#define JEMALLOC_RTREE_C_ #include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/mutex.h" /* * Only the most significant bits of keys passed to rtree_{read,write}() are * used. */ bool rtree_new(rtree_t *rtree, bool zeroed) { #ifdef JEMALLOC_JET if (!zeroed) { memset(rtree, 0, sizeof(rtree_t)); /* Clear root. */ } #else assert(zeroed); #endif if (malloc_mutex_init(&rtree->init_lock, "rtree", WITNESS_RANK_RTREE, malloc_mutex_rank_exclusive)) { return true; } return false; } static rtree_node_elm_t * rtree_node_alloc_impl(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) { return (rtree_node_elm_t *)base_alloc(tsdn, b0get(), nelms * sizeof(rtree_node_elm_t), CACHELINE); } rtree_node_alloc_t *JET_MUTABLE rtree_node_alloc = rtree_node_alloc_impl; static void rtree_node_dalloc_impl(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *node) { /* Nodes are never deleted during normal operation. */ not_reached(); } rtree_node_dalloc_t *JET_MUTABLE rtree_node_dalloc = rtree_node_dalloc_impl; static rtree_leaf_elm_t * rtree_leaf_alloc_impl(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) { return (rtree_leaf_elm_t *)base_alloc(tsdn, b0get(), nelms * sizeof(rtree_leaf_elm_t), CACHELINE); } rtree_leaf_alloc_t *JET_MUTABLE rtree_leaf_alloc = rtree_leaf_alloc_impl; static void rtree_leaf_dalloc_impl(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *leaf) { /* Leaves are never deleted during normal operation. */ not_reached(); } rtree_leaf_dalloc_t *JET_MUTABLE rtree_leaf_dalloc = rtree_leaf_dalloc_impl; #ifdef JEMALLOC_JET # if RTREE_HEIGHT > 1 static void rtree_delete_subtree(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *subtree, unsigned level) { size_t nchildren = ZU(1) << rtree_levels[level].bits; if (level + 2 < RTREE_HEIGHT) { for (size_t i = 0; i < nchildren; i++) { rtree_node_elm_t *node = (rtree_node_elm_t *)atomic_load_p(&subtree[i].child, ATOMIC_RELAXED); if (node != NULL) { rtree_delete_subtree(tsdn, rtree, node, level + 1); } } } else { for (size_t i = 0; i < nchildren; i++) { rtree_leaf_elm_t *leaf = (rtree_leaf_elm_t *)atomic_load_p(&subtree[i].child, ATOMIC_RELAXED); if (leaf != NULL) { rtree_leaf_dalloc(tsdn, rtree, leaf); } } } if (subtree != rtree->root) { rtree_node_dalloc(tsdn, rtree, subtree); } } # endif void rtree_delete(tsdn_t *tsdn, rtree_t *rtree) { # if RTREE_HEIGHT > 1 rtree_delete_subtree(tsdn, rtree, rtree->root, 0); # endif } #endif static rtree_node_elm_t * rtree_node_init(tsdn_t *tsdn, rtree_t *rtree, unsigned level, atomic_p_t *elmp) { malloc_mutex_lock(tsdn, &rtree->init_lock); /* * If *elmp is non-null, then it was initialized with the init lock * held, so we can get by with 'relaxed' here. */ rtree_node_elm_t *node = atomic_load_p(elmp, ATOMIC_RELAXED); if (node == NULL) { node = rtree_node_alloc(tsdn, rtree, ZU(1) << rtree_levels[level].bits); if (node == NULL) { malloc_mutex_unlock(tsdn, &rtree->init_lock); return NULL; } /* * Even though we hold the lock, a later reader might not; we * need release semantics. */ atomic_store_p(elmp, node, ATOMIC_RELEASE); } malloc_mutex_unlock(tsdn, &rtree->init_lock); return node; } static rtree_leaf_elm_t * rtree_leaf_init(tsdn_t *tsdn, rtree_t *rtree, atomic_p_t *elmp) { malloc_mutex_lock(tsdn, &rtree->init_lock); /* * If *elmp is non-null, then it was initialized with the init lock * held, so we can get by with 'relaxed' here. */ rtree_leaf_elm_t *leaf = atomic_load_p(elmp, ATOMIC_RELAXED); if (leaf == NULL) { leaf = rtree_leaf_alloc(tsdn, rtree, ZU(1) << rtree_levels[RTREE_HEIGHT-1].bits); if (leaf == NULL) { malloc_mutex_unlock(tsdn, &rtree->init_lock); return NULL; } /* * Even though we hold the lock, a later reader might not; we * need release semantics. */ atomic_store_p(elmp, leaf, ATOMIC_RELEASE); } malloc_mutex_unlock(tsdn, &rtree->init_lock); return leaf; } static bool rtree_node_valid(rtree_node_elm_t *node) { return ((uintptr_t)node != (uintptr_t)0); } static bool rtree_leaf_valid(rtree_leaf_elm_t *leaf) { return ((uintptr_t)leaf != (uintptr_t)0); } static rtree_node_elm_t * rtree_child_node_tryread(rtree_node_elm_t *elm, bool dependent) { rtree_node_elm_t *node; if (dependent) { node = (rtree_node_elm_t *)atomic_load_p(&elm->child, ATOMIC_RELAXED); } else { node = (rtree_node_elm_t *)atomic_load_p(&elm->child, ATOMIC_ACQUIRE); } assert(!dependent || node != NULL); return node; } static rtree_node_elm_t * rtree_child_node_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm, unsigned level, bool dependent) { rtree_node_elm_t *node; node = rtree_child_node_tryread(elm, dependent); if (!dependent && unlikely(!rtree_node_valid(node))) { node = rtree_node_init(tsdn, rtree, level + 1, &elm->child); } assert(!dependent || node != NULL); return node; } static rtree_leaf_elm_t * rtree_child_leaf_tryread(rtree_node_elm_t *elm, bool dependent) { rtree_leaf_elm_t *leaf; if (dependent) { leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child, ATOMIC_RELAXED); } else { leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child, ATOMIC_ACQUIRE); } assert(!dependent || leaf != NULL); return leaf; } static rtree_leaf_elm_t * rtree_child_leaf_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm, unsigned level, bool dependent) { rtree_leaf_elm_t *leaf; leaf = rtree_child_leaf_tryread(elm, dependent); if (!dependent && unlikely(!rtree_leaf_valid(leaf))) { leaf = rtree_leaf_init(tsdn, rtree, &elm->child); } assert(!dependent || leaf != NULL); return leaf; } rtree_leaf_elm_t * rtree_leaf_elm_lookup_hard(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent, bool init_missing) { rtree_node_elm_t *node; rtree_leaf_elm_t *leaf; #if RTREE_HEIGHT > 1 node = rtree->root; #else leaf = rtree->root; #endif if (config_debug) { uintptr_t leafkey = rtree_leafkey(key); for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) { assert(rtree_ctx->cache[i].leafkey != leafkey); } for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) { assert(rtree_ctx->l2_cache[i].leafkey != leafkey); } } #define RTREE_GET_CHILD(level) { \ assert(level < RTREE_HEIGHT-1); \ if (level != 0 && !dependent && \ unlikely(!rtree_node_valid(node))) { \ return NULL; \ } \ uintptr_t subkey = rtree_subkey(key, level); \ if (level + 2 < RTREE_HEIGHT) { \ node = init_missing ? \ rtree_child_node_read(tsdn, rtree, \ &node[subkey], level, dependent) : \ rtree_child_node_tryread(&node[subkey], \ dependent); \ } else { \ leaf = init_missing ? \ rtree_child_leaf_read(tsdn, rtree, \ &node[subkey], level, dependent) : \ rtree_child_leaf_tryread(&node[subkey], \ dependent); \ } \ } /* * Cache replacement upon hard lookup (i.e. L1 & L2 rtree cache miss): * (1) evict last entry in L2 cache; (2) move the collision slot from L1 * cache down to L2; and 3) fill L1. */ #define RTREE_GET_LEAF(level) { \ assert(level == RTREE_HEIGHT-1); \ if (!dependent && unlikely(!rtree_leaf_valid(leaf))) { \ return NULL; \ } \ if (RTREE_CTX_NCACHE_L2 > 1) { \ memmove(&rtree_ctx->l2_cache[1], \ &rtree_ctx->l2_cache[0], \ sizeof(rtree_ctx_cache_elm_t) * \ (RTREE_CTX_NCACHE_L2 - 1)); \ } \ size_t slot = rtree_cache_direct_map(key); \ rtree_ctx->l2_cache[0].leafkey = \ rtree_ctx->cache[slot].leafkey; \ rtree_ctx->l2_cache[0].leaf = \ rtree_ctx->cache[slot].leaf; \ uintptr_t leafkey = rtree_leafkey(key); \ rtree_ctx->cache[slot].leafkey = leafkey; \ rtree_ctx->cache[slot].leaf = leaf; \ uintptr_t subkey = rtree_subkey(key, level); \ return &leaf[subkey]; \ } if (RTREE_HEIGHT > 1) { RTREE_GET_CHILD(0) } if (RTREE_HEIGHT > 2) { RTREE_GET_CHILD(1) } if (RTREE_HEIGHT > 3) { for (unsigned i = 2; i < RTREE_HEIGHT-1; i++) { RTREE_GET_CHILD(i) } } RTREE_GET_LEAF(RTREE_HEIGHT-1) #undef RTREE_GET_CHILD #undef RTREE_GET_LEAF not_reached(); } void rtree_ctx_data_init(rtree_ctx_t *ctx) { for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) { rtree_ctx_cache_elm_t *cache = &ctx->cache[i]; cache->leafkey = RTREE_LEAFKEY_INVALID; cache->leaf = NULL; } for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) { rtree_ctx_cache_elm_t *cache = &ctx->l2_cache[i]; cache->leafkey = RTREE_LEAFKEY_INVALID; cache->leaf = NULL; } }