/* GLIB sliced memory - fast concurrent memory chunk allocator * Copyright (C) 2005 Tim Janik * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* MT safe */ #include "config.h" #include "glibconfig.h" #if defined HAVE_POSIX_MEMALIGN && defined POSIX_MEMALIGN_WITH_COMPLIANT_ALLOCS # define HAVE_COMPLIANT_POSIX_MEMALIGN 1 #endif #if defined(HAVE_COMPLIANT_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE) #define _XOPEN_SOURCE 600 /* posix_memalign() */ #endif #include /* posix_memalign() */ #include #include #ifdef G_OS_UNIX #include /* sysconf() */ #endif #ifdef G_OS_WIN32 #include #include #endif #include /* fputs/fprintf */ #include "gslice.h" #include "gmain.h" #include "gmem.h" /* gslice.h */ #include "gstrfuncs.h" #include "gutils.h" #include "gtrashstack.h" #include "gtestutils.h" #include "gthread.h" #include "glib_trace.h" #include "valgrind.h" /** * SECTION:memory_slices * @title: Memory Slices * @short_description: efficient way to allocate groups of equal-sized * chunks of memory * * Memory slices provide a space-efficient and multi-processing scalable * way to allocate equal-sized pieces of memory, just like the original * #GMemChunks (from GLib 2.8), while avoiding their excessive * memory-waste, scalability and performance problems. * * To achieve these goals, the slice allocator uses a sophisticated, * layered design that has been inspired by Bonwick's slab allocator * ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html) * Jeff Bonwick, The slab allocator: An object-caching kernel * memory allocator. USENIX 1994, and * [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html) * Bonwick and Jonathan Adams, Magazines and vmem: Extending the * slab allocator to many cpu's and arbitrary resources. USENIX 2001) * * It uses posix_memalign() to optimize allocations of many equally-sized * chunks, and has per-thread free lists (the so-called magazine layer) * to quickly satisfy allocation requests of already known structure sizes. * This is accompanied by extra caching logic to keep freed memory around * for some time before returning it to the system. Memory that is unused * due to alignment constraints is used for cache colorization (random * distribution of chunk addresses) to improve CPU cache utilization. The * caching layer of the slice allocator adapts itself to high lock contention * to improve scalability. * * The slice allocator can allocate blocks as small as two pointers, and * unlike malloc(), it does not reserve extra space per block. For large block * sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the * system malloc() implementation. For newly written code it is recommended * to use the new `g_slice` API instead of g_malloc() and * friends, as long as objects are not resized during their lifetime and the * object size used at allocation time is still available when freeing. * * Here is an example for using the slice allocator: * |[ * gchar *mem[10000]; * gint i; * * // Allocate 10000 blocks. * for (i = 0; i < 10000; i++) * { * mem[i] = g_slice_alloc (50); * * // Fill in the memory with some junk. * for (j = 0; j < 50; j++) * mem[i][j] = i * j; * } * * // Now free all of the blocks. * for (i = 0; i < 10000; i++) * g_slice_free1 (50, mem[i]); * ]| * * And here is an example for using the using the slice allocator * with data structures: * |[ * GRealArray *array; * * // Allocate one block, using the g_slice_new() macro. * array = g_slice_new (GRealArray); * * // We can now use array just like a normal pointer to a structure. * array->data = NULL; * array->len = 0; * array->alloc = 0; * array->zero_terminated = (zero_terminated ? 1 : 0); * array->clear = (clear ? 1 : 0); * array->elt_size = elt_size; * * // We can free the block, so it can be reused. * g_slice_free (GRealArray, array); * ]| */ /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab * allocator and magazine extensions as outlined in: * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel * memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the * slab allocator to many cpu's and arbitrary resources. * USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html * the layers are: * - the thread magazines. for each (aligned) chunk size, a magazine (a list) * of recently freed and soon to be allocated chunks is maintained per thread. * this way, most alloc/free requests can be quickly satisfied from per-thread * free lists which only require one g_private_get() call to retrive the * thread handle. * - the magazine cache. allocating and freeing chunks to/from threads only * occours at magazine sizes from a global depot of magazines. the depot * maintaines a 15 second working set of allocated magazines, so full * magazines are not allocated and released too often. * the chunk size dependent magazine sizes automatically adapt (within limits, * see [3]) to lock contention to properly scale performance across a variety * of SMP systems. * - the slab allocator. this allocator allocates slabs (blocks of memory) close * to the system page size or multiples thereof which have to be page aligned. * the blocks are divided into smaller chunks which are used to satisfy * allocations from the upper layers. the space provided by the reminder of * the chunk size division is used for cache colorization (random distribution * of chunk addresses) to improve processor cache utilization. multiple slabs * with the same chunk size are kept in a partially sorted ring to allow O(1) * freeing and allocation of chunks (as long as the allocation of an entirely * new slab can be avoided). * - the page allocator. on most modern systems, posix_memalign(3) or * memalign(3) should be available, so this is used to allocate blocks with * system page size based alignments and sizes or multiples thereof. * if no memalign variant is provided, valloc() is used instead and * block sizes are limited to the system page size (no multiples thereof). * as a fallback, on system without even valloc(), a malloc(3)-based page * allocator with alloc-only behaviour is used. * * NOTES: * [1] some systems memalign(3) implementations may rely on boundary tagging for * the handed out memory chunks. to avoid excessive page-wise fragmentation, * we reserve 2 * sizeof (void*) per block size for the systems memalign(3), * specified in NATIVE_MALLOC_PADDING. * [2] using the slab allocator alone already provides for a fast and efficient * allocator, it doesn't properly scale beyond single-threaded uses though. * also, the slab allocator implements eager free(3)-ing, i.e. does not * provide any form of caching or working set maintenance. so if used alone, * it's vulnerable to trashing for sequences of balanced (alloc, free) pairs * at certain thresholds. * [3] magazine sizes are bound by an implementation specific minimum size and * a chunk size specific maximum to limit magazine storage sizes to roughly * 16KB. * [4] allocating ca. 8 chunks per block/page keeps a good balance between * external and internal fragmentation (<= 12.5%). [Bonwick94] */ /* --- macros and constants --- */ #define LARGEALIGNMENT (256) #define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */ #define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base))) #define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */ #define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING) #define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */ #define MIN_MAGAZINE_SIZE (4) #define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */ #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */ #define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1) #define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */ #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT) #define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE) /* optimized version of ALIGN (size, P2ALIGNMENT) */ #if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */ #define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7) #elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */ #define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf) #else #define P2ALIGN(size) ALIGN (size, P2ALIGNMENT) #endif /* special helpers to avoid gmessage.c dependency */ static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2); #define mem_assert(cond) do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0) /* --- structures --- */ typedef struct _ChunkLink ChunkLink; typedef struct _SlabInfo SlabInfo; typedef struct _CachedMagazine CachedMagazine; struct _ChunkLink { ChunkLink *next; ChunkLink *data; }; struct _SlabInfo { ChunkLink *chunks; guint n_allocated; SlabInfo *next, *prev; }; typedef struct { ChunkLink *chunks; gsize count; /* approximative chunks list length */ } Magazine; typedef struct { Magazine *magazine1; /* array of MAX_SLAB_INDEX (allocator) */ Magazine *magazine2; /* array of MAX_SLAB_INDEX (allocator) */ } ThreadMemory; typedef struct { gboolean always_malloc; gboolean bypass_magazines; gboolean debug_blocks; gsize working_set_msecs; guint color_increment; } SliceConfig; typedef struct { /* const after initialization */ gsize min_page_size, max_page_size; SliceConfig config; gsize max_slab_chunk_size_for_magazine_cache; /* magazine cache */ GMutex magazine_mutex; ChunkLink **magazines; /* array of MAX_SLAB_INDEX (allocator) */ guint *contention_counters; /* array of MAX_SLAB_INDEX (allocator) */ gint mutex_counter; guint stamp_counter; guint last_stamp; /* slab allocator */ GMutex slab_mutex; SlabInfo **slab_stack; /* array of MAX_SLAB_INDEX (allocator) */ guint color_accu; } Allocator; /* --- g-slice prototypes --- */ static gpointer slab_allocator_alloc_chunk (gsize chunk_size); static void slab_allocator_free_chunk (gsize chunk_size, gpointer mem); static void private_thread_memory_cleanup (gpointer data); static gpointer allocator_memalign (gsize alignment, gsize memsize); static void allocator_memfree (gsize memsize, gpointer mem); static inline void magazine_cache_update_stamp (void); static inline gsize allocator_get_magazine_threshold (Allocator *allocator, guint ix); /* --- g-slice memory checker --- */ static void smc_notify_alloc (void *pointer, size_t size); static int smc_notify_free (void *pointer, size_t size); /* --- variables --- */ static GPrivate private_thread_memory = G_PRIVATE_INIT (private_thread_memory_cleanup); static gsize sys_page_size = 0; static Allocator allocator[1] = { { 0, }, }; static SliceConfig slice_config = { FALSE, /* always_malloc */ FALSE, /* bypass_magazines */ FALSE, /* debug_blocks */ 15 * 1000, /* working_set_msecs */ 1, /* color increment, alt: 0x7fffffff */ }; static GMutex smc_tree_mutex; /* mutex for G_SLICE=debug-blocks */ /* --- auxiliary funcitons --- */ void g_slice_set_config (GSliceConfig ckey, gint64 value) { g_return_if_fail (sys_page_size == 0); switch (ckey) { case G_SLICE_CONFIG_ALWAYS_MALLOC: slice_config.always_malloc = value != 0; break; case G_SLICE_CONFIG_BYPASS_MAGAZINES: slice_config.bypass_magazines = value != 0; break; case G_SLICE_CONFIG_WORKING_SET_MSECS: slice_config.working_set_msecs = value; break; case G_SLICE_CONFIG_COLOR_INCREMENT: slice_config.color_increment = value; default: ; } } gint64 g_slice_get_config (GSliceConfig ckey) { switch (ckey) { case G_SLICE_CONFIG_ALWAYS_MALLOC: return slice_config.always_malloc; case G_SLICE_CONFIG_BYPASS_MAGAZINES: return slice_config.bypass_magazines; case G_SLICE_CONFIG_WORKING_SET_MSECS: return slice_config.working_set_msecs; case G_SLICE_CONFIG_CHUNK_SIZES: return MAX_SLAB_INDEX (allocator); case G_SLICE_CONFIG_COLOR_INCREMENT: return slice_config.color_increment; default: return 0; } } gint64* g_slice_get_config_state (GSliceConfig ckey, gint64 address, guint *n_values) { guint i = 0; g_return_val_if_fail (n_values != NULL, NULL); *n_values = 0; switch (ckey) { gint64 array[64]; case G_SLICE_CONFIG_CONTENTION_COUNTER: array[i++] = SLAB_CHUNK_SIZE (allocator, address); array[i++] = allocator->contention_counters[address]; array[i++] = allocator_get_magazine_threshold (allocator, address); *n_values = i; return g_memdup (array, sizeof (array[0]) * *n_values); default: return NULL; } } static void slice_config_init (SliceConfig *config) { const gchar *val; *config = slice_config; val = getenv ("G_SLICE"); if (val != NULL) { gint flags; const GDebugKey keys[] = { { "always-malloc", 1 << 0 }, { "debug-blocks", 1 << 1 }, }; flags = g_parse_debug_string (val, keys, G_N_ELEMENTS (keys)); if (flags & (1 << 0)) config->always_malloc = TRUE; if (flags & (1 << 1)) config->debug_blocks = TRUE; } else { /* G_SLICE was not specified, so check if valgrind is running and * disable ourselves if it is. * * This way it's possible to force gslice to be enabled under * valgrind just by setting G_SLICE to the empty string. */ if (RUNNING_ON_VALGRIND) config->always_malloc = TRUE; } } static void g_slice_init_nomessage (void) { /* we may not use g_error() or friends here */ mem_assert (sys_page_size == 0); mem_assert (MIN_MAGAZINE_SIZE >= 4); #ifdef G_OS_WIN32 { SYSTEM_INFO system_info; GetSystemInfo (&system_info); sys_page_size = system_info.dwPageSize; } #else sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */ #endif mem_assert (sys_page_size >= 2 * LARGEALIGNMENT); mem_assert ((sys_page_size & (sys_page_size - 1)) == 0); slice_config_init (&allocator->config); allocator->min_page_size = sys_page_size; #if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN /* allow allocation of pages up to 8KB (with 8KB alignment). * this is useful because many medium to large sized structures * fit less than 8 times (see [4]) into 4KB pages. * we allow very small page sizes here, to reduce wastage in * threads if only small allocations are required (this does * bear the risk of increasing allocation times and fragmentation * though). */ allocator->min_page_size = MAX (allocator->min_page_size, 4096); allocator->max_page_size = MAX (allocator->min_page_size, 8192); allocator->min_page_size = MIN (allocator->min_page_size, 128); #else /* we can only align to system page size */ allocator->max_page_size = sys_page_size; #endif if (allocator->config.always_malloc) { allocator->contention_counters = NULL; allocator->magazines = NULL; allocator->slab_stack = NULL; } else { allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator)); allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator)); allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator)); } allocator->mutex_counter = 0; allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */ allocator->last_stamp = 0; allocator->color_accu = 0; magazine_cache_update_stamp(); /* values cached for performance reasons */ allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator); if (allocator->config.always_malloc || allocator->config.bypass_magazines) allocator->max_slab_chunk_size_for_magazine_cache = 0; /* non-optimized cases */ } static inline guint allocator_categorize (gsize aligned_chunk_size) { /* speed up the likely path */ if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache)) return 1; /* use magazine cache */ if (!allocator->config.always_malloc && aligned_chunk_size && aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator)) { if (allocator->config.bypass_magazines) return 2; /* use slab allocator, see [2] */ return 1; /* use magazine cache */ } return 0; /* use malloc() */ } static inline void g_mutex_lock_a (GMutex *mutex, guint *contention_counter) { gboolean contention = FALSE; if (!g_mutex_trylock (mutex)) { g_mutex_lock (mutex); contention = TRUE; } if (contention) { allocator->mutex_counter++; if (allocator->mutex_counter >= 1) /* quickly adapt to contention */ { allocator->mutex_counter = 0; *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE); } } else /* !contention */ { allocator->mutex_counter--; if (allocator->mutex_counter < -11) /* moderately recover magazine sizes */ { allocator->mutex_counter = 0; *contention_counter = MAX (*contention_counter, 1) - 1; } } } static inline ThreadMemory* thread_memory_from_self (void) { ThreadMemory *tmem = g_private_get (&private_thread_memory); if (G_UNLIKELY (!tmem)) { static GMutex init_mutex; guint n_magazines; g_mutex_lock (&init_mutex); if G_UNLIKELY (sys_page_size == 0) g_slice_init_nomessage (); g_mutex_unlock (&init_mutex); n_magazines = MAX_SLAB_INDEX (allocator); tmem = g_malloc0 (sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines); tmem->magazine1 = (Magazine*) (tmem + 1); tmem->magazine2 = &tmem->magazine1[n_magazines]; g_private_set (&private_thread_memory, tmem); } return tmem; } static inline ChunkLink* magazine_chain_pop_head (ChunkLink **magazine_chunks) { /* magazine chains are linked via ChunkLink->next. * each ChunkLink->data of the toplevel chain may point to a subchain, * linked via ChunkLink->next. ChunkLink->data of the subchains just * contains uninitialized junk. */ ChunkLink *chunk = (*magazine_chunks)->data; if (G_UNLIKELY (chunk)) { /* allocating from freed list */ (*magazine_chunks)->data = chunk->next; } else { chunk = *magazine_chunks; *magazine_chunks = chunk->next; } return chunk; } #if 0 /* useful for debugging */ static guint magazine_count (ChunkLink *head) { guint count = 0; if (!head) return 0; while (head) { ChunkLink *child = head->data; count += 1; for (child = head->data; child; child = child->next) count += 1; head = head->next; } return count; } #endif static inline gsize allocator_get_magazine_threshold (Allocator *allocator, guint ix) { /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE, * which is required by the implementation. also, for moderately sized chunks * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number * of chunks available per page/2 to avoid excessive traffic in the magazine * cache for small to medium sized structures. * the upper bound of the magazine size is effectively provided by * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that * the content of a single magazine doesn't exceed ca. 16KB. */ gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix); guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32)); guint contention_counter = allocator->contention_counters[ix]; if (G_UNLIKELY (contention_counter)) /* single CPU bias */ { /* adapt contention counter thresholds to chunk sizes */ contention_counter = contention_counter * 64 / chunk_size; threshold = MAX (threshold, contention_counter); } return threshold; } /* --- magazine cache --- */ static inline void magazine_cache_update_stamp (void) { if (allocator->stamp_counter >= MAX_STAMP_COUNTER) { GTimeVal tv; g_get_current_time (&tv); allocator->last_stamp = tv.tv_sec * 1000 + tv.tv_usec / 1000; /* milli seconds */ allocator->stamp_counter = 0; } else allocator->stamp_counter++; } static inline ChunkLink* magazine_chain_prepare_fields (ChunkLink *magazine_chunks) { ChunkLink *chunk1; ChunkLink *chunk2; ChunkLink *chunk3; ChunkLink *chunk4; /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */ /* ensure a magazine with at least 4 unused data pointers */ chunk1 = magazine_chain_pop_head (&magazine_chunks); chunk2 = magazine_chain_pop_head (&magazine_chunks); chunk3 = magazine_chain_pop_head (&magazine_chunks); chunk4 = magazine_chain_pop_head (&magazine_chunks); chunk4->next = magazine_chunks; chunk3->next = chunk4; chunk2->next = chunk3; chunk1->next = chunk2; return chunk1; } /* access the first 3 fields of a specially prepared magazine chain */ #define magazine_chain_prev(mc) ((mc)->data) #define magazine_chain_stamp(mc) ((mc)->next->data) #define magazine_chain_uint_stamp(mc) GPOINTER_TO_UINT ((mc)->next->data) #define magazine_chain_next(mc) ((mc)->next->next->data) #define magazine_chain_count(mc) ((mc)->next->next->next->data) static void magazine_cache_trim (Allocator *allocator, guint ix, guint stamp) { /* g_mutex_lock (allocator->mutex); done by caller */ /* trim magazine cache from tail */ ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]); ChunkLink *trash = NULL; while (ABS (stamp - magazine_chain_uint_stamp (current)) >= allocator->config.working_set_msecs) { /* unlink */ ChunkLink *prev = magazine_chain_prev (current); ChunkLink *next = magazine_chain_next (current); magazine_chain_next (prev) = next; magazine_chain_prev (next) = prev; /* clear special fields, put on trash stack */ magazine_chain_next (current) = NULL; magazine_chain_count (current) = NULL; magazine_chain_stamp (current) = NULL; magazine_chain_prev (current) = trash; trash = current; /* fixup list head if required */ if (current == allocator->magazines[ix]) { allocator->magazines[ix] = NULL; break; } current = prev; } g_mutex_unlock (&allocator->magazine_mutex); /* free trash */ if (trash) { const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix); g_mutex_lock (&allocator->slab_mutex); while (trash) { current = trash; trash = magazine_chain_prev (current); magazine_chain_prev (current) = NULL; /* clear special field */ while (current) { ChunkLink *chunk = magazine_chain_pop_head (¤t); slab_allocator_free_chunk (chunk_size, chunk); } } g_mutex_unlock (&allocator->slab_mutex); } } static void magazine_cache_push_magazine (guint ix, ChunkLink *magazine_chunks, gsize count) /* must be >= MIN_MAGAZINE_SIZE */ { ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks); ChunkLink *next, *prev; g_mutex_lock (&allocator->magazine_mutex); /* add magazine at head */ next = allocator->magazines[ix]; if (next) prev = magazine_chain_prev (next); else next = prev = current; magazine_chain_next (prev) = current; magazine_chain_prev (next) = current; magazine_chain_prev (current) = prev; magazine_chain_next (current) = next; magazine_chain_count (current) = (gpointer) count; /* stamp magazine */ magazine_cache_update_stamp(); magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp); allocator->magazines[ix] = current; /* free old magazines beyond a certain threshold */ magazine_cache_trim (allocator, ix, allocator->last_stamp); /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */ } static ChunkLink* magazine_cache_pop_magazine (guint ix, gsize *countp) { g_mutex_lock_a (&allocator->magazine_mutex, &allocator->contention_counters[ix]); if (!allocator->magazines[ix]) { guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix); gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix); ChunkLink *chunk, *head; g_mutex_unlock (&allocator->magazine_mutex); g_mutex_lock (&allocator->slab_mutex); head = slab_allocator_alloc_chunk (chunk_size); head->data = NULL; chunk = head; for (i = 1; i < magazine_threshold; i++) { chunk->next = slab_allocator_alloc_chunk (chunk_size); chunk = chunk->next; chunk->data = NULL; } chunk->next = NULL; g_mutex_unlock (&allocator->slab_mutex); *countp = i; return head; } else { ChunkLink *current = allocator->magazines[ix]; ChunkLink *prev = magazine_chain_prev (current); ChunkLink *next = magazine_chain_next (current); /* unlink */ magazine_chain_next (prev) = next; magazine_chain_prev (next) = prev; allocator->magazines[ix] = next == current ? NULL : next; g_mutex_unlock (&allocator->magazine_mutex); /* clear special fields and hand out */ *countp = (gsize) magazine_chain_count (current); magazine_chain_prev (current) = NULL; magazine_chain_next (current) = NULL; magazine_chain_count (current) = NULL; magazine_chain_stamp (current) = NULL; return current; } } /* --- thread magazines --- */ static void private_thread_memory_cleanup (gpointer data) { ThreadMemory *tmem = data; const guint n_magazines = MAX_SLAB_INDEX (allocator); guint ix; for (ix = 0; ix < n_magazines; ix++) { Magazine *mags[2]; guint j; mags[0] = &tmem->magazine1[ix]; mags[1] = &tmem->magazine2[ix]; for (j = 0; j < 2; j++) { Magazine *mag = mags[j]; if (mag->count >= MIN_MAGAZINE_SIZE) magazine_cache_push_magazine (ix, mag->chunks, mag->count); else { const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix); g_mutex_lock (&allocator->slab_mutex); while (mag->chunks) { ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks); slab_allocator_free_chunk (chunk_size, chunk); } g_mutex_unlock (&allocator->slab_mutex); } } } g_free (tmem); } static void thread_memory_magazine1_reload (ThreadMemory *tmem, guint ix) { Magazine *mag = &tmem->magazine1[ix]; mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */ mag->count = 0; mag->chunks = magazine_cache_pop_magazine (ix, &mag->count); } static void thread_memory_magazine2_unload (ThreadMemory *tmem, guint ix) { Magazine *mag = &tmem->magazine2[ix]; magazine_cache_push_magazine (ix, mag->chunks, mag->count); mag->chunks = NULL; mag->count = 0; } static inline void thread_memory_swap_magazines (ThreadMemory *tmem, guint ix) { Magazine xmag = tmem->magazine1[ix]; tmem->magazine1[ix] = tmem->magazine2[ix]; tmem->magazine2[ix] = xmag; } static inline gboolean thread_memory_magazine1_is_empty (ThreadMemory *tmem, guint ix) { return tmem->magazine1[ix].chunks == NULL; } static inline gboolean thread_memory_magazine2_is_full (ThreadMemory *tmem, guint ix) { return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix); } static inline gpointer thread_memory_magazine1_alloc (ThreadMemory *tmem, guint ix) { Magazine *mag = &tmem->magazine1[ix]; ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks); if (G_LIKELY (mag->count > 0)) mag->count--; return chunk; } static inline void thread_memory_magazine2_free (ThreadMemory *tmem, guint ix, gpointer mem) { Magazine *mag = &tmem->magazine2[ix]; ChunkLink *chunk = mem; chunk->data = NULL; chunk->next = mag->chunks; mag->chunks = chunk; mag->count++; } /* --- API functions --- */ /** * g_slice_new: * @type: the type to allocate, typically a structure name * * A convenience macro to allocate a block of memory from the * slice allocator. * * It calls g_slice_alloc() with `sizeof (@type)` and casts the * returned pointer to a pointer of the given type, avoiding a type * cast in the source code. Note that the underlying slice allocation * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE] * environment variable. * * This can never return %NULL as the minimum allocation size from * `sizeof (@type)` is 1 byte. * * Returns: (not nullable): a pointer to the allocated block, cast to a pointer * to @type * * Since: 2.10 */ /** * g_slice_new0: * @type: the type to allocate, typically a structure name * * A convenience macro to allocate a block of memory from the * slice allocator and set the memory to 0. * * It calls g_slice_alloc0() with `sizeof (@type)` * and casts the returned pointer to a pointer of the given type, * avoiding a type cast in the source code. * Note that the underlying slice allocation mechanism can * be changed with the [`G_SLICE=always-malloc`][G_SLICE] * environment variable. * * This can never return %NULL as the minimum allocation size from * `sizeof (@type)` is 1 byte. * * Returns: (not nullable): a pointer to the allocated block, cast to a pointer * to @type * * Since: 2.10 */ /** * g_slice_dup: * @type: the type to duplicate, typically a structure name * @mem: (not nullable): the memory to copy into the allocated block * * A convenience macro to duplicate a block of memory using * the slice allocator. * * It calls g_slice_copy() with `sizeof (@type)` * and casts the returned pointer to a pointer of the given type, * avoiding a type cast in the source code. * Note that the underlying slice allocation mechanism can * be changed with the [`G_SLICE=always-malloc`][G_SLICE] * environment variable. * * This can never return %NULL. * * Returns: (not nullable): a pointer to the allocated block, cast to a pointer * to @type * * Since: 2.14 */ /** * g_slice_free: * @type: the type of the block to free, typically a structure name * @mem: a pointer to the block to free * * A convenience macro to free a block of memory that has * been allocated from the slice allocator. * * It calls g_slice_free1() using `sizeof (type)` * as the block size. * Note that the exact release behaviour can be changed with the * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see * [`G_SLICE`][G_SLICE] for related debugging options. * * If @mem is %NULL, this macro does nothing. * * Since: 2.10 */ /** * g_slice_free_chain: * @type: the type of the @mem_chain blocks * @mem_chain: a pointer to the first block of the chain * @next: the field name of the next pointer in @type * * Frees a linked list of memory blocks of structure type @type. * The memory blocks must be equal-sized, allocated via * g_slice_alloc() or g_slice_alloc0() and linked together by * a @next pointer (similar to #GSList). The name of the * @next field in @type is passed as third argument. * Note that the exact release behaviour can be changed with the * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see * [`G_SLICE`][G_SLICE] for related debugging options. * * If @mem_chain is %NULL, this function does nothing. * * Since: 2.10 */ /** * g_slice_alloc: * @block_size: the number of bytes to allocate * * Allocates a block of memory from the slice allocator. * The block address handed out can be expected to be aligned * to at least 1 * sizeof (void*), * though in general slices are 2 * sizeof (void*) bytes aligned, * if a malloc() fallback implementation is used instead, * the alignment may be reduced in a libc dependent fashion. * Note that the underlying slice allocation mechanism can * be changed with the [`G_SLICE=always-malloc`][G_SLICE] * environment variable. * * Returns: a pointer to the allocated memory block, which will be %NULL if and * only if @mem_size is 0 * * Since: 2.10 */ gpointer g_slice_alloc (gsize mem_size) { ThreadMemory *tmem; gsize chunk_size; gpointer mem; guint acat; /* This gets the private structure for this thread. If the private * structure does not yet exist, it is created. * * This has a side effect of causing GSlice to be initialised, so it * must come first. */ tmem = thread_memory_from_self (); chunk_size = P2ALIGN (mem_size); acat = allocator_categorize (chunk_size); if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ { guint ix = SLAB_INDEX (allocator, chunk_size); if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix))) { thread_memory_swap_magazines (tmem, ix); if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix))) thread_memory_magazine1_reload (tmem, ix); } mem = thread_memory_magazine1_alloc (tmem, ix); } else if (acat == 2) /* allocate through slab allocator */ { g_mutex_lock (&allocator->slab_mutex); mem = slab_allocator_alloc_chunk (chunk_size); g_mutex_unlock (&allocator->slab_mutex); } else /* delegate to system malloc */ mem = g_malloc (mem_size); if (G_UNLIKELY (allocator->config.debug_blocks)) smc_notify_alloc (mem, mem_size); TRACE (GLIB_SLICE_ALLOC((void*)mem, mem_size)); return mem; } /** * g_slice_alloc0: * @block_size: the number of bytes to allocate * * Allocates a block of memory via g_slice_alloc() and initializes * the returned memory to 0. Note that the underlying slice allocation * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE] * environment variable. * * Returns: a pointer to the allocated block, which will be %NULL if and only * if @mem_size is 0 * * Since: 2.10 */ gpointer g_slice_alloc0 (gsize mem_size) { gpointer mem = g_slice_alloc (mem_size); if (mem) memset (mem, 0, mem_size); return mem; } /** * g_slice_copy: * @block_size: the number of bytes to allocate * @mem_block: the memory to copy * * Allocates a block of memory from the slice allocator * and copies @block_size bytes into it from @mem_block. * * @mem_block must be non-%NULL if @block_size is non-zero. * * Returns: a pointer to the allocated memory block, which will be %NULL if and * only if @mem_size is 0 * * Since: 2.14 */ gpointer g_slice_copy (gsize mem_size, gconstpointer mem_block) { gpointer mem = g_slice_alloc (mem_size); if (mem) memcpy (mem, mem_block, mem_size); return mem; } /** * g_slice_free1: * @block_size: the size of the block * @mem_block: a pointer to the block to free * * Frees a block of memory. * * The memory must have been allocated via g_slice_alloc() or * g_slice_alloc0() and the @block_size has to match the size * specified upon allocation. Note that the exact release behaviour * can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment * variable, also see [`G_SLICE`][G_SLICE] for related debugging options. * * If @mem_block is %NULL, this function does nothing. * * Since: 2.10 */ void g_slice_free1 (gsize mem_size, gpointer mem_block) { gsize chunk_size = P2ALIGN (mem_size); guint acat = allocator_categorize (chunk_size); if (G_UNLIKELY (!mem_block)) return; if (G_UNLIKELY (allocator->config.debug_blocks) && !smc_notify_free (mem_block, mem_size)) abort(); if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ { ThreadMemory *tmem = thread_memory_from_self(); guint ix = SLAB_INDEX (allocator, chunk_size); if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) { thread_memory_swap_magazines (tmem, ix); if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) thread_memory_magazine2_unload (tmem, ix); } if (G_UNLIKELY (g_mem_gc_friendly)) memset (mem_block, 0, chunk_size); thread_memory_magazine2_free (tmem, ix, mem_block); } else if (acat == 2) /* allocate through slab allocator */ { if (G_UNLIKELY (g_mem_gc_friendly)) memset (mem_block, 0, chunk_size); g_mutex_lock (&allocator->slab_mutex); slab_allocator_free_chunk (chunk_size, mem_block); g_mutex_unlock (&allocator->slab_mutex); } else /* delegate to system malloc */ { if (G_UNLIKELY (g_mem_gc_friendly)) memset (mem_block, 0, mem_size); g_free (mem_block); } TRACE (GLIB_SLICE_FREE((void*)mem_block, mem_size)); } /** * g_slice_free_chain_with_offset: * @block_size: the size of the blocks * @mem_chain: a pointer to the first block of the chain * @next_offset: the offset of the @next field in the blocks * * Frees a linked list of memory blocks of structure type @type. * * The memory blocks must be equal-sized, allocated via * g_slice_alloc() or g_slice_alloc0() and linked together by a * @next pointer (similar to #GSList). The offset of the @next * field in each block is passed as third argument. * Note that the exact release behaviour can be changed with the * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see * [`G_SLICE`][G_SLICE] for related debugging options. * * If @mem_chain is %NULL, this function does nothing. * * Since: 2.10 */ void g_slice_free_chain_with_offset (gsize mem_size, gpointer mem_chain, gsize next_offset) { gpointer slice = mem_chain; /* while the thread magazines and the magazine cache are implemented so that * they can easily be extended to allow for free lists containing more free * lists for the first level nodes, which would allow O(1) freeing in this * function, the benefit of such an extension is questionable, because: * - the magazine size counts will become mere lower bounds which confuses * the code adapting to lock contention; * - freeing a single node to the thread magazines is very fast, so this * O(list_length) operation is multiplied by a fairly small factor; * - memory usage histograms on larger applications seem to indicate that * the amount of released multi node lists is negligible in comparison * to single node releases. * - the major performance bottle neck, namely g_private_get() or * g_mutex_lock()/g_mutex_unlock() has already been moved out of the * inner loop for freeing chained slices. */ gsize chunk_size = P2ALIGN (mem_size); guint acat = allocator_categorize (chunk_size); if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ { ThreadMemory *tmem = thread_memory_from_self(); guint ix = SLAB_INDEX (allocator, chunk_size); while (slice) { guint8 *current = slice; slice = *(gpointer*) (current + next_offset); if (G_UNLIKELY (allocator->config.debug_blocks) && !smc_notify_free (current, mem_size)) abort(); if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) { thread_memory_swap_magazines (tmem, ix); if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) thread_memory_magazine2_unload (tmem, ix); } if (G_UNLIKELY (g_mem_gc_friendly)) memset (current, 0, chunk_size); thread_memory_magazine2_free (tmem, ix, current); } } else if (acat == 2) /* allocate through slab allocator */ { g_mutex_lock (&allocator->slab_mutex); while (slice) { guint8 *current = slice; slice = *(gpointer*) (current + next_offset); if (G_UNLIKELY (allocator->config.debug_blocks) && !smc_notify_free (current, mem_size)) abort(); if (G_UNLIKELY (g_mem_gc_friendly)) memset (current, 0, chunk_size); slab_allocator_free_chunk (chunk_size, current); } g_mutex_unlock (&allocator->slab_mutex); } else /* delegate to system malloc */ while (slice) { guint8 *current = slice; slice = *(gpointer*) (current + next_offset); if (G_UNLIKELY (allocator->config.debug_blocks) && !smc_notify_free (current, mem_size)) abort(); if (G_UNLIKELY (g_mem_gc_friendly)) memset (current, 0, mem_size); g_free (current); } } /* --- single page allocator --- */ static void allocator_slab_stack_push (Allocator *allocator, guint ix, SlabInfo *sinfo) { /* insert slab at slab ring head */ if (!allocator->slab_stack[ix]) { sinfo->next = sinfo; sinfo->prev = sinfo; } else { SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev; next->prev = sinfo; prev->next = sinfo; sinfo->next = next; sinfo->prev = prev; } allocator->slab_stack[ix] = sinfo; } static gsize allocator_aligned_page_size (Allocator *allocator, gsize n_bytes) { gsize val = 1 << g_bit_storage (n_bytes - 1); val = MAX (val, allocator->min_page_size); return val; } static void allocator_add_slab (Allocator *allocator, guint ix, gsize chunk_size) { ChunkLink *chunk; SlabInfo *sinfo; gsize addr, padding, n_chunks, color = 0; gsize page_size; int errsv; gpointer aligned_memory; guint8 *mem; guint i; page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size)); /* allocate 1 page for the chunks and the slab */ aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING); errsv = errno; mem = aligned_memory; if (!mem) { const gchar *syserr = strerror (errsv); mem_error ("failed to allocate %u bytes (alignment: %u): %s\n", (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr); } /* mask page address */ addr = ((gsize) mem / page_size) * page_size; /* assert alignment */ mem_assert (aligned_memory == (gpointer) addr); /* basic slab info setup */ sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE); sinfo->n_allocated = 0; sinfo->chunks = NULL; /* figure cache colorization */ n_chunks = ((guint8*) sinfo - mem) / chunk_size; padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size; if (padding) { color = (allocator->color_accu * P2ALIGNMENT) % padding; allocator->color_accu += allocator->config.color_increment; } /* add chunks to free list */ chunk = (ChunkLink*) (mem + color); sinfo->chunks = chunk; for (i = 0; i < n_chunks - 1; i++) { chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size); chunk = chunk->next; } chunk->next = NULL; /* last chunk */ /* add slab to slab ring */ allocator_slab_stack_push (allocator, ix, sinfo); } static gpointer slab_allocator_alloc_chunk (gsize chunk_size) { ChunkLink *chunk; guint ix = SLAB_INDEX (allocator, chunk_size); /* ensure non-empty slab */ if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks) allocator_add_slab (allocator, ix, chunk_size); /* allocate chunk */ chunk = allocator->slab_stack[ix]->chunks; allocator->slab_stack[ix]->chunks = chunk->next; allocator->slab_stack[ix]->n_allocated++; /* rotate empty slabs */ if (!allocator->slab_stack[ix]->chunks) allocator->slab_stack[ix] = allocator->slab_stack[ix]->next; return chunk; } static void slab_allocator_free_chunk (gsize chunk_size, gpointer mem) { ChunkLink *chunk; gboolean was_empty; guint ix = SLAB_INDEX (allocator, chunk_size); gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size)); gsize addr = ((gsize) mem / page_size) * page_size; /* mask page address */ guint8 *page = (guint8*) addr; SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE); /* assert valid chunk count */ mem_assert (sinfo->n_allocated > 0); /* add chunk to free list */ was_empty = sinfo->chunks == NULL; chunk = (ChunkLink*) mem; chunk->next = sinfo->chunks; sinfo->chunks = chunk; sinfo->n_allocated--; /* keep slab ring partially sorted, empty slabs at end */ if (was_empty) { /* unlink slab */ SlabInfo *next = sinfo->next, *prev = sinfo->prev; next->prev = prev; prev->next = next; if (allocator->slab_stack[ix] == sinfo) allocator->slab_stack[ix] = next == sinfo ? NULL : next; /* insert slab at head */ allocator_slab_stack_push (allocator, ix, sinfo); } /* eagerly free complete unused slabs */ if (!sinfo->n_allocated) { /* unlink slab */ SlabInfo *next = sinfo->next, *prev = sinfo->prev; next->prev = prev; prev->next = next; if (allocator->slab_stack[ix] == sinfo) allocator->slab_stack[ix] = next == sinfo ? NULL : next; /* free slab */ allocator_memfree (page_size, page); } } /* --- memalign implementation --- */ #ifdef HAVE_MALLOC_H #include /* memalign() */ #endif /* from config.h: * define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, * define HAVE_COMPLIANT_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works for sizes != 2^n, * define HAVE_MEMALIGN 1 // if free(memalign(3)) works, * define HAVE_VALLOC 1 // if free(valloc(3)) works, or * if none is provided, we implement malloc(3)-based alloc-only page alignment */ #if !(HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC) static GTrashStack *compat_valloc_trash = NULL; #endif static gpointer allocator_memalign (gsize alignment, gsize memsize) { gpointer aligned_memory = NULL; gint err = ENOMEM; #if HAVE_COMPLIANT_POSIX_MEMALIGN err = posix_memalign (&aligned_memory, alignment, memsize); #elif HAVE_MEMALIGN errno = 0; aligned_memory = memalign (alignment, memsize); err = errno; #elif HAVE_VALLOC errno = 0; aligned_memory = valloc (memsize); err = errno; #else /* simplistic non-freeing page allocator */ mem_assert (alignment == sys_page_size); mem_assert (memsize <= sys_page_size); if (!compat_valloc_trash) { const guint n_pages = 16; guint8 *mem = malloc (n_pages * sys_page_size); err = errno; if (mem) { gint i = n_pages; guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size); if (amem != mem) i--; /* mem wasn't page aligned */ while (--i >= 0) g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size); } } aligned_memory = g_trash_stack_pop (&compat_valloc_trash); #endif if (!aligned_memory) errno = err; return aligned_memory; } static void allocator_memfree (gsize memsize, gpointer mem) { #if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC free (mem); #else mem_assert (memsize <= sys_page_size); g_trash_stack_push (&compat_valloc_trash, mem); #endif } static void mem_error (const char *format, ...) { const char *pname; va_list args; /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */ fputs ("\n***MEMORY-ERROR***: ", stderr); pname = g_get_prgname(); fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid()); va_start (args, format); vfprintf (stderr, format, args); va_end (args); fputs ("\n", stderr); abort(); _exit (1); } /* --- g-slice memory checker tree --- */ typedef size_t SmcKType; /* key type */ typedef size_t SmcVType; /* value type */ typedef struct { SmcKType key; SmcVType value; } SmcEntry; static void smc_tree_insert (SmcKType key, SmcVType value); static gboolean smc_tree_lookup (SmcKType key, SmcVType *value_p); static gboolean smc_tree_remove (SmcKType key); /* --- g-slice memory checker implementation --- */ static void smc_notify_alloc (void *pointer, size_t size) { size_t address = (size_t) pointer; if (pointer) smc_tree_insert (address, size); } #if 0 static void smc_notify_ignore (void *pointer) { size_t address = (size_t) pointer; if (pointer) smc_tree_remove (address); } #endif static int smc_notify_free (void *pointer, size_t size) { size_t address = (size_t) pointer; SmcVType real_size; gboolean found_one; if (!pointer) return 1; /* ignore */ found_one = smc_tree_lookup (address, &real_size); if (!found_one) { fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size); return 0; } if (real_size != size && (real_size || size)) { fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size); return 0; } if (!smc_tree_remove (address)) { fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size); return 0; } return 1; /* all fine */ } /* --- g-slice memory checker tree implementation --- */ #define SMC_TRUNK_COUNT (4093 /* 16381 */) /* prime, to distribute trunk collisions (big, allocated just once) */ #define SMC_BRANCH_COUNT (511) /* prime, to distribute branch collisions */ #define SMC_TRUNK_EXTENT (SMC_BRANCH_COUNT * 2039) /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */ #define SMC_TRUNK_HASH(k) ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT) /* generate new trunk hash per megabyte (roughly) */ #define SMC_BRANCH_HASH(k) (k % SMC_BRANCH_COUNT) typedef struct { SmcEntry *entries; unsigned int n_entries; } SmcBranch; static SmcBranch **smc_tree_root = NULL; static void smc_tree_abort (int errval) { const char *syserr = strerror (errval); mem_error ("MemChecker: failure in debugging tree: %s", syserr); } static inline SmcEntry* smc_tree_branch_grow_L (SmcBranch *branch, unsigned int index) { unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]); unsigned int new_size = old_size + sizeof (branch->entries[0]); SmcEntry *entry; mem_assert (index <= branch->n_entries); branch->entries = (SmcEntry*) realloc (branch->entries, new_size); if (!branch->entries) smc_tree_abort (errno); entry = branch->entries + index; memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0])); branch->n_entries += 1; return entry; } static inline SmcEntry* smc_tree_branch_lookup_nearest_L (SmcBranch *branch, SmcKType key) { unsigned int n_nodes = branch->n_entries, offs = 0; SmcEntry *check = branch->entries; int cmp = 0; while (offs < n_nodes) { unsigned int i = (offs + n_nodes) >> 1; check = branch->entries + i; cmp = key < check->key ? -1 : key != check->key; if (cmp == 0) return check; /* return exact match */ else if (cmp < 0) n_nodes = i; else /* (cmp > 0) */ offs = i + 1; } /* check points at last mismatch, cmp > 0 indicates greater key */ return cmp > 0 ? check + 1 : check; /* return insertion position for inexact match */ } static void smc_tree_insert (SmcKType key, SmcVType value) { unsigned int ix0, ix1; SmcEntry *entry; g_mutex_lock (&smc_tree_mutex); ix0 = SMC_TRUNK_HASH (key); ix1 = SMC_BRANCH_HASH (key); if (!smc_tree_root) { smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0])); if (!smc_tree_root) smc_tree_abort (errno); } if (!smc_tree_root[ix0]) { smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0])); if (!smc_tree_root[ix0]) smc_tree_abort (errno); } entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key); if (!entry || /* need create */ entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries || /* need append */ entry->key != key) /* need insert */ entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries); entry->key = key; entry->value = value; g_mutex_unlock (&smc_tree_mutex); } static gboolean smc_tree_lookup (SmcKType key, SmcVType *value_p) { SmcEntry *entry = NULL; unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key); gboolean found_one = FALSE; *value_p = 0; g_mutex_lock (&smc_tree_mutex); if (smc_tree_root && smc_tree_root[ix0]) { entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key); if (entry && entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries && entry->key == key) { found_one = TRUE; *value_p = entry->value; } } g_mutex_unlock (&smc_tree_mutex); return found_one; } static gboolean smc_tree_remove (SmcKType key) { unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key); gboolean found_one = FALSE; g_mutex_lock (&smc_tree_mutex); if (smc_tree_root && smc_tree_root[ix0]) { SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key); if (entry && entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries && entry->key == key) { unsigned int i = entry - smc_tree_root[ix0][ix1].entries; smc_tree_root[ix0][ix1].n_entries -= 1; memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0])); if (!smc_tree_root[ix0][ix1].n_entries) { /* avoid useless pressure on the memory system */ free (smc_tree_root[ix0][ix1].entries); smc_tree_root[ix0][ix1].entries = NULL; } found_one = TRUE; } } g_mutex_unlock (&smc_tree_mutex); return found_one; } #ifdef G_ENABLE_DEBUG void g_slice_debug_tree_statistics (void) { g_mutex_lock (&smc_tree_mutex); if (smc_tree_root) { unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u; double tf, bf; for (i = 0; i < SMC_TRUNK_COUNT; i++) if (smc_tree_root[i]) { t++; for (j = 0; j < SMC_BRANCH_COUNT; j++) if (smc_tree_root[i][j].n_entries) { b++; su += smc_tree_root[i][j].n_entries; en = MIN (en, smc_tree_root[i][j].n_entries); ex = MAX (ex, smc_tree_root[i][j].n_entries); } else if (smc_tree_root[i][j].entries) o++; /* formerly used, now empty */ } en = b ? en : 0; tf = MAX (t, 1.0); /* max(1) to be a valid divisor */ bf = MAX (b, 1.0); /* max(1) to be a valid divisor */ fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o); fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n", b / tf, 100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT)); fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n", su / bf, en, ex); } else fprintf (stderr, "GSlice: MemChecker: root=NULL\n"); g_mutex_unlock (&smc_tree_mutex); /* sample statistics (beast + GSLice + 24h scripted core & GUI activity): * PID %CPU %MEM VSZ RSS COMMAND * 8887 30.3 45.8 456068 414856 beast-0.7.1 empty.bse * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages * 114017 103714 2354 344 0 108676 0 * $ cat /proc/8887/status * Name: beast-0.7.1 * VmSize: 456068 kB * VmLck: 0 kB * VmRSS: 414856 kB * VmData: 434620 kB * VmStk: 84 kB * VmExe: 1376 kB * VmLib: 13036 kB * VmPTE: 456 kB * Threads: 3 * (gdb) print g_slice_debug_tree_statistics () * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum */ } #endif /* G_ENABLE_DEBUG */