate8bitYCbCr11tile; break; /* TODO: add other cases here */ } } } break; } return ((img->get!=NULL) && (img->put.separate!=NULL)); } static int BuildMapUaToAa(TIFFRGBAImage* img) { static const char module[]="BuildMapUaToAa"; uint8* m; uint16 na,nv; assert(img->UaToAa==NULL); img->UaToAa=_TIFFmalloc(65536); if (img->UaToAa==NULL) { TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); return(0); } m=img->UaToAa; for (na=0; na<256; na++) { for (nv=0; nv<256; nv++) *m++=(uint8)((nv*na+127)/255); } return(1); } static int BuildMapBitdepth16To8(TIFFRGBAImage* img) { static const char module[]="BuildMapBitdepth16To8"; uint8* m; uint32 n; assert(img->Bitdepth16To8==NULL); img->Bitdepth16To8=_TIFFmalloc(65536); if (img->Bitdepth16To8==NULL) { TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); return(0); } m=img->Bitdepth16To8; for (n=0; n<65536; n++) *m++=(uint8)((n+128)/257); return(1); } /* * Read a whole strip off data from the file, and convert to RGBA form. * If this is the last strip, then it will only contain the portion of * the strip that is actually within the image space. The result is * organized in bottom to top form. */ int TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) { return TIFFReadRGBAStripExt(tif, row, raster, 0 ); } int TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error) { char emsg[1024] = ""; TIFFRGBAImage img; int ok; uint32 rowsperstrip, rows_to_read; if( TIFFIsTiled( tif ) ) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Can't use TIFFReadRGBAStrip() with tiled file."); return (0); } TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); if( (row % rowsperstrip) != 0 ) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Row passed to TIFFReadRGBAStrip() must be first in a strip."); return (0); } if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) { img.row_offset = row; img.col_offset = 0; if( row + rowsperstrip > img.height ) rows_to_read = img.height - row; else rows_to_read = rowsperstrip; ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); TIFFRGBAImageEnd(&img); } else { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); ok = 0; } return (ok); } /* * Read a whole tile off data from the file, and convert to RGBA form. * The returned RGBA data is organized from bottom to top of tile, * and may include zeroed areas if the tile extends off the image. */ int TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) { return TIFFReadRGBATileExt(tif, col, row, raster, 0 ); } int TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error ) { char emsg[1024] = ""; TIFFRGBAImage img; int ok; uint32 tile_xsize, tile_ysize; uint32 read_xsize, read_ysize; uint32 i_row; /* * Verify that our request is legal - on a tile file, and on a * tile boundary. */ if( !TIFFIsTiled( tif ) ) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Can't use TIFFReadRGBATile() with stripped file."); return (0); } TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Row/col passed to TIFFReadRGBATile() must be top" "left corner of a tile."); return (0); } /* * Setup the RGBA reader. */ if (!TIFFRGBAImageOK(tif, emsg) || !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) { TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); return( 0 ); } /* * The TIFFRGBAImageGet() function doesn't allow us to get off the * edge of the image, even to fill an otherwise valid tile. So we * figure out how much we can read, and fix up the tile buffer to * a full tile configuration afterwards. */ if( row + tile_ysize > img.height ) read_ysize = img.height - row; else read_ysize = tile_ysize; if( col + tile_xsize > img.width ) read_xsize = img.width - col; else read_xsize = tile_xsize; /* * Read the chunk of imagery. */ img.row_offset = row; img.col_offset = col; ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); TIFFRGBAImageEnd(&img); /* * If our read was incomplete we will need to fix up the tile by * shifting the data around as if a full tile of data is being returned. * * This is all the more complicated because the image is organized in * bottom to top format. */ if( read_xsize == tile_xsize && read_ysize == tile_ysize ) return( ok ); for( i_row = 0; i_row < read_ysize; i_row++ ) { memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, raster + (read_ysize - i_row - 1) * read_xsize, read_xsize * sizeof(uint32) ); _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, 0, sizeof(uint32) * (tile_xsize - read_xsize) ); } for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, 0, sizeof(uint32) * tile_xsize ); } return (ok); } /* vim: set ts=8 sts=8 sw=8 noet: */ /* * Local Variables: * mode: c * c-basic-offset: 8 * fill-column: 78 * End: */