/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* Originally developed and coded by Makoto Matsumoto and Takuji * Nishimura. Please mail , if you're using * code from this file in your own programs or libraries. * Further information on the Mersenne Twister can be found at * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html * This code was adapted to glib by Sebastian Wilhelmi. */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #include "config.h" #define _CRT_RAND_S #include #include #include #include #include #include "grand.h" #include "genviron.h" #include "gmain.h" #include "gmem.h" #include "gtestutils.h" #include "gthread.h" #ifdef G_OS_UNIX #include #endif #ifdef G_OS_WIN32 #include #include /* For getpid() */ #endif /** * SECTION:random_numbers * @title: Random Numbers * @short_description: pseudo-random number generator * * The following functions allow you to use a portable, fast and good * pseudo-random number generator (PRNG). * * Do not use this API for cryptographic purposes such as key * generation, nonces, salts or one-time pads. * * This PRNG is suitable for non-cryptographic use such as in games * (shuffling a card deck, generating levels), generating data for * a test suite, etc. If you need random data for cryptographic * purposes, it is recommended to use platform-specific APIs such * as `/dev/random` on UNIX, or CryptGenRandom() on Windows. * * GRand uses the Mersenne Twister PRNG, which was originally * developed by Makoto Matsumoto and Takuji Nishimura. Further * information can be found at * [this page](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html). * * If you just need a random number, you simply call the g_random_* * functions, which will create a globally used #GRand and use the * according g_rand_* functions internally. Whenever you need a * stream of reproducible random numbers, you better create a * #GRand yourself and use the g_rand_* functions directly, which * will also be slightly faster. Initializing a #GRand with a * certain seed will produce exactly the same series of random * numbers on all platforms. This can thus be used as a seed for * e.g. games. * * The g_rand*_range functions will return high quality equally * distributed random numbers, whereas for example the * `(g_random_int()%max)` approach often * doesn't yield equally distributed numbers. * * GLib changed the seeding algorithm for the pseudo-random number * generator Mersenne Twister, as used by #GRand. This was necessary, * because some seeds would yield very bad pseudo-random streams. * Also the pseudo-random integers generated by g_rand*_int_range() * will have a slightly better equal distribution with the new * version of GLib. * * The original seeding and generation algorithms, as found in * GLib 2.0.x, can be used instead of the new ones by setting the * environment variable `G_RANDOM_VERSION` to the value of '2.0'. * Use the GLib-2.0 algorithms only if you have sequences of numbers * generated with Glib-2.0 that you need to reproduce exactly. */ /** * GRand: * * The GRand struct is an opaque data structure. It should only be * accessed through the g_rand_* functions. **/ G_LOCK_DEFINE_STATIC (global_random); /* Period parameters */ #define N 624 #define M 397 #define MATRIX_A 0x9908b0df /* constant vector a */ #define UPPER_MASK 0x80000000 /* most significant w-r bits */ #define LOWER_MASK 0x7fffffff /* least significant r bits */ /* Tempering parameters */ #define TEMPERING_MASK_B 0x9d2c5680 #define TEMPERING_MASK_C 0xefc60000 #define TEMPERING_SHIFT_U(y) (y >> 11) #define TEMPERING_SHIFT_S(y) (y << 7) #define TEMPERING_SHIFT_T(y) (y << 15) #define TEMPERING_SHIFT_L(y) (y >> 18) static guint get_random_version (void) { static gsize initialized = FALSE; static guint random_version; if (g_once_init_enter (&initialized)) { const gchar *version_string = g_getenv ("G_RANDOM_VERSION"); if (!version_string || version_string[0] == '\000' || strcmp (version_string, "2.2") == 0) random_version = 22; else if (strcmp (version_string, "2.0") == 0) random_version = 20; else { g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.", version_string); random_version = 22; } g_once_init_leave (&initialized, TRUE); } return random_version; } struct _GRand { guint32 mt[N]; /* the array for the state vector */ guint mti; }; /** * g_rand_new_with_seed: * @seed: a value to initialize the random number generator * * Creates a new random number generator initialized with @seed. * * Returns: the new #GRand **/ GRand* g_rand_new_with_seed (guint32 seed) { GRand *rand = g_new0 (GRand, 1); g_rand_set_seed (rand, seed); return rand; } /** * g_rand_new_with_seed_array: * @seed: an array of seeds to initialize the random number generator * @seed_length: an array of seeds to initialize the random number * generator * * Creates a new random number generator initialized with @seed. * * Returns: the new #GRand * * Since: 2.4 */ GRand* g_rand_new_with_seed_array (const guint32 *seed, guint seed_length) { GRand *rand = g_new0 (GRand, 1); g_rand_set_seed_array (rand, seed, seed_length); return rand; } /** * g_rand_new: * * Creates a new random number generator initialized with a seed taken * either from `/dev/urandom` (if existing) or from the current time * (as a fallback). * * On Windows, the seed is taken from rand_s(). * * Returns: the new #GRand */ GRand* g_rand_new (void) { guint32 seed[4]; #ifdef G_OS_UNIX static gboolean dev_urandom_exists = TRUE; GTimeVal now; if (dev_urandom_exists) { FILE* dev_urandom; do { dev_urandom = fopen("/dev/urandom", "rb"); } while G_UNLIKELY (dev_urandom == NULL && errno == EINTR); if (dev_urandom) { int r; setvbuf (dev_urandom, NULL, _IONBF, 0); do { errno = 0; r = fread (seed, sizeof (seed), 1, dev_urandom); } while G_UNLIKELY (errno == EINTR); if (r != 1) dev_urandom_exists = FALSE; fclose (dev_urandom); } else dev_urandom_exists = FALSE; } if (!dev_urandom_exists) { g_get_current_time (&now); seed[0] = now.tv_sec; seed[1] = now.tv_usec; seed[2] = getpid (); seed[3] = getppid (); } #else /* G_OS_WIN32 */ /* rand_s() is only available since Visual Studio 2005 and * MinGW-w64 has a wrapper that will emulate rand_s() if it's not in msvcrt */ #if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR) gint i; for (i = 0; i < G_N_ELEMENTS (seed); i++) rand_s (&seed[i]); #else #warning Using insecure seed for random number generation because of missing rand_s() in Windows XP GTimeVal now; g_get_current_time (&now); seed[0] = now.tv_sec; seed[1] = now.tv_usec; seed[2] = getpid (); seed[3] = 0; #endif #endif return g_rand_new_with_seed_array (seed, 4); } /** * g_rand_free: * @rand_: a #GRand * * Frees the memory allocated for the #GRand. */ void g_rand_free (GRand *rand) { g_return_if_fail (rand != NULL); g_free (rand); } /** * g_rand_copy: * @rand_: a #GRand * * Copies a #GRand into a new one with the same exact state as before. * This way you can take a snapshot of the random number generator for * replaying later. * * Returns: the new #GRand * * Since: 2.4 */ GRand* g_rand_copy (GRand *rand) { GRand* new_rand; g_return_val_if_fail (rand != NULL, NULL); new_rand = g_new0 (GRand, 1); memcpy (new_rand, rand, sizeof (GRand)); return new_rand; } /** * g_rand_set_seed: * @rand_: a #GRand * @seed: a value to reinitialize the random number generator * * Sets the seed for the random number generator #GRand to @seed. */ void g_rand_set_seed (GRand *rand, guint32 seed) { g_return_if_fail (rand != NULL); switch (get_random_version ()) { case 20: /* setting initial seeds to mt[N] using */ /* the generator Line 25 of Table 1 in */ /* [KNUTH 1981, The Art of Computer Programming */ /* Vol. 2 (2nd Ed.), pp102] */ if (seed == 0) /* This would make the PRNG produce only zeros */ seed = 0x6b842128; /* Just set it to another number */ rand->mt[0]= seed; for (rand->mti=1; rand->mtimti++) rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]); break; case 22: /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous version (see above), MSBs of the */ /* seed affect only MSBs of the array mt[]. */ rand->mt[0]= seed; for (rand->mti=1; rand->mtimti++) rand->mt[rand->mti] = 1812433253UL * (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti; break; default: g_assert_not_reached (); } } /** * g_rand_set_seed_array: * @rand_: a #GRand * @seed: array to initialize with * @seed_length: length of array * * Initializes the random number generator by an array of longs. * Array can be of arbitrary size, though only the first 624 values * are taken. This function is useful if you have many low entropy * seeds, or if you require more then 32 bits of actual entropy for * your application. * * Since: 2.4 */ void g_rand_set_seed_array (GRand *rand, const guint32 *seed, guint seed_length) { int i, j, k; g_return_if_fail (rand != NULL); g_return_if_fail (seed_length >= 1); g_rand_set_seed (rand, 19650218UL); i=1; j=0; k = (N>seed_length ? N : seed_length); for (; k; k--) { rand->mt[i] = (rand->mt[i] ^ ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL)) + seed[j] + j; /* non linear */ rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; j++; if (i>=N) { rand->mt[0] = rand->mt[N-1]; i=1; } if (j>=seed_length) j=0; } for (k=N-1; k; k--) { rand->mt[i] = (rand->mt[i] ^ ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL)) - i; /* non linear */ rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; if (i>=N) { rand->mt[0] = rand->mt[N-1]; i=1; } } rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ } /** * g_rand_boolean: * @rand_: a #GRand * * Returns a random #gboolean from @rand_. * This corresponds to a unbiased coin toss. * * Returns: a random #gboolean */ /** * g_rand_int: * @rand_: a #GRand * * Returns the next random #guint32 from @rand_ equally distributed over * the range [0..2^32-1]. * * Returns: a random number */ guint32 g_rand_int (GRand *rand) { guint32 y; static const guint32 mag01[2]={0x0, MATRIX_A}; /* mag01[x] = x * MATRIX_A for x=0,1 */ g_return_val_if_fail (rand != NULL, 0); if (rand->mti >= N) { /* generate N words at one time */ int kk; for (kk = 0; kk < N - M; kk++) { y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]; } y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK); rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]; rand->mti = 0; } y = rand->mt[rand->mti++]; y ^= TEMPERING_SHIFT_U(y); y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; y ^= TEMPERING_SHIFT_L(y); return y; } /* transform [0..2^32] -> [0..1] */ #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10 /** * g_rand_int_range: * @rand_: a #GRand * @begin: lower closed bound of the interval * @end: upper open bound of the interval * * Returns the next random #gint32 from @rand_ equally distributed over * the range [@begin..@end-1]. * * Returns: a random number */ gint32 g_rand_int_range (GRand *rand, gint32 begin, gint32 end) { guint32 dist = end - begin; guint32 random; g_return_val_if_fail (rand != NULL, begin); g_return_val_if_fail (end > begin, begin); switch (get_random_version ()) { case 20: if (dist <= 0x10000L) /* 2^16 */ { /* This method, which only calls g_rand_int once is only good * for (end - begin) <= 2^16, because we only have 32 bits set * from the one call to g_rand_int (). * * We are using (trans + trans * trans), because g_rand_int only * covers [0..2^32-1] and thus g_rand_int * trans only covers * [0..1-2^-32], but the biggest double < 1 is 1-2^-52. */ gdouble double_rand = g_rand_int (rand) * (G_RAND_DOUBLE_TRANSFORM + G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM); random = (gint32) (double_rand * dist); } else { /* Now we use g_rand_double_range (), which will set 52 bits * for us, so that it is safe to round and still get a decent * distribution */ random = (gint32) g_rand_double_range (rand, 0, dist); } break; case 22: if (dist == 0) random = 0; else { /* maxvalue is set to the predecessor of the greatest * multiple of dist less or equal 2^32. */ guint32 maxvalue; if (dist <= 0x80000000u) /* 2^31 */ { /* maxvalue = 2^32 - 1 - (2^32 % dist) */ guint32 leftover = (0x80000000u % dist) * 2; if (leftover >= dist) leftover -= dist; maxvalue = 0xffffffffu - leftover; } else maxvalue = dist - 1; do random = g_rand_int (rand); while (random > maxvalue); random %= dist; } break; default: random = 0; /* Quiet GCC */ g_assert_not_reached (); } return begin + random; } /** * g_rand_double: * @rand_: a #GRand * * Returns the next random #gdouble from @rand_ equally distributed over * the range [0..1). * * Returns: a random number */ gdouble g_rand_double (GRand *rand) { /* We set all 52 bits after the point for this, not only the first 32. Thats why we need two calls to g_rand_int */ gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM; retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM; /* The following might happen due to very bad rounding luck, but * actually this should be more than rare, we just try again then */ if (retval >= 1.0) return g_rand_double (rand); return retval; } /** * g_rand_double_range: * @rand_: a #GRand * @begin: lower closed bound of the interval * @end: upper open bound of the interval * * Returns the next random #gdouble from @rand_ equally distributed over * the range [@begin..@end). * * Returns: a random number */ gdouble g_rand_double_range (GRand *rand, gdouble begin, gdouble end) { gdouble r; r = g_rand_double (rand); return r * end - (r - 1) * begin; } static GRand * get_global_random (void) { static GRand *global_random; /* called while locked */ if (!global_random) global_random = g_rand_new (); return global_random; } /** * g_random_boolean: * * Returns a random #gboolean. * This corresponds to a unbiased coin toss. * * Returns: a random #gboolean */ /** * g_random_int: * * Return a random #guint32 equally distributed over the range * [0..2^32-1]. * * Returns: a random number */ guint32 g_random_int (void) { guint32 result; G_LOCK (global_random); result = g_rand_int (get_global_random ()); G_UNLOCK (global_random); return result; } /** * g_random_int_range: * @begin: lower closed bound of the interval * @end: upper open bound of the interval * * Returns a random #gint32 equally distributed over the range * [@begin..@end-1]. * * Returns: a random number */ gint32 g_random_int_range (gint32 begin, gint32 end) { gint32 result; G_LOCK (global_random); result = g_rand_int_range (get_global_random (), begin, end); G_UNLOCK (global_random); return result; } /** * g_random_double: * * Returns a random #gdouble equally distributed over the range [0..1). * * Returns: a random number */ gdouble g_random_double (void) { double result; G_LOCK (global_random); result = g_rand_double (get_global_random ()); G_UNLOCK (global_random); return result; } /** * g_random_double_range: * @begin: lower closed bound of the interval * @end: upper open bound of the interval * * Returns a random #gdouble equally distributed over the range * [@begin..@end). * * Returns: a random number */ gdouble g_random_double_range (gdouble begin, gdouble end) { double result; G_LOCK (global_random); result = g_rand_double_range (get_global_random (), begin, end); G_UNLOCK (global_random); return result; } /** * g_random_set_seed: * @seed: a value to reinitialize the global random number generator * * Sets the seed for the global random number generator, which is used * by the g_random_* functions, to @seed. */ void g_random_set_seed (guint32 seed) { G_LOCK (global_random); g_rand_set_seed (get_global_random (), seed); G_UNLOCK (global_random); }