/* gspawn.c - Process launching * * Copyright 2000 Red Hat, Inc. * g_execvpe implementation based on GNU libc execvp: * Copyright 1991, 92, 95, 96, 97, 98, 99 Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, see . */ #include "config.h" #include #include #include #include #include #include #include #include #include /* for fdwalk */ #include #ifdef HAVE_SYS_SELECT_H #include #endif /* HAVE_SYS_SELECT_H */ #ifdef HAVE_SYS_RESOURCE_H #include #endif /* HAVE_SYS_RESOURCE_H */ #include "gspawn.h" #include "gthread.h" #include "glib/gstdio.h" #include "genviron.h" #include "gmem.h" #include "gshell.h" #include "gstring.h" #include "gstrfuncs.h" #include "gtestutils.h" #include "gutils.h" #include "glibintl.h" #include "glib-unix.h" /** * SECTION:spawn * @Short_description: process launching * @Title: Spawning Processes * * GLib supports spawning of processes with an API that is more * convenient than the bare UNIX fork() and exec(). * * The g_spawn family of functions has synchronous (g_spawn_sync()) * and asynchronous variants (g_spawn_async(), g_spawn_async_with_pipes()), * as well as convenience variants that take a complete shell-like * commandline (g_spawn_command_line_sync(), g_spawn_command_line_async()). * * See #GSubprocess in GIO for a higher-level API that provides * stream interfaces for communication with child processes. * * An example of using g_spawn_async_with_pipes(): * |[ * const gchar * const argv[] = { "my-favourite-program", "--args", NULL }; * gint child_stdout, child_stderr; * GPid child_pid; * g_autoptr(GError) error = NULL; * * // Spawn child process. * g_spawn_async_with_pipes (NULL, argv, NULL, G_SPAWN_DO_NOT_REAP_CHILD, NULL, * NULL, &child_pid, NULL, &child_stdout, * &child_stderr, &error); * if (error != NULL) * { * g_error ("Spawning child failed: %s", error->message); * return; * } * * // Add a child watch function which will be called when the child process * // exits. * g_child_watch_add (child_pid, child_watch_cb, NULL); * * // You could watch for output on @child_stdout and @child_stderr using * // #GUnixInputStream or #GIOChannel here. * * static void * child_watch_cb (GPid pid, * gint status, * gpointer user_data) * { * g_message ("Child %" G_PID_FORMAT " exited %s", pid, * g_spawn_check_exit_status (status, NULL) ? "normally" : "abnormally"); * * // Free any resources associated with the child here, such as I/O channels * // on its stdout and stderr FDs. If you have no code to put in the * // child_watch_cb() callback, you can remove it and the g_child_watch_add() * // call, but you must also remove the G_SPAWN_DO_NOT_REAP_CHILD flag, * // otherwise the child process will stay around as a zombie until this * // process exits. * * g_spawn_close_pid (pid); * } * ]| */ static gint g_execute (const gchar *file, gchar **argv, gchar **envp, gboolean search_path, gboolean search_path_from_envp); static gboolean fork_exec_with_pipes (gboolean intermediate_child, const gchar *working_directory, gchar **argv, gchar **envp, gboolean close_descriptors, gboolean search_path, gboolean search_path_from_envp, gboolean stdout_to_null, gboolean stderr_to_null, gboolean child_inherits_stdin, gboolean file_and_argv_zero, gboolean cloexec_pipes, GSpawnChildSetupFunc child_setup, gpointer user_data, GPid *child_pid, gint *standard_input, gint *standard_output, gint *standard_error, GError **error); G_DEFINE_QUARK (g-exec-error-quark, g_spawn_error) G_DEFINE_QUARK (g-spawn-exit-error-quark, g_spawn_exit_error) /** * g_spawn_async: * @working_directory: (type filename) (nullable): child's current working * directory, or %NULL to inherit parent's * @argv: (array zero-terminated=1) (element-type filename): * child's argument vector * @envp: (array zero-terminated=1) (element-type filename) (nullable): * child's environment, or %NULL to inherit parent's * @flags: flags from #GSpawnFlags * @child_setup: (scope async) (nullable): function to run in the child just before exec() * @user_data: (closure): user data for @child_setup * @child_pid: (out) (optional): return location for child process reference, or %NULL * @error: return location for error * * See g_spawn_async_with_pipes() for a full description; this function * simply calls the g_spawn_async_with_pipes() without any pipes. * * You should call g_spawn_close_pid() on the returned child process * reference when you don't need it any more. * * If you are writing a GTK+ application, and the program you are spawning is a * graphical application too, then to ensure that the spawned program opens its * windows on the right screen, you may want to use #GdkAppLaunchContext, * #GAppLaunchContext, or set the %DISPLAY environment variable. * * Note that the returned @child_pid on Windows is a handle to the child * process and not its identifier. Process handles and process identifiers * are different concepts on Windows. * * Returns: %TRUE on success, %FALSE if error is set **/ gboolean g_spawn_async (const gchar *working_directory, gchar **argv, gchar **envp, GSpawnFlags flags, GSpawnChildSetupFunc child_setup, gpointer user_data, GPid *child_pid, GError **error) { g_return_val_if_fail (argv != NULL, FALSE); return g_spawn_async_with_pipes (working_directory, argv, envp, flags, child_setup, user_data, child_pid, NULL, NULL, NULL, error); } /* Avoids a danger in threaded situations (calling close() * on a file descriptor twice, and another thread has * re-opened it since the first close) */ static void close_and_invalidate (gint *fd) { if (*fd < 0) return; else { (void) g_close (*fd, NULL); *fd = -1; } } /* Some versions of OS X define READ_OK in public headers */ #undef READ_OK typedef enum { READ_FAILED = 0, /* FALSE */ READ_OK, READ_EOF } ReadResult; static ReadResult read_data (GString *str, gint fd, GError **error) { gssize bytes; gchar buf[4096]; again: bytes = read (fd, buf, 4096); if (bytes == 0) return READ_EOF; else if (bytes > 0) { g_string_append_len (str, buf, bytes); return READ_OK; } else if (errno == EINTR) goto again; else { int errsv = errno; g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_READ, _("Failed to read data from child process (%s)"), g_strerror (errsv)); return READ_FAILED; } } /** * g_spawn_sync: * @working_directory: (type filename) (nullable): child's current working * directory, or %NULL to inherit parent's * @argv: (array zero-terminated=1) (element-type filename): * child's argument vector * @envp: (array zero-terminated=1) (element-type filename) (nullable): * child's environment, or %NULL to inherit parent's * @flags: flags from #GSpawnFlags * @child_setup: (scope async) (nullable): function to run in the child just before exec() * @user_data: (closure): user data for @child_setup * @standard_output: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child output, or %NULL * @standard_error: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child error messages, or %NULL * @exit_status: (out) (optional): return location for child exit status, as returned by waitpid(), or %NULL * @error: return location for error, or %NULL * * Executes a child synchronously (waits for the child to exit before returning). * All output from the child is stored in @standard_output and @standard_error, * if those parameters are non-%NULL. Note that you must set the * %G_SPAWN_STDOUT_TO_DEV_NULL and %G_SPAWN_STDERR_TO_DEV_NULL flags when * passing %NULL for @standard_output and @standard_error. * * If @exit_status is non-%NULL, the platform-specific exit status of * the child is stored there; see the documentation of * g_spawn_check_exit_status() for how to use and interpret this. * Note that it is invalid to pass %G_SPAWN_DO_NOT_REAP_CHILD in * @flags, and on POSIX platforms, the same restrictions as for * g_child_watch_source_new() apply. * * If an error occurs, no data is returned in @standard_output, * @standard_error, or @exit_status. * * This function calls g_spawn_async_with_pipes() internally; see that * function for full details on the other parameters and details on * how these functions work on Windows. * * Returns: %TRUE on success, %FALSE if an error was set */ gboolean g_spawn_sync (const gchar *working_directory, gchar **argv, gchar **envp, GSpawnFlags flags, GSpawnChildSetupFunc child_setup, gpointer user_data, gchar **standard_output, gchar **standard_error, gint *exit_status, GError **error) { gint outpipe = -1; gint errpipe = -1; GPid pid; fd_set fds; gint ret; GString *outstr = NULL; GString *errstr = NULL; gboolean failed; gint status; g_return_val_if_fail (argv != NULL, FALSE); g_return_val_if_fail (!(flags & G_SPAWN_DO_NOT_REAP_CHILD), FALSE); g_return_val_if_fail (standard_output == NULL || !(flags & G_SPAWN_STDOUT_TO_DEV_NULL), FALSE); g_return_val_if_fail (standard_error == NULL || !(flags & G_SPAWN_STDERR_TO_DEV_NULL), FALSE); /* Just to ensure segfaults if callers try to use * these when an error is reported. */ if (standard_output) *standard_output = NULL; if (standard_error) *standard_error = NULL; if (!fork_exec_with_pipes (FALSE, working_directory, argv, envp, !(flags & G_SPAWN_LEAVE_DESCRIPTORS_OPEN), (flags & G_SPAWN_SEARCH_PATH) != 0, (flags & G_SPAWN_SEARCH_PATH_FROM_ENVP) != 0, (flags & G_SPAWN_STDOUT_TO_DEV_NULL) != 0, (flags & G_SPAWN_STDERR_TO_DEV_NULL) != 0, (flags & G_SPAWN_CHILD_INHERITS_STDIN) != 0, (flags & G_SPAWN_FILE_AND_ARGV_ZERO) != 0, (flags & G_SPAWN_CLOEXEC_PIPES) != 0, child_setup, user_data, &pid, NULL, standard_output ? &outpipe : NULL, standard_error ? &errpipe : NULL, error)) return FALSE; /* Read data from child. */ failed = FALSE; if (outpipe >= 0) { outstr = g_string_new (NULL); } if (errpipe >= 0) { errstr = g_string_new (NULL); } /* Read data until we get EOF on both pipes. */ while (!failed && (outpipe >= 0 || errpipe >= 0)) { ret = 0; FD_ZERO (&fds); if (outpipe >= 0) FD_SET (outpipe, &fds); if (errpipe >= 0) FD_SET (errpipe, &fds); ret = select (MAX (outpipe, errpipe) + 1, &fds, NULL, NULL, NULL /* no timeout */); if (ret < 0) { int errsv = errno; if (errno == EINTR) continue; failed = TRUE; g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_READ, _("Unexpected error in select() reading data from a child process (%s)"), g_strerror (errsv)); break; } if (outpipe >= 0 && FD_ISSET (outpipe, &fds)) { switch (read_data (outstr, outpipe, error)) { case READ_FAILED: failed = TRUE; break; case READ_EOF: close_and_invalidate (&outpipe); outpipe = -1; break; default: break; } if (failed) break; } if (errpipe >= 0 && FD_ISSET (errpipe, &fds)) { switch (read_data (errstr, errpipe, error)) { case READ_FAILED: failed = TRUE; break; case READ_EOF: close_and_invalidate (&errpipe); errpipe = -1; break; default: break; } if (failed) break; } } /* These should only be open still if we had an error. */ if (outpipe >= 0) close_and_invalidate (&outpipe); if (errpipe >= 0) close_and_invalidate (&errpipe); /* Wait for child to exit, even if we have * an error pending. */ again: ret = waitpid (pid, &status, 0); if (ret < 0) { if (errno == EINTR) goto again; else if (errno == ECHILD) { if (exit_status) { g_warning ("In call to g_spawn_sync(), exit status of a child process was requested but ECHILD was received by waitpid(). See the documentation of g_child_watch_source_new() for possible causes."); } else { /* We don't need the exit status. */ } } else { if (!failed) /* avoid error pileups */ { int errsv = errno; failed = TRUE; g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_READ, _("Unexpected error in waitpid() (%s)"), g_strerror (errsv)); } } } if (failed) { if (outstr) g_string_free (outstr, TRUE); if (errstr) g_string_free (errstr, TRUE); return FALSE; } else { if (exit_status) *exit_status = status; if (standard_output) *standard_output = g_string_free (outstr, FALSE); if (standard_error) *standard_error = g_string_free (errstr, FALSE); return TRUE; } } /** * g_spawn_async_with_pipes: * @working_directory: (type filename) (nullable): child's current working * directory, or %NULL to inherit parent's, in the GLib file name encoding * @argv: (array zero-terminated=1) (element-type filename): child's argument * vector, in the GLib file name encoding * @envp: (array zero-terminated=1) (element-type filename) (nullable): * child's environment, or %NULL to inherit parent's, in the GLib file * name encoding * @flags: flags from #GSpawnFlags * @child_setup: (scope async) (nullable): function to run in the child just before exec() * @user_data: (closure): user data for @child_setup * @child_pid: (out) (optional): return location for child process ID, or %NULL * @standard_input: (out) (optional): return location for file descriptor to write to child's stdin, or %NULL * @standard_output: (out) (optional): return location for file descriptor to read child's stdout, or %NULL * @standard_error: (out) (optional): return location for file descriptor to read child's stderr, or %NULL * @error: return location for error * * Executes a child program asynchronously (your program will not * block waiting for the child to exit). The child program is * specified by the only argument that must be provided, @argv. * @argv should be a %NULL-terminated array of strings, to be passed * as the argument vector for the child. The first string in @argv * is of course the name of the program to execute. By default, the * name of the program must be a full path. If @flags contains the * %G_SPAWN_SEARCH_PATH flag, the `PATH` environment variable is * used to search for the executable. If @flags contains the * %G_SPAWN_SEARCH_PATH_FROM_ENVP flag, the `PATH` variable from * @envp is used to search for the executable. If both the * %G_SPAWN_SEARCH_PATH and %G_SPAWN_SEARCH_PATH_FROM_ENVP flags * are set, the `PATH` variable from @envp takes precedence over * the environment variable. * * If the program name is not a full path and %G_SPAWN_SEARCH_PATH flag is not * used, then the program will be run from the current directory (or * @working_directory, if specified); this might be unexpected or even * dangerous in some cases when the current directory is world-writable. * * On Windows, note that all the string or string vector arguments to * this function and the other g_spawn*() functions are in UTF-8, the * GLib file name encoding. Unicode characters that are not part of * the system codepage passed in these arguments will be correctly * available in the spawned program only if it uses wide character API * to retrieve its command line. For C programs built with Microsoft's * tools it is enough to make the program have a wmain() instead of * main(). wmain() has a wide character argument vector as parameter. * * At least currently, mingw doesn't support wmain(), so if you use * mingw to develop the spawned program, it should call * g_win32_get_command_line() to get arguments in UTF-8. * * On Windows the low-level child process creation API CreateProcess() * doesn't use argument vectors, but a command line. The C runtime * library's spawn*() family of functions (which g_spawn_async_with_pipes() * eventually calls) paste the argument vector elements together into * a command line, and the C runtime startup code does a corresponding * reconstruction of an argument vector from the command line, to be * passed to main(). Complications arise when you have argument vector * elements that contain spaces of double quotes. The spawn*() functions * don't do any quoting or escaping, but on the other hand the startup * code does do unquoting and unescaping in order to enable receiving * arguments with embedded spaces or double quotes. To work around this * asymmetry, g_spawn_async_with_pipes() will do quoting and escaping on * argument vector elements that need it before calling the C runtime * spawn() function. * * The returned @child_pid on Windows is a handle to the child * process, not its identifier. Process handles and process * identifiers are different concepts on Windows. * * @envp is a %NULL-terminated array of strings, where each string * has the form `KEY=VALUE`. This will become the child's environment. * If @envp is %NULL, the child inherits its parent's environment. * * @flags should be the bitwise OR of any flags you want to affect the * function's behaviour. The %G_SPAWN_DO_NOT_REAP_CHILD means that the * child will not automatically be reaped; you must use a child watch * (g_child_watch_add()) to be notified about the death of the child process, * otherwise it will stay around as a zombie process until this process exits. * Eventually you must call g_spawn_close_pid() on the @child_pid, in order to * free resources which may be associated with the child process. (On Unix, * using a child watch is equivalent to calling waitpid() or handling * the %SIGCHLD signal manually. On Windows, calling g_spawn_close_pid() * is equivalent to calling CloseHandle() on the process handle returned * in @child_pid). See g_child_watch_add(). * * %G_SPAWN_LEAVE_DESCRIPTORS_OPEN means that the parent's open file * descriptors will be inherited by the child; otherwise all descriptors * except stdin/stdout/stderr will be closed before calling exec() in * the child. %G_SPAWN_SEARCH_PATH means that @argv[0] need not be an * absolute path, it will be looked for in the `PATH` environment * variable. %G_SPAWN_SEARCH_PATH_FROM_ENVP means need not be an * absolute path, it will be looked for in the `PATH` variable from * @envp. If both %G_SPAWN_SEARCH_PATH and %G_SPAWN_SEARCH_PATH_FROM_ENVP * are used, the value from @envp takes precedence over the environment. * %G_SPAWN_STDOUT_TO_DEV_NULL means that the child's standard output * will be discarded, instead of going to the same location as the parent's * standard output. If you use this flag, @standard_output must be %NULL. * %G_SPAWN_STDERR_TO_DEV_NULL means that the child's standard error * will be discarded, instead of going to the same location as the parent's * standard error. If you use this flag, @standard_error must be %NULL. * %G_SPAWN_CHILD_INHERITS_STDIN means that the child will inherit the parent's * standard input (by default, the child's standard input is attached to * `/dev/null`). If you use this flag, @standard_input must be %NULL. * %G_SPAWN_FILE_AND_ARGV_ZERO means that the first element of @argv is * the file to execute, while the remaining elements are the actual * argument vector to pass to the file. Normally g_spawn_async_with_pipes() * uses @argv[0] as the file to execute, and passes all of @argv to the child. * * @child_setup and @user_data are a function and user data. On POSIX * platforms, the function is called in the child after GLib has * performed all the setup it plans to perform (including creating * pipes, closing file descriptors, etc.) but before calling exec(). * That is, @child_setup is called just before calling exec() in the * child. Obviously actions taken in this function will only affect * the child, not the parent. * * On Windows, there is no separate fork() and exec() functionality. * Child processes are created and run with a single API call, * CreateProcess(). There is no sensible thing @child_setup * could be used for on Windows so it is ignored and not called. * * If non-%NULL, @child_pid will on Unix be filled with the child's * process ID. You can use the process ID to send signals to the child, * or to use g_child_watch_add() (or waitpid()) if you specified the * %G_SPAWN_DO_NOT_REAP_CHILD flag. On Windows, @child_pid will be * filled with a handle to the child process only if you specified the * %G_SPAWN_DO_NOT_REAP_CHILD flag. You can then access the child * process using the Win32 API, for example wait for its termination * with the WaitFor*() functions, or examine its exit code with * GetExitCodeProcess(). You should close the handle with CloseHandle() * or g_spawn_close_pid() when you no longer need it. * * If non-%NULL, the @standard_input, @standard_output, @standard_error * locations will be filled with file descriptors for writing to the child's * standard input or reading from its standard output or standard error. * The caller of g_spawn_async_with_pipes() must close these file descriptors * when they are no longer in use. If these parameters are %NULL, the * corresponding pipe won't be created. * * If @standard_input is %NULL, the child's standard input is attached to * `/dev/null` unless %G_SPAWN_CHILD_INHERITS_STDIN is set. * * If @standard_error is NULL, the child's standard error goes to the same * location as the parent's standard error unless %G_SPAWN_STDERR_TO_DEV_NULL * is set. * * If @standard_output is NULL, the child's standard output goes to the same * location as the parent's standard output unless %G_SPAWN_STDOUT_TO_DEV_NULL * is set. * * @error can be %NULL to ignore errors, or non-%NULL to report errors. * If an error is set, the function returns %FALSE. Errors are reported * even if they occur in the child (for example if the executable in * @argv[0] is not found). Typically the `message` field of returned * errors should be displayed to users. Possible errors are those from * the #G_SPAWN_ERROR domain. * * If an error occurs, @child_pid, @standard_input, @standard_output, * and @standard_error will not be filled with valid values. * * If @child_pid is not %NULL and an error does not occur then the returned * process reference must be closed using g_spawn_close_pid(). * * If you are writing a GTK+ application, and the program you are spawning is a * graphical application too, then to ensure that the spawned program opens its * windows on the right screen, you may want to use #GdkAppLaunchContext, * #GAppLaunchContext, or set the %DISPLAY environment variable. * * Returns: %TRUE on success, %FALSE if an error was set */ gboolean g_spawn_async_with_pipes (const gchar *working_directory, gchar **argv, gchar **envp, GSpawnFlags flags, GSpawnChildSetupFunc child_setup, gpointer user_data, GPid *child_pid, gint *standard_input, gint *standard_output, gint *standard_error, GError **error) { g_return_val_if_fail (argv != NULL, FALSE); g_return_val_if_fail (standard_output == NULL || !(flags & G_SPAWN_STDOUT_TO_DEV_NULL), FALSE); g_return_val_if_fail (standard_error == NULL || !(flags & G_SPAWN_STDERR_TO_DEV_NULL), FALSE); /* can't inherit stdin if we have an input pipe. */ g_return_val_if_fail (standard_input == NULL || !(flags & G_SPAWN_CHILD_INHERITS_STDIN), FALSE); return fork_exec_with_pipes (!(flags & G_SPAWN_DO_NOT_REAP_CHILD), working_directory, argv, envp, !(flags & G_SPAWN_LEAVE_DESCRIPTORS_OPEN), (flags & G_SPAWN_SEARCH_PATH) != 0, (flags & G_SPAWN_SEARCH_PATH_FROM_ENVP) != 0, (flags & G_SPAWN_STDOUT_TO_DEV_NULL) != 0, (flags & G_SPAWN_STDERR_TO_DEV_NULL) != 0, (flags & G_SPAWN_CHILD_INHERITS_STDIN) != 0, (flags & G_SPAWN_FILE_AND_ARGV_ZERO) != 0, (flags & G_SPAWN_CLOEXEC_PIPES) != 0, child_setup, user_data, child_pid, standard_input, standard_output, standard_error, error); } /** * g_spawn_command_line_sync: * @command_line: (type filename): a command line * @standard_output: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child output * @standard_error: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child errors * @exit_status: (out) (optional): return location for child exit status, as returned by waitpid() * @error: return location for errors * * A simple version of g_spawn_sync() with little-used parameters * removed, taking a command line instead of an argument vector. See * g_spawn_sync() for full details. @command_line will be parsed by * g_shell_parse_argv(). Unlike g_spawn_sync(), the %G_SPAWN_SEARCH_PATH flag * is enabled. Note that %G_SPAWN_SEARCH_PATH can have security * implications, so consider using g_spawn_sync() directly if * appropriate. Possible errors are those from g_spawn_sync() and those * from g_shell_parse_argv(). * * If @exit_status is non-%NULL, the platform-specific exit status of * the child is stored there; see the documentation of * g_spawn_check_exit_status() for how to use and interpret this. * * On Windows, please note the implications of g_shell_parse_argv() * parsing @command_line. Parsing is done according to Unix shell rules, not * Windows command interpreter rules. * Space is a separator, and backslashes are * special. Thus you cannot simply pass a @command_line containing * canonical Windows paths, like "c:\\program files\\app\\app.exe", as * the backslashes will be eaten, and the space will act as a * separator. You need to enclose such paths with single quotes, like * "'c:\\program files\\app\\app.exe' 'e:\\folder\\argument.txt'". * * Returns: %TRUE on success, %FALSE if an error was set **/ gboolean g_spawn_command_line_sync (const gchar *command_line, gchar **standard_output, gchar **standard_error, gint *exit_status, GError **error) { gboolean retval; gchar **argv = NULL; g_return_val_if_fail (command_line != NULL, FALSE); if (!g_shell_parse_argv (command_line, NULL, &argv, error)) return FALSE; retval = g_spawn_sync (NULL, argv, NULL, G_SPAWN_SEARCH_PATH, NULL, NULL, standard_output, standard_error, exit_status, error); g_strfreev (argv); return retval; } /** * g_spawn_command_line_async: * @command_line: (type filename): a command line * @error: return location for errors * * A simple version of g_spawn_async() that parses a command line with * g_shell_parse_argv() and passes it to g_spawn_async(). Runs a * command line in the background. Unlike g_spawn_async(), the * %G_SPAWN_SEARCH_PATH flag is enabled, other flags are not. Note * that %G_SPAWN_SEARCH_PATH can have security implications, so * consider using g_spawn_async() directly if appropriate. Possible * errors are those from g_shell_parse_argv() and g_spawn_async(). * * The same concerns on Windows apply as for g_spawn_command_line_sync(). * * Returns: %TRUE on success, %FALSE if error is set **/ gboolean g_spawn_command_line_async (const gchar *command_line, GError **error) { gboolean retval; gchar **argv = NULL; g_return_val_if_fail (command_line != NULL, FALSE); if (!g_shell_parse_argv (command_line, NULL, &argv, error)) return FALSE; retval = g_spawn_async (NULL, argv, NULL, G_SPAWN_SEARCH_PATH, NULL, NULL, NULL, error); g_strfreev (argv); return retval; } /** * g_spawn_check_exit_status: * @exit_status: An exit code as returned from g_spawn_sync() * @error: a #GError * * Set @error if @exit_status indicates the child exited abnormally * (e.g. with a nonzero exit code, or via a fatal signal). * * The g_spawn_sync() and g_child_watch_add() family of APIs return an * exit status for subprocesses encoded in a platform-specific way. * On Unix, this is guaranteed to be in the same format waitpid() returns, * and on Windows it is guaranteed to be the result of GetExitCodeProcess(). * * Prior to the introduction of this function in GLib 2.34, interpreting * @exit_status required use of platform-specific APIs, which is problematic * for software using GLib as a cross-platform layer. * * Additionally, many programs simply want to determine whether or not * the child exited successfully, and either propagate a #GError or * print a message to standard error. In that common case, this function * can be used. Note that the error message in @error will contain * human-readable information about the exit status. * * The @domain and @code of @error have special semantics in the case * where the process has an "exit code", as opposed to being killed by * a signal. On Unix, this happens if WIFEXITED() would be true of * @exit_status. On Windows, it is always the case. * * The special semantics are that the actual exit code will be the * code set in @error, and the domain will be %G_SPAWN_EXIT_ERROR. * This allows you to differentiate between different exit codes. * * If the process was terminated by some means other than an exit * status, the domain will be %G_SPAWN_ERROR, and the code will be * %G_SPAWN_ERROR_FAILED. * * This function just offers convenience; you can of course also check * the available platform via a macro such as %G_OS_UNIX, and use * WIFEXITED() and WEXITSTATUS() on @exit_status directly. Do not attempt * to scan or parse the error message string; it may be translated and/or * change in future versions of GLib. * * Returns: %TRUE if child exited successfully, %FALSE otherwise (and * @error will be set) * * Since: 2.34 */ gboolean g_spawn_check_exit_status (gint exit_status, GError **error) { gboolean ret = FALSE; if (WIFEXITED (exit_status)) { if (WEXITSTATUS (exit_status) != 0) { g_set_error (error, G_SPAWN_EXIT_ERROR, WEXITSTATUS (exit_status), _("Child process exited with code %ld"), (long) WEXITSTATUS (exit_status)); goto out; } } else if (WIFSIGNALED (exit_status)) { g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED, _("Child process killed by signal %ld"), (long) WTERMSIG (exit_status)); goto out; } else if (WIFSTOPPED (exit_status)) { g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED, _("Child process stopped by signal %ld"), (long) WSTOPSIG (exit_status)); goto out; } else { g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED, _("Child process exited abnormally")); goto out; } ret = TRUE; out: return ret; } static gint exec_err_to_g_error (gint en) { switch (en) { #ifdef EACCES case EACCES: return G_SPAWN_ERROR_ACCES; break; #endif #ifdef EPERM case EPERM: return G_SPAWN_ERROR_PERM; break; #endif #ifdef E2BIG case E2BIG: return G_SPAWN_ERROR_TOO_BIG; break; #endif #ifdef ENOEXEC case ENOEXEC: return G_SPAWN_ERROR_NOEXEC; break; #endif #ifdef ENAMETOOLONG case ENAMETOOLONG: return G_SPAWN_ERROR_NAMETOOLONG; break; #endif #ifdef ENOENT case ENOENT: return G_SPAWN_ERROR_NOENT; break; #endif #ifdef ENOMEM case ENOMEM: return G_SPAWN_ERROR_NOMEM; break; #endif #ifdef ENOTDIR case ENOTDIR: return G_SPAWN_ERROR_NOTDIR; break; #endif #ifdef ELOOP case ELOOP: return G_SPAWN_ERROR_LOOP; break; #endif #ifdef ETXTBUSY case ETXTBUSY: return G_SPAWN_ERROR_TXTBUSY; break; #endif #ifdef EIO case EIO: return G_SPAWN_ERROR_IO; break; #endif #ifdef ENFILE case ENFILE: return G_SPAWN_ERROR_NFILE; break; #endif #ifdef EMFILE case EMFILE: return G_SPAWN_ERROR_MFILE; break; #endif #ifdef EINVAL case EINVAL: return G_SPAWN_ERROR_INVAL; break; #endif #ifdef EISDIR case EISDIR: return G_SPAWN_ERROR_ISDIR; break; #endif #ifdef ELIBBAD case ELIBBAD: return G_SPAWN_ERROR_LIBBAD; break; #endif default: return G_SPAWN_ERROR_FAILED; break; } } static gssize write_all (gint fd, gconstpointer vbuf, gsize to_write) { gchar *buf = (gchar *) vbuf; while (to_write > 0) { gssize count = write (fd, buf, to_write); if (count < 0) { if (errno != EINTR) return FALSE; } else { to_write -= count; buf += count; } } return TRUE; } G_GNUC_NORETURN static void write_err_and_exit (gint fd, gint msg) { gint en = errno; write_all (fd, &msg, sizeof(msg)); write_all (fd, &en, sizeof(en)); _exit (1); } static int set_cloexec (void *data, gint fd) { if (fd >= GPOINTER_TO_INT (data)) fcntl (fd, F_SETFD, FD_CLOEXEC); return 0; } #ifndef HAVE_FDWALK static int fdwalk (int (*cb)(void *data, int fd), void *data) { gint open_max; gint fd; gint res = 0; #ifdef HAVE_SYS_RESOURCE_H struct rlimit rl; #endif #ifdef __linux__ DIR *d; if ((d = opendir("/proc/self/fd"))) { struct dirent *de; while ((de = readdir(d))) { glong l; gchar *e = NULL; if (de->d_name[0] == '.') continue; errno = 0; l = strtol(de->d_name, &e, 10); if (errno != 0 || !e || *e) continue; fd = (gint) l; if ((glong) fd != l) continue; if (fd == dirfd(d)) continue; if ((res = cb (data, fd)) != 0) break; } closedir(d); return res; } /* If /proc is not mounted or not accessible we fall back to the old * rlimit trick */ #endif #ifdef HAVE_SYS_RESOURCE_H if (getrlimit(RLIMIT_NOFILE, &rl) == 0 && rl.rlim_max != RLIM_INFINITY) open_max = rl.rlim_max; else #endif open_max = sysconf (_SC_OPEN_MAX); for (fd = 0; fd < open_max; fd++) if ((res = cb (data, fd)) != 0) break; return res; } #endif static gint sane_dup2 (gint fd1, gint fd2) { gint ret; retry: ret = dup2 (fd1, fd2); if (ret < 0 && errno == EINTR) goto retry; return ret; } static gint sane_open (const char *path, gint mode) { gint ret; retry: ret = open (path, mode); if (ret < 0 && errno == EINTR) goto retry; return ret; } enum { CHILD_CHDIR_FAILED, CHILD_EXEC_FAILED, CHILD_DUP2_FAILED, CHILD_FORK_FAILED }; static void do_exec (gint child_err_report_fd, gint stdin_fd, gint stdout_fd, gint stderr_fd, const gchar *working_directory, gchar **argv, gchar **envp, gboolean close_descriptors, gboolean search_path, gboolean search_path_from_envp, gboolean stdout_to_null, gboolean stderr_to_null, gboolean child_inherits_stdin, gboolean file_and_argv_zero, GSpawnChildSetupFunc child_setup, gpointer user_data) { if (working_directory && chdir (working_directory) < 0) write_err_and_exit (child_err_report_fd, CHILD_CHDIR_FAILED); /* Close all file descriptors but stdin stdout and stderr as * soon as we exec. Note that this includes * child_err_report_fd, which keeps the parent from blocking * forever on the other end of that pipe. */ if (close_descriptors) { fdwalk (set_cloexec, GINT_TO_POINTER(3)); } else { /* We need to do child_err_report_fd anyway */ set_cloexec (GINT_TO_POINTER(0), child_err_report_fd); } /* Redirect pipes as required */ if (stdin_fd >= 0) { /* dup2 can't actually fail here I don't think */ if (sane_dup2 (stdin_fd, 0) < 0) write_err_and_exit (child_err_report_fd, CHILD_DUP2_FAILED); /* ignore this if it doesn't work */ close_and_invalidate (&stdin_fd); } else if (!child_inherits_stdin) { /* Keep process from blocking on a read of stdin */ gint read_null = open ("/dev/null", O_RDONLY); g_assert (read_null != -1); sane_dup2 (read_null, 0); close_and_invalidate (&read_null); } if (stdout_fd >= 0) { /* dup2 can't actually fail here I don't think */ if (sane_dup2 (stdout_fd, 1) < 0) write_err_and_exit (child_err_report_fd, CHILD_DUP2_FAILED); /* ignore this if it doesn't work */ close_and_invalidate (&stdout_fd); } else if (stdout_to_null) { gint write_null = sane_open ("/dev/null", O_WRONLY); g_assert (write_null != -1); sane_dup2 (write_null, 1); close_and_invalidate (&write_null); } if (stderr_fd >= 0) { /* dup2 can't actually fail here I don't think */ if (sane_dup2 (stderr_fd, 2) < 0) write_err_and_exit (child_err_report_fd, CHILD_DUP2_FAILED); /* ignore this if it doesn't work */ close_and_invalidate (&stderr_fd); } else if (stderr_to_null) { gint write_null = sane_open ("/dev/null", O_WRONLY); sane_dup2 (write_null, 2); close_and_invalidate (&write_null); } /* Call user function just before we exec */ if (child_setup) { (* child_setup) (user_data); } g_execute (argv[0], file_and_argv_zero ? argv + 1 : argv, envp, search_path, search_path_from_envp); /* Exec failed */ write_err_and_exit (child_err_report_fd, CHILD_EXEC_FAILED); } static gboolean read_ints (int fd, gint* buf, gint n_ints_in_buf, gint *n_ints_read, GError **error) { gsize bytes = 0; while (TRUE) { gssize chunk; if (bytes >= sizeof(gint)*2) break; /* give up, who knows what happened, should not be * possible. */ again: chunk = read (fd, ((gchar*)buf) + bytes, sizeof(gint) * n_ints_in_buf - bytes); if (chunk < 0 && errno == EINTR) goto again; if (chunk < 0) { int errsv = errno; /* Some weird shit happened, bail out */ g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED, _("Failed to read from child pipe (%s)"), g_strerror (errsv)); return FALSE; } else if (chunk == 0) break; /* EOF */ else /* chunk > 0 */ bytes += chunk; } *n_ints_read = (gint)(bytes / sizeof(gint)); return TRUE; } static gboolean fork_exec_with_pipes (gboolean intermediate_child, const gchar *working_directory, gchar **argv, gchar **envp, gboolean close_descriptors, gboolean search_path, gboolean search_path_from_envp, gboolean stdout_to_null, gboolean stderr_to_null, gboolean child_inherits_stdin, gboolean file_and_argv_zero, gboolean cloexec_pipes, GSpawnChildSetupFunc child_setup, gpointer user_data, GPid *child_pid, gint *standard_input, gint *standard_output, gint *standard_error, GError **error) { GPid pid = -1; gint stdin_pipe[2] = { -1, -1 }; gint stdout_pipe[2] = { -1, -1 }; gint stderr_pipe[2] = { -1, -1 }; gint child_err_report_pipe[2] = { -1, -1 }; gint child_pid_report_pipe[2] = { -1, -1 }; guint pipe_flags = cloexec_pipes ? FD_CLOEXEC : 0; gint status; if (!g_unix_open_pipe (child_err_report_pipe, pipe_flags, error)) return FALSE; if (intermediate_child && !g_unix_open_pipe (child_pid_report_pipe, pipe_flags, error)) goto cleanup_and_fail; if (standard_input && !g_unix_open_pipe (stdin_pipe, pipe_flags, error)) goto cleanup_and_fail; if (standard_output && !g_unix_open_pipe (stdout_pipe, pipe_flags, error)) goto cleanup_and_fail; if (standard_error && !g_unix_open_pipe (stderr_pipe, FD_CLOEXEC, error)) goto cleanup_and_fail; pid = fork (); if (pid < 0) { int errsv = errno; g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FORK, _("Failed to fork (%s)"), g_strerror (errsv)); goto cleanup_and_fail; } else if (pid == 0) { /* Immediate child. This may or may not be the child that * actually execs the new process. */ /* Reset some signal handlers that we may use */ signal (SIGCHLD, SIG_DFL); signal (SIGINT, SIG_DFL); signal (SIGTERM, SIG_DFL); signal (SIGHUP, SIG_DFL); /* Be sure we crash if the parent exits * and we write to the err_report_pipe */ signal (SIGPIPE, SIG_DFL); /* Close the parent's end of the pipes; * not needed in the close_descriptors case, * though */ close_and_invalidate (&child_err_report_pipe[0]); close_and_invalidate (&child_pid_report_pipe[0]); close_and_invalidate (&stdin_pipe[1]); close_and_invalidate (&stdout_pipe[0]); close_and_invalidate (&stderr_pipe[0]); if (intermediate_child) { /* We need to fork an intermediate child that launches the * final child. The purpose of the intermediate child * is to exit, so we can waitpid() it immediately. * Then the grandchild will not become a zombie. */ GPid grandchild_pid; grandchild_pid = fork (); if (grandchild_pid < 0) { /* report -1 as child PID */ write_all (child_pid_report_pipe[1], &grandchild_pid, sizeof(grandchild_pid)); write_err_and_exit (child_err_report_pipe[1], CHILD_FORK_FAILED); } else if (grandchild_pid == 0) { close_and_invalidate (&child_pid_report_pipe[1]); do_exec (child_err_report_pipe[1], stdin_pipe[0], stdout_pipe[1], stderr_pipe[1], working_directory, argv, envp, close_descriptors, search_path, search_path_from_envp, stdout_to_null, stderr_to_null, child_inherits_stdin, file_and_argv_zero, child_setup, user_data); } else { write_all (child_pid_report_pipe[1], &grandchild_pid, sizeof(grandchild_pid)); close_and_invalidate (&child_pid_report_pipe[1]); _exit (0); } } else { /* Just run the child. */ do_exec (child_err_report_pipe[1], stdin_pipe[0], stdout_pipe[1], stderr_pipe[1], working_directory, argv, envp, close_descriptors, search_path, search_path_from_envp, stdout_to_null, stderr_to_null, child_inherits_stdin, file_and_argv_zero, child_setup, user_data); } } else { /* Parent */ gint buf[2]; gint n_ints = 0; /* Close the uncared-about ends of the pipes */ close_and_invalidate (&child_err_report_pipe[1]); close_and_invalidate (&child_pid_report_pipe[1]); close_and_invalidate (&stdin_pipe[0]); close_and_invalidate (&stdout_pipe[1]); close_and_invalidate (&stderr_pipe[1]); /* If we had an intermediate child, reap it */ if (intermediate_child) { wait_again: if (waitpid (pid, &status, 0) < 0) { if (errno == EINTR) goto wait_again; else if (errno == ECHILD) ; /* do nothing, child already reaped */ else g_warning ("waitpid() should not fail in " "'fork_exec_with_pipes'"); } } if (!read_ints (child_err_report_pipe[0], buf, 2, &n_ints, error)) goto cleanup_and_fail; if (n_ints >= 2) { /* Error from the child. */ switch (buf[0]) { case CHILD_CHDIR_FAILED: g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_CHDIR, _("Failed to change to directory “%s” (%s)"), working_directory, g_strerror (buf[1])); break; case CHILD_EXEC_FAILED: g_set_error (error, G_SPAWN_ERROR, exec_err_to_g_error (buf[1]), _("Failed to execute child process “%s” (%s)"), argv[0], g_strerror (buf[1])); break; case CHILD_DUP2_FAILED: g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED, _("Failed to redirect output or input of child process (%s)"), g_strerror (buf[1])); break; case CHILD_FORK_FAILED: g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FORK, _("Failed to fork child process (%s)"), g_strerror (buf[1])); break; default: g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED, _("Unknown error executing child process “%s”"), argv[0]); break; } goto cleanup_and_fail; } /* Get child pid from intermediate child pipe. */ if (intermediate_child) { n_ints = 0; if (!read_ints (child_pid_report_pipe[0], buf, 1, &n_ints, error)) goto cleanup_and_fail; if (n_ints < 1) { int errsv = errno; g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED, _("Failed to read enough data from child pid pipe (%s)"), g_strerror (errsv)); goto cleanup_and_fail; } else { /* we have the child pid */ pid = buf[0]; } } /* Success against all odds! return the information */ close_and_invalidate (&child_err_report_pipe[0]); close_and_invalidate (&child_pid_report_pipe[0]); if (child_pid) *child_pid = pid; if (standard_input) *standard_input = stdin_pipe[1]; if (standard_output) *standard_output = stdout_pipe[0]; if (standard_error) *standard_error = stderr_pipe[0]; return TRUE; } cleanup_and_fail: /* There was an error from the Child, reap the child to avoid it being a zombie. */ if (pid > 0) { wait_failed: if (waitpid (pid, NULL, 0) < 0) { if (errno == EINTR) goto wait_failed; else if (errno == ECHILD) ; /* do nothing, child already reaped */ else g_warning ("waitpid() should not fail in " "'fork_exec_with_pipes'"); } } close_and_invalidate (&child_err_report_pipe[0]); close_and_invalidate (&child_err_report_pipe[1]); close_and_invalidate (&child_pid_report_pipe[0]); close_and_invalidate (&child_pid_report_pipe[1]); close_and_invalidate (&stdin_pipe[0]); close_and_invalidate (&stdin_pipe[1]); close_and_invalidate (&stdout_pipe[0]); close_and_invalidate (&stdout_pipe[1]); close_and_invalidate (&stderr_pipe[0]); close_and_invalidate (&stderr_pipe[1]); return FALSE; } /* Based on execvp from GNU C Library */ static void script_execute (const gchar *file, gchar **argv, gchar **envp) { /* Count the arguments. */ int argc = 0; while (argv[argc]) ++argc; /* Construct an argument list for the shell. */ { gchar **new_argv; new_argv = g_new0 (gchar*, argc + 2); /* /bin/sh and NULL */ new_argv[0] = (char *) "/bin/sh"; new_argv[1] = (char *) file; while (argc > 0) { new_argv[argc + 1] = argv[argc]; --argc; } /* Execute the shell. */ if (envp) execve (new_argv[0], new_argv, envp); else execv (new_argv[0], new_argv); g_free (new_argv); } } static gchar* my_strchrnul (const gchar *str, gchar c) { gchar *p = (gchar*) str; while (*p && (*p != c)) ++p; return p; } static gint g_execute (const gchar *file, gchar **argv, gchar **envp, gboolean search_path, gboolean search_path_from_envp) { if (*file == '\0') { /* We check the simple case first. */ errno = ENOENT; return -1; } if (!(search_path || search_path_from_envp) || strchr (file, '/') != NULL) { /* Don't search when it contains a slash. */ if (envp) execve (file, argv, envp); else execv (file, argv); if (errno == ENOEXEC) script_execute (file, argv, envp); } else { gboolean got_eacces = 0; const gchar *path, *p; gchar *name, *freeme; gsize len; gsize pathlen; path = NULL; if (search_path_from_envp) path = g_environ_getenv (envp, "PATH"); if (search_path && path == NULL) path = g_getenv ("PATH"); if (path == NULL) { /* There is no 'PATH' in the environment. The default * search path in libc is the current directory followed by * the path 'confstr' returns for '_CS_PATH'. */ /* In GLib we put . last, for security, and don't use the * unportable confstr(); UNIX98 does not actually specify * what to search if PATH is unset. POSIX may, dunno. */ path = "/bin:/usr/bin:."; } len = strlen (file) + 1; pathlen = strlen (path); freeme = name = g_malloc (pathlen + len + 1); /* Copy the file name at the top, including '\0' */ memcpy (name + pathlen + 1, file, len); name = name + pathlen; /* And add the slash before the filename */ *name = '/'; p = path; do { char *startp; path = p; p = my_strchrnul (path, ':'); if (p == path) /* Two adjacent colons, or a colon at the beginning or the end * of 'PATH' means to search the current directory. */ startp = name + 1; else startp = memcpy (name - (p - path), path, p - path); /* Try to execute this name. If it works, execv will not return. */ if (envp) execve (startp, argv, envp); else execv (startp, argv); if (errno == ENOEXEC) script_execute (startp, argv, envp); switch (errno) { case EACCES: /* Record the we got a 'Permission denied' error. If we end * up finding no executable we can use, we want to diagnose * that we did find one but were denied access. */ got_eacces = TRUE; /* FALL THRU */ case ENOENT: #ifdef ESTALE case ESTALE: #endif #ifdef ENOTDIR case ENOTDIR: #endif /* Those errors indicate the file is missing or not executable * by us, in which case we want to just try the next path * directory. */ break; case ENODEV: case ETIMEDOUT: /* Some strange filesystems like AFS return even * stranger error numbers. They cannot reasonably mean anything * else so ignore those, too. */ break; default: /* Some other error means we found an executable file, but * something went wrong executing it; return the error to our * caller. */ g_free (freeme); return -1; } } while (*p++ != '\0'); /* We tried every element and none of them worked. */ if (got_eacces) /* At least one failure was due to permissions, so report that * error. */ errno = EACCES; g_free (freeme); } /* Return the error from the last attempt (probably ENOENT). */ return -1; } /** * g_spawn_close_pid: * @pid: The process reference to close * * On some platforms, notably Windows, the #GPid type represents a resource * which must be closed to prevent resource leaking. g_spawn_close_pid() * is provided for this purpose. It should be used on all platforms, even * though it doesn't do anything under UNIX. **/ void g_spawn_close_pid (GPid pid) { }