/* * Copyright © 2007, 2008 Ryan Lortie * Copyright © 2010 Codethink Limited * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * * Author: Ryan Lortie */ /* Prologue {{{1 */ #include "config.h" #include "gvariant-serialiser.h" #include #include #include #include /* GVariantSerialiser * * After this prologue section, this file has roughly 2 parts. * * The first part is split up into sections according to various * container types. Maybe, Array, Tuple, Variant. The Maybe and Array * sections are subdivided for element types being fixed or * variable-sized types. * * Each section documents the format of that particular type of * container and implements 5 functions for dealing with it: * * n_children: * - determines (according to serialised data) how many child values * are inside a particular container value. * * get_child: * - gets the type of and the serialised data corresponding to a * given child value within the container value. * * needed_size: * - determines how much space would be required to serialise a * container of this type, containing the given children so that * buffers can be preallocated before serialising. * * serialise: * - write the serialised data for a container of this type, * containing the given children, to a buffer. * * is_normal: * - check the given data to ensure that it is in normal form. For a * given set of child values, there is exactly one normal form for * the serialised data of a container. Other forms are possible * while maintaining the same children (for example, by inserting * something other than zero bytes as padding) but only one form is * the normal form. * * The second part contains the main entry point for each of the above 5 * functions and logic to dispatch it to the handler for the appropriate * container type code. * * The second part also contains a routine to byteswap serialised * values. This code makes use of the n_children() and get_child() * functions above to do its work so no extra support is needed on a * per-container-type basis. * * There is also additional code for checking for normal form. All * numeric types are always in normal form since the full range of * values is permitted (eg: 0 to 255 is a valid byte). Special checks * need to be performed for booleans (only 0 or 1 allowed), strings * (properly nul-terminated) and object paths and signature strings * (meeting the D-Bus specification requirements). */ /* < private > * GVariantSerialised: * @type_info: the #GVariantTypeInfo of this value * @data: (nullable): the serialised data of this value, or %NULL * @size: the size of this value * * A structure representing a GVariant in serialised form. This * structure is used with #GVariantSerialisedFiller functions and as the * primary interface to the serialiser. See #GVariantSerialisedFiller * for a description of its use there. * * When used with the serialiser API functions, the following invariants * apply to all #GVariantTypeSerialised structures passed to and * returned from the serialiser. * * @type_info must be non-%NULL. * * @data must be properly aligned for the type described by @type_info. * * If @type_info describes a fixed-sized type then @size must always be * equal to the fixed size of that type. * * For fixed-sized types (and only fixed-sized types), @data may be * %NULL even if @size is non-zero. This happens when a framing error * occurs while attempting to extract a fixed-sized value out of a * variable-sized container. There is no data to return for the * fixed-sized type, yet @size must be non-zero. The effect of this * combination should be as if @data were a pointer to an * appropriately-sized zero-filled region. */ /* < private > * g_variant_serialised_check: * @serialised: a #GVariantSerialised struct * * Checks @serialised for validity according to the invariants described * above. */ static void g_variant_serialised_check (GVariantSerialised serialised) { gsize fixed_size; guint alignment; g_assert (serialised.type_info != NULL); g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size); if (fixed_size) g_assert_cmpint (serialised.size, ==, fixed_size); else g_assert (serialised.size == 0 || serialised.data != NULL); /* Depending on the native alignment requirements of the machine, the * compiler will insert either 3 or 7 padding bytes after the char. * This will result in the sizeof() the struct being 12 or 16. * Subtract 9 to get 3 or 7 which is a nice bitmask to apply to get * the alignment bits that we "care about" being zero: in the * 4-aligned case, we care about 2 bits, and in the 8-aligned case, we * care about 3 bits. */ alignment &= sizeof (struct { char a; union { guint64 x; void *y; gdouble z; } b; } ) - 9; /* Some OSes (FreeBSD is a known example) have a malloc() that returns * unaligned memory if you request small sizes. 'malloc (1);', for * example, has been seen to return pointers aligned to 6 mod 16. * * Check if this is a small allocation and return without enforcing * the alignment assertion if this is the case. */ if (serialised.size <= alignment) return; g_assert_cmpint (alignment & (gsize) serialised.data, ==, 0); } /* < private > * GVariantSerialisedFiller: * @serialised: a #GVariantSerialised instance to fill * @data: data from the children array * * This function is called back from g_variant_serialiser_needed_size() * and g_variant_serialiser_serialise(). It fills in missing details * from a partially-complete #GVariantSerialised. * * The @data parameter passed back to the function is one of the items * that was passed to the serialiser in the @children array. It * represents a single child item of the container that is being * serialised. The information filled in to @serialised is the * information for this child. * * If the @type_info field of @serialised is %NULL then the callback * function must set it to the type information corresponding to the * type of the child. No reference should be added. If it is non-%NULL * then the callback should assert that it is equal to the actual type * of the child. * * If the @size field is zero then the callback must fill it in with the * required amount of space to store the serialised form of the child. * If it is non-zero then the callback should assert that it is equal to * the needed size of the child. * * If @data is non-%NULL then it points to a space that is properly * aligned for and large enough to store the serialised data of the * child. The callback must store the serialised form of the child at * @data. * * If the child value is another container then the callback will likely * recurse back into the serialiser by calling * g_variant_serialiser_needed_size() to determine @size and * g_variant_serialiser_serialise() to write to @data. */ /* PART 1: Container types {{{1 * * This section contains the serialiser implementation functions for * each container type. */ /* Maybe {{{2 * * Maybe types are handled depending on if the element type of the maybe * type is a fixed-sized or variable-sized type. Although all maybe * types themselves are variable-sized types, herein, a maybe value with * a fixed-sized element type is called a "fixed-sized maybe" for * convenience and a maybe value with a variable-sized element type is * called a "variable-sized maybe". */ /* Fixed-sized Maybe {{{3 * * The size of a maybe value with a fixed-sized element type is either 0 * or equal to the fixed size of its element type. The case where the * size of the maybe value is zero corresponds to the "Nothing" case and * the case where the size of the maybe value is equal to the fixed size * of the element type corresponds to the "Just" case; in that case, the * serialised data of the child value forms the entire serialised data * of the maybe value. * * In the event that a fixed-sized maybe value is presented with a size * that is not equal to the fixed size of the element type then the * value must be taken to be "Nothing". */ static gsize gvs_fixed_sized_maybe_n_children (GVariantSerialised value) { gsize element_fixed_size; g_variant_type_info_query_element (value.type_info, NULL, &element_fixed_size); return (element_fixed_size == value.size) ? 1 : 0; } static GVariantSerialised gvs_fixed_sized_maybe_get_child (GVariantSerialised value, gsize index_) { /* the child has the same bounds as the * container, so just update the type. */ value.type_info = g_variant_type_info_element (value.type_info); g_variant_type_info_ref (value.type_info); return value; } static gsize gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo *type_info, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { if (n_children) { gsize element_fixed_size; g_variant_type_info_query_element (type_info, NULL, &element_fixed_size); return element_fixed_size; } else return 0; } static void gvs_fixed_sized_maybe_serialise (GVariantSerialised value, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { if (n_children) { GVariantSerialised child = { NULL, value.data, value.size }; gvs_filler (&child, children[0]); } } static gboolean gvs_fixed_sized_maybe_is_normal (GVariantSerialised value) { if (value.size > 0) { gsize element_fixed_size; g_variant_type_info_query_element (value.type_info, NULL, &element_fixed_size); if (value.size != element_fixed_size) return FALSE; /* proper element size: "Just". recurse to the child. */ value.type_info = g_variant_type_info_element (value.type_info); return g_variant_serialised_is_normal (value); } /* size of 0: "Nothing" */ return TRUE; } /* Variable-sized Maybe * * The size of a maybe value with a variable-sized element type is * either 0 or strictly greater than 0. The case where the size of the * maybe value is zero corresponds to the "Nothing" case and the case * where the size of the maybe value is greater than zero corresponds to * the "Just" case; in that case, the serialised data of the child value * forms the first part of the serialised data of the maybe value and is * followed by a single zero byte. This zero byte is always appended, * regardless of any zero bytes that may already be at the end of the * serialised ata of the child value. */ static gsize gvs_variable_sized_maybe_n_children (GVariantSerialised value) { return (value.size > 0) ? 1 : 0; } static GVariantSerialised gvs_variable_sized_maybe_get_child (GVariantSerialised value, gsize index_) { /* remove the padding byte and update the type. */ value.type_info = g_variant_type_info_element (value.type_info); g_variant_type_info_ref (value.type_info); value.size--; /* if it's zero-sized then it may as well be NULL */ if (value.size == 0) value.data = NULL; return value; } static gsize gvs_variable_sized_maybe_needed_size (GVariantTypeInfo *type_info, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { if (n_children) { GVariantSerialised child = { 0, }; gvs_filler (&child, children[0]); return child.size + 1; } else return 0; } static void gvs_variable_sized_maybe_serialise (GVariantSerialised value, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { if (n_children) { GVariantSerialised child = { NULL, value.data, value.size - 1 }; /* write the data for the child. */ gvs_filler (&child, children[0]); value.data[child.size] = '\0'; } } static gboolean gvs_variable_sized_maybe_is_normal (GVariantSerialised value) { if (value.size == 0) return TRUE; if (value.data[value.size - 1] != '\0') return FALSE; value.type_info = g_variant_type_info_element (value.type_info); value.size--; return g_variant_serialised_is_normal (value); } /* Arrays {{{2 * * Just as with maybe types, array types are handled depending on if the * element type of the array type is a fixed-sized or variable-sized * type. Similar to maybe types, for convenience, an array value with a * fixed-sized element type is called a "fixed-sized array" and an array * value with a variable-sized element type is called a "variable sized * array". */ /* Fixed-sized Array {{{3 * * For fixed sized arrays, the serialised data is simply a concatenation * of the serialised data of each element, in order. Since fixed-sized * values always have a fixed size that is a multiple of their alignment * requirement no extra padding is required. * * In the event that a fixed-sized array is presented with a size that * is not an integer multiple of the element size then the value of the * array must be taken as being empty. */ static gsize gvs_fixed_sized_array_n_children (GVariantSerialised value) { gsize element_fixed_size; g_variant_type_info_query_element (value.type_info, NULL, &element_fixed_size); if (value.size % element_fixed_size == 0) return value.size / element_fixed_size; return 0; } static GVariantSerialised gvs_fixed_sized_array_get_child (GVariantSerialised value, gsize index_) { GVariantSerialised child = { 0, }; child.type_info = g_variant_type_info_element (value.type_info); g_variant_type_info_query (child.type_info, NULL, &child.size); child.data = value.data + (child.size * index_); g_variant_type_info_ref (child.type_info); return child; } static gsize gvs_fixed_sized_array_needed_size (GVariantTypeInfo *type_info, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { gsize element_fixed_size; g_variant_type_info_query_element (type_info, NULL, &element_fixed_size); return element_fixed_size * n_children; } static void gvs_fixed_sized_array_serialise (GVariantSerialised value, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { GVariantSerialised child = { 0, }; gsize i; child.type_info = g_variant_type_info_element (value.type_info); g_variant_type_info_query (child.type_info, NULL, &child.size); child.data = value.data; for (i = 0; i < n_children; i++) { gvs_filler (&child, children[i]); child.data += child.size; } } static gboolean gvs_fixed_sized_array_is_normal (GVariantSerialised value) { GVariantSerialised child = { 0, }; child.type_info = g_variant_type_info_element (value.type_info); g_variant_type_info_query (child.type_info, NULL, &child.size); if (value.size % child.size != 0) return FALSE; for (child.data = value.data; child.data < value.data + value.size; child.data += child.size) { if (!g_variant_serialised_is_normal (child)) return FALSE; } return TRUE; } /* Variable-sized Array {{{3 * * Variable sized arrays, containing variable-sized elements, must be * able to determine the boundaries between the elements. The items * cannot simply be concatenated. Additionally, we are faced with the * fact that non-fixed-sized values do not necessarily have a size that * is a multiple of their alignment requirement, so we may need to * insert zero-filled padding. * * While it is possible to find the start of an item by starting from * the end of the item before it and padding for alignment, it is not * generally possible to do the reverse operation. For this reason, we * record the end point of each element in the array. * * GVariant works in terms of "offsets". An offset is a pointer to a * boundary between two bytes. In 4 bytes of serialised data, there * would be 5 possible offsets: one at the start ('0'), one between each * pair of adjacent bytes ('1', '2', '3') and one at the end ('4'). * * The numeric value of an offset is an unsigned integer given relative * to the start of the serialised data of the array. Offsets are always * stored in little endian byte order and are always only as big as they * need to be. For example, in 255 bytes of serialised data, there are * 256 offsets. All possibilities can be stored in an 8 bit unsigned * integer. In 256 bytes of serialised data, however, there are 257 * possible offsets so 16 bit integers must be used. The size of an * offset is always a power of 2. * * The offsets are stored at the end of the serialised data of the * array. They are simply concatenated on without any particular * alignment. The size of the offsets is included in the size of the * serialised data for purposes of determining the size of the offsets. * This presents a possibly ambiguity; in certain cases, a particular * value of array could have two different serialised forms. * * Imagine an array containing a single string of 253 bytes in length * (so, 254 bytes including the nul terminator). Now the offset must be * written. If an 8 bit offset is written, it will bring the size of * the array's serialised data to 255 -- which means that the use of an * 8 bit offset was valid. If a 16 bit offset is used then the total * size of the array will be 256 -- which means that the use of a 16 bit * offset was valid. Although both of these will be accepted by the * deserialiser, only the smaller of the two is considered to be in * normal form and that is the one that the serialiser must produce. */ /* bytes may be NULL if (size == 0). */ static inline gsize gvs_read_unaligned_le (guchar *bytes, guint size) { union { guchar bytes[GLIB_SIZEOF_SIZE_T]; gsize integer; } tmpvalue; tmpvalue.integer = 0; if (bytes != NULL) memcpy (&tmpvalue.bytes, bytes, size); return GSIZE_FROM_LE (tmpvalue.integer); } static inline void gvs_write_unaligned_le (guchar *bytes, gsize value, guint size) { union { guchar bytes[GLIB_SIZEOF_SIZE_T]; gsize integer; } tmpvalue; tmpvalue.integer = GSIZE_TO_LE (value); memcpy (bytes, &tmpvalue.bytes, size); } static guint gvs_get_offset_size (gsize size) { if (size > G_MAXUINT32) return 8; else if (size > G_MAXUINT16) return 4; else if (size > G_MAXUINT8) return 2; else if (size > 0) return 1; return 0; } static gsize gvs_calculate_total_size (gsize body_size, gsize offsets) { if (body_size + 1 * offsets <= G_MAXUINT8) return body_size + 1 * offsets; if (body_size + 2 * offsets <= G_MAXUINT16) return body_size + 2 * offsets; if (body_size + 4 * offsets <= G_MAXUINT32) return body_size + 4 * offsets; return body_size + 8 * offsets; } static gsize gvs_variable_sized_array_n_children (GVariantSerialised value) { gsize offsets_array_size; gsize offset_size; gsize last_end; if (value.size == 0) return 0; offset_size = gvs_get_offset_size (value.size); last_end = gvs_read_unaligned_le (value.data + value.size - offset_size, offset_size); if (last_end > value.size) return 0; offsets_array_size = value.size - last_end; if (offsets_array_size % offset_size) return 0; return offsets_array_size / offset_size; } static GVariantSerialised gvs_variable_sized_array_get_child (GVariantSerialised value, gsize index_) { GVariantSerialised child = { 0, }; gsize offset_size; gsize last_end; gsize start; gsize end; child.type_info = g_variant_type_info_element (value.type_info); g_variant_type_info_ref (child.type_info); offset_size = gvs_get_offset_size (value.size); last_end = gvs_read_unaligned_le (value.data + value.size - offset_size, offset_size); if (index_ > 0) { guint alignment; start = gvs_read_unaligned_le (value.data + last_end + (offset_size * (index_ - 1)), offset_size); g_variant_type_info_query (child.type_info, &alignment, NULL); start += (-start) & alignment; } else start = 0; end = gvs_read_unaligned_le (value.data + last_end + (offset_size * index_), offset_size); if (start < end && end <= value.size) { child.data = value.data + start; child.size = end - start; } return child; } static gsize gvs_variable_sized_array_needed_size (GVariantTypeInfo *type_info, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { guint alignment; gsize offset; gsize i; g_variant_type_info_query (type_info, &alignment, NULL); offset = 0; for (i = 0; i < n_children; i++) { GVariantSerialised child = { 0, }; offset += (-offset) & alignment; gvs_filler (&child, children[i]); offset += child.size; } return gvs_calculate_total_size (offset, n_children); } static void gvs_variable_sized_array_serialise (GVariantSerialised value, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { guchar *offset_ptr; gsize offset_size; guint alignment; gsize offset; gsize i; g_variant_type_info_query (value.type_info, &alignment, NULL); offset_size = gvs_get_offset_size (value.size); offset = 0; offset_ptr = value.data + value.size - offset_size * n_children; for (i = 0; i < n_children; i++) { GVariantSerialised child = { 0, }; while (offset & alignment) value.data[offset++] = '\0'; child.data = value.data + offset; gvs_filler (&child, children[i]); offset += child.size; gvs_write_unaligned_le (offset_ptr, offset, offset_size); offset_ptr += offset_size; } } static gboolean gvs_variable_sized_array_is_normal (GVariantSerialised value) { GVariantSerialised child = { 0, }; gsize offsets_array_size; guchar *offsets_array; guint offset_size; guint alignment; gsize last_end; gsize length; gsize offset; gsize i; if (value.size == 0) return TRUE; offset_size = gvs_get_offset_size (value.size); last_end = gvs_read_unaligned_le (value.data + value.size - offset_size, offset_size); if (last_end > value.size) return FALSE; offsets_array_size = value.size - last_end; if (offsets_array_size % offset_size) return FALSE; offsets_array = value.data + value.size - offsets_array_size; length = offsets_array_size / offset_size; if (length == 0) return FALSE; child.type_info = g_variant_type_info_element (value.type_info); g_variant_type_info_query (child.type_info, &alignment, NULL); offset = 0; for (i = 0; i < length; i++) { gsize this_end; this_end = gvs_read_unaligned_le (offsets_array + offset_size * i, offset_size); if (this_end < offset || this_end > last_end) return FALSE; while (offset & alignment) { if (!(offset < this_end && value.data[offset] == '\0')) return FALSE; offset++; } child.data = value.data + offset; child.size = this_end - offset; if (child.size == 0) child.data = NULL; if (!g_variant_serialised_is_normal (child)) return FALSE; offset = this_end; } g_assert (offset == last_end); return TRUE; } /* Tuples {{{2 * * Since tuples can contain a mix of variable- and fixed-sized items, * they are, in terms of serialisation, a hybrid of variable-sized and * fixed-sized arrays. * * Offsets are only stored for variable-sized items. Also, since the * number of items in a tuple is known from its type, we are able to * know exactly how many offsets to expect in the serialised data (and * therefore how much space is taken up by the offset array). This * means that we know where the end of the serialised data for the last * item is -- we can just subtract the size of the offset array from the * total size of the tuple. For this reason, the last item in the tuple * doesn't need an offset stored. * * Tuple offsets are stored in reverse. This design choice allows * iterator-based deserialisers to be more efficient. * * Most of the "heavy lifting" here is handled by the GVariantTypeInfo * for the tuple. See the notes in gvarianttypeinfo.h. */ static gsize gvs_tuple_n_children (GVariantSerialised value) { return g_variant_type_info_n_members (value.type_info); } static GVariantSerialised gvs_tuple_get_child (GVariantSerialised value, gsize index_) { const GVariantMemberInfo *member_info; GVariantSerialised child = { 0, }; gsize offset_size; gsize start, end; member_info = g_variant_type_info_member_info (value.type_info, index_); child.type_info = g_variant_type_info_ref (member_info->type_info); offset_size = gvs_get_offset_size (value.size); /* tuples are the only (potentially) fixed-sized containers, so the * only ones that have to deal with the possibility of having %NULL * data with a non-zero %size if errors occurred elsewhere. */ if G_UNLIKELY (value.data == NULL && value.size != 0) { g_variant_type_info_query (child.type_info, NULL, &child.size); /* this can only happen in fixed-sized tuples, * so the child must also be fixed sized. */ g_assert (child.size != 0); child.data = NULL; return child; } if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET) { if (offset_size * (member_info->i + 2) > value.size) return child; } else { if (offset_size * (member_info->i + 1) > value.size) { /* if the child is fixed size, return its size. * if child is not fixed-sized, return size = 0. */ g_variant_type_info_query (child.type_info, NULL, &child.size); return child; } } if (member_info->i + 1) start = gvs_read_unaligned_le (value.data + value.size - offset_size * (member_info->i + 1), offset_size); else start = 0; start += member_info->a; start &= member_info->b; start |= member_info->c; if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST) end = value.size - offset_size * (member_info->i + 1); else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED) { gsize fixed_size; g_variant_type_info_query (child.type_info, NULL, &fixed_size); end = start + fixed_size; child.size = fixed_size; } else /* G_VARIANT_MEMBER_ENDING_OFFSET */ end = gvs_read_unaligned_le (value.data + value.size - offset_size * (member_info->i + 2), offset_size); if (start < end && end <= value.size) { child.data = value.data + start; child.size = end - start; } return child; } static gsize gvs_tuple_needed_size (GVariantTypeInfo *type_info, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { const GVariantMemberInfo *member_info = NULL; gsize fixed_size; gsize offset; gsize i; g_variant_type_info_query (type_info, NULL, &fixed_size); if (fixed_size) return fixed_size; offset = 0; for (i = 0; i < n_children; i++) { guint alignment; member_info = g_variant_type_info_member_info (type_info, i); g_variant_type_info_query (member_info->type_info, &alignment, &fixed_size); offset += (-offset) & alignment; if (fixed_size) offset += fixed_size; else { GVariantSerialised child = { 0, }; gvs_filler (&child, children[i]); offset += child.size; } } return gvs_calculate_total_size (offset, member_info->i + 1); } static void gvs_tuple_serialise (GVariantSerialised value, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { gsize offset_size; gsize offset; gsize i; offset_size = gvs_get_offset_size (value.size); offset = 0; for (i = 0; i < n_children; i++) { const GVariantMemberInfo *member_info; GVariantSerialised child = { 0, }; guint alignment; member_info = g_variant_type_info_member_info (value.type_info, i); g_variant_type_info_query (member_info->type_info, &alignment, NULL); while (offset & alignment) value.data[offset++] = '\0'; child.data = value.data + offset; gvs_filler (&child, children[i]); offset += child.size; if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET) { value.size -= offset_size; gvs_write_unaligned_le (value.data + value.size, offset, offset_size); } } while (offset < value.size) value.data[offset++] = '\0'; } static gboolean gvs_tuple_is_normal (GVariantSerialised value) { guint offset_size; gsize offset_ptr; gsize length; gsize offset; gsize i; /* as per the comment in gvs_tuple_get_child() */ if G_UNLIKELY (value.data == NULL && value.size != 0) return FALSE; offset_size = gvs_get_offset_size (value.size); length = g_variant_type_info_n_members (value.type_info); offset_ptr = value.size; offset = 0; for (i = 0; i < length; i++) { const GVariantMemberInfo *member_info; GVariantSerialised child; gsize fixed_size; guint alignment; gsize end; member_info = g_variant_type_info_member_info (value.type_info, i); child.type_info = member_info->type_info; g_variant_type_info_query (child.type_info, &alignment, &fixed_size); while (offset & alignment) { if (offset > value.size || value.data[offset] != '\0') return FALSE; offset++; } child.data = value.data + offset; switch (member_info->ending_type) { case G_VARIANT_MEMBER_ENDING_FIXED: end = offset + fixed_size; break; case G_VARIANT_MEMBER_ENDING_LAST: end = offset_ptr; break; case G_VARIANT_MEMBER_ENDING_OFFSET: offset_ptr -= offset_size; if (offset_ptr < offset) return FALSE; end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size); break; default: g_assert_not_reached (); } if (end < offset || end > offset_ptr) return FALSE; child.size = end - offset; if (child.size == 0) child.data = NULL; if (!g_variant_serialised_is_normal (child)) return FALSE; offset = end; } { gsize fixed_size; guint alignment; g_variant_type_info_query (value.type_info, &alignment, &fixed_size); if (fixed_size) { g_assert (fixed_size == value.size); g_assert (offset_ptr == value.size); if (i == 0) { if (value.data[offset++] != '\0') return FALSE; } else { while (offset & alignment) if (value.data[offset++] != '\0') return FALSE; } g_assert (offset == value.size); } } return offset_ptr == offset; } /* Variants {{{2 * * Variants are stored by storing the serialised data of the child, * followed by a '\0' character, followed by the type string of the * child. * * In the case that a value is presented that contains no '\0' * character, or doesn't have a single well-formed definite type string * following that character, the variant must be taken as containing the * unit tuple: (). */ static inline gsize gvs_variant_n_children (GVariantSerialised value) { return 1; } static inline GVariantSerialised gvs_variant_get_child (GVariantSerialised value, gsize index_) { GVariantSerialised child = { 0, }; /* NOTE: not O(1) and impossible for it to be... */ if (value.size) { /* find '\0' character */ for (child.size = value.size - 1; child.size; child.size--) if (value.data[child.size] == '\0') break; /* ensure we didn't just hit the start of the string */ if (value.data[child.size] == '\0') { const gchar *type_string = (gchar *) &value.data[child.size + 1]; const gchar *limit = (gchar *) &value.data[value.size]; const gchar *end; if (g_variant_type_string_scan (type_string, limit, &end) && end == limit) { const GVariantType *type = (GVariantType *) type_string; if (g_variant_type_is_definite (type)) { gsize fixed_size; child.type_info = g_variant_type_info_get (type); if (child.size != 0) /* only set to non-%NULL if size > 0 */ child.data = value.data; g_variant_type_info_query (child.type_info, NULL, &fixed_size); if (!fixed_size || fixed_size == child.size) return child; g_variant_type_info_unref (child.type_info); } } } } child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT); child.data = NULL; child.size = 1; return child; } static inline gsize gvs_variant_needed_size (GVariantTypeInfo *type_info, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { GVariantSerialised child = { 0, }; const gchar *type_string; gvs_filler (&child, children[0]); type_string = g_variant_type_info_get_type_string (child.type_info); return child.size + 1 + strlen (type_string); } static inline void gvs_variant_serialise (GVariantSerialised value, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { GVariantSerialised child = { 0, }; const gchar *type_string; child.data = value.data; gvs_filler (&child, children[0]); type_string = g_variant_type_info_get_type_string (child.type_info); value.data[child.size] = '\0'; memcpy (value.data + child.size + 1, type_string, strlen (type_string)); } static inline gboolean gvs_variant_is_normal (GVariantSerialised value) { GVariantSerialised child; gboolean normal; child = gvs_variant_get_child (value, 0); normal = (child.data != NULL || child.size == 0) && g_variant_serialised_is_normal (child); g_variant_type_info_unref (child.type_info); return normal; } /* PART 2: Serialiser API {{{1 * * This is the implementation of the API of the serialiser as advertised * in gvariant-serialiser.h. */ /* Dispatch Utilities {{{2 * * These macros allow a given function (for example, * g_variant_serialiser_serialise) to be dispatched to the appropriate * type-specific function above (fixed/variable-sized maybe, * fixed/variable-sized array, tuple or variant). */ #define DISPATCH_FIXED(type_info, before, after) \ { \ gsize fixed_size; \ \ g_variant_type_info_query_element (type_info, NULL, \ &fixed_size); \ \ if (fixed_size) \ { \ before ## fixed_sized ## after \ } \ else \ { \ before ## variable_sized ## after \ } \ } #define DISPATCH_CASES(type_info, before, after) \ switch (g_variant_type_info_get_type_char (type_info)) \ { \ case G_VARIANT_TYPE_INFO_CHAR_MAYBE: \ DISPATCH_FIXED (type_info, before, _maybe ## after) \ \ case G_VARIANT_TYPE_INFO_CHAR_ARRAY: \ DISPATCH_FIXED (type_info, before, _array ## after) \ \ case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY: \ case G_VARIANT_TYPE_INFO_CHAR_TUPLE: \ { \ before ## tuple ## after \ } \ \ case G_VARIANT_TYPE_INFO_CHAR_VARIANT: \ { \ before ## variant ## after \ } \ } /* Serialiser entry points {{{2 * * These are the functions that are called in order for the serialiser * to do its thing. */ /* < private > * g_variant_serialised_n_children: * @serialised: a #GVariantSerialised * * For serialised data that represents a container value (maybes, * tuples, arrays, variants), determine how many child items are inside * that container. * * Returns: the number of children */ gsize g_variant_serialised_n_children (GVariantSerialised serialised) { g_variant_serialised_check (serialised); DISPATCH_CASES (serialised.type_info, return gvs_/**/,/**/_n_children (serialised); ) g_assert_not_reached (); } /* < private > * g_variant_serialised_get_child: * @serialised: a #GVariantSerialised * @index_: the index of the child to fetch * * Extracts a child from a serialised data representing a container * value. * * It is an error to call this function with an index out of bounds. * * If the result .data == %NULL and .size > 0 then there has been an * error extracting the requested fixed-sized value. This number of * zero bytes needs to be allocated instead. * * In the case that .data == %NULL and .size == 0 then a zero-sized * item of a variable-sized type is being returned. * * .data is never non-%NULL if size is 0. * * Returns: a #GVariantSerialised for the child */ GVariantSerialised g_variant_serialised_get_child (GVariantSerialised serialised, gsize index_) { GVariantSerialised child; g_variant_serialised_check (serialised); if G_LIKELY (index_ < g_variant_serialised_n_children (serialised)) { DISPATCH_CASES (serialised.type_info, child = gvs_/**/,/**/_get_child (serialised, index_); g_assert (child.size || child.data == NULL); g_variant_serialised_check (child); return child; ) g_assert_not_reached (); } g_error ("Attempt to access item %"G_GSIZE_FORMAT " in a container with only %"G_GSIZE_FORMAT" items", index_, g_variant_serialised_n_children (serialised)); } /* < private > * g_variant_serialiser_serialise: * @serialised: a #GVariantSerialised, properly set up * @gvs_filler: the filler function * @children: an array of child items * @n_children: the size of @children * * Writes data in serialised form. * * The type_info field of @serialised must be filled in to type info for * the type that we are serialising. * * The size field of @serialised must be filled in with the value * returned by a previous call to g_variant_serialiser_needed_size(). * * The data field of @serialised must be a pointer to a properly-aligned * memory region large enough to serialise into (ie: at least as big as * the size field). * * This function is only resonsible for serialising the top-level * container. @gvs_filler is called on each child of the container in * order for all of the data of that child to be filled in. */ void g_variant_serialiser_serialise (GVariantSerialised serialised, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { g_variant_serialised_check (serialised); DISPATCH_CASES (serialised.type_info, gvs_/**/,/**/_serialise (serialised, gvs_filler, children, n_children); return; ) g_assert_not_reached (); } /* < private > * g_variant_serialiser_needed_size: * @type_info: the type to serialise for * @gvs_filler: the filler function * @children: an array of child items * @n_children: the size of @children * * Determines how much memory would be needed to serialise this value. * * This function is only resonsible for performing calculations for the * top-level container. @gvs_filler is called on each child of the * container in order to determine its size. */ gsize g_variant_serialiser_needed_size (GVariantTypeInfo *type_info, GVariantSerialisedFiller gvs_filler, const gpointer *children, gsize n_children) { DISPATCH_CASES (type_info, return gvs_/**/,/**/_needed_size (type_info, gvs_filler, children, n_children); ) g_assert_not_reached (); } /* Byteswapping {{{2 */ /* < private > * g_variant_serialised_byteswap: * @value: a #GVariantSerialised * * Byte-swap serialised data. The result of this function is only * well-defined if the data is in normal form. */ void g_variant_serialised_byteswap (GVariantSerialised serialised) { gsize fixed_size; guint alignment; g_variant_serialised_check (serialised); if (!serialised.data) return; /* the types we potentially need to byteswap are * exactly those with alignment requirements. */ g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size); if (!alignment) return; /* if fixed size and alignment are equal then we are down * to the base integer type and we should swap it. the * only exception to this is if we have a tuple with a * single item, and then swapping it will be OK anyway. */ if (alignment + 1 == fixed_size) { switch (fixed_size) { case 2: { guint16 *ptr = (guint16 *) serialised.data; g_assert_cmpint (serialised.size, ==, 2); *ptr = GUINT16_SWAP_LE_BE (*ptr); } return; case 4: { guint32 *ptr = (guint32 *) serialised.data; g_assert_cmpint (serialised.size, ==, 4); *ptr = GUINT32_SWAP_LE_BE (*ptr); } return; case 8: { guint64 *ptr = (guint64 *) serialised.data; g_assert_cmpint (serialised.size, ==, 8); *ptr = GUINT64_SWAP_LE_BE (*ptr); } return; default: g_assert_not_reached (); } } /* else, we have a container that potentially contains * some children that need to be byteswapped. */ else { gsize children, i; children = g_variant_serialised_n_children (serialised); for (i = 0; i < children; i++) { GVariantSerialised child; child = g_variant_serialised_get_child (serialised, i); g_variant_serialised_byteswap (child); g_variant_type_info_unref (child.type_info); } } } /* Normal form checking {{{2 */ /* < private > * g_variant_serialised_is_normal: * @serialised: a #GVariantSerialised * * Determines, recursively if @serialised is in normal form. There is * precisely one normal form of serialised data for each possible value. * * It is possible that multiple byte sequences form the serialised data * for a given value if, for example, the padding bytes are filled in * with something other than zeros, but only one form is the normal * form. */ gboolean g_variant_serialised_is_normal (GVariantSerialised serialised) { DISPATCH_CASES (serialised.type_info, return gvs_/**/,/**/_is_normal (serialised); ) if (serialised.data == NULL) return FALSE; /* some hard-coded terminal cases */ switch (g_variant_type_info_get_type_char (serialised.type_info)) { case 'b': /* boolean */ return serialised.data[0] < 2; case 's': /* string */ return g_variant_serialiser_is_string (serialised.data, serialised.size); case 'o': return g_variant_serialiser_is_object_path (serialised.data, serialised.size); case 'g': return g_variant_serialiser_is_signature (serialised.data, serialised.size); default: /* all of the other types are fixed-sized numerical types for * which all possible values are valid (including various NaN * representations for floating point values). */ return TRUE; } } /* Validity-checking functions {{{2 * * Checks if strings, object paths and signature strings are valid. */ /* < private > * g_variant_serialiser_is_string: * @data: a possible string * @size: the size of @data * * Ensures that @data is a valid string with a nul terminator at the end * and no nul bytes embedded. */ gboolean g_variant_serialiser_is_string (gconstpointer data, gsize size) { const gchar *expected_end; const gchar *end; if (size == 0) return FALSE; expected_end = ((gchar *) data) + size - 1; if (*expected_end != '\0') return FALSE; g_utf8_validate (data, size, &end); return end == expected_end; } /* < private > * g_variant_serialiser_is_object_path: * @data: a possible D-Bus object path * @size: the size of @data * * Performs the checks for being a valid string. * * Also, ensures that @data is a valid DBus object path, as per the D-Bus * specification. */ gboolean g_variant_serialiser_is_object_path (gconstpointer data, gsize size) { const gchar *string = data; gsize i; if (!g_variant_serialiser_is_string (data, size)) return FALSE; /* The path must begin with an ASCII '/' (integer 47) character */ if (string[0] != '/') return FALSE; for (i = 1; string[i]; i++) /* Each element must only contain the ASCII characters * "[A-Z][a-z][0-9]_" */ if (g_ascii_isalnum (string[i]) || string[i] == '_') ; /* must consist of elements separated by slash characters. */ else if (string[i] == '/') { /* No element may be the empty string. */ /* Multiple '/' characters cannot occur in sequence. */ if (string[i - 1] == '/') return FALSE; } else return FALSE; /* A trailing '/' character is not allowed unless the path is the * root path (a single '/' character). */ if (i > 1 && string[i - 1] == '/') return FALSE; return TRUE; } /* < private > * g_variant_serialiser_is_signature: * @data: a possible D-Bus signature * @size: the size of @data * * Performs the checks for being a valid string. * * Also, ensures that @data is a valid D-Bus type signature, as per the * D-Bus specification. */ gboolean g_variant_serialiser_is_signature (gconstpointer data, gsize size) { const gchar *string = data; gsize first_invalid; if (!g_variant_serialiser_is_string (data, size)) return FALSE; /* make sure no non-definite characters appear */ first_invalid = strspn (string, "ybnqiuxthdvasog(){}"); if (string[first_invalid]) return FALSE; /* make sure each type string is well-formed */ while (*string) if (!g_variant_type_string_scan (string, NULL, &string)) return FALSE; return TRUE; } /* Epilogue {{{1 */ /* vim:set foldmethod=marker: */