#ifndef JEMALLOC_INTERNAL_SIZE_H #define JEMALLOC_INTERNAL_SIZE_H #include "jemalloc/internal/bit_util.h" #include "jemalloc/internal/pages.h" #include "jemalloc/internal/sc.h" #include "jemalloc/internal/util.h" /* * sz module: Size computations. * * Some abbreviations used here: * p: Page * ind: Index * s, sz: Size * u: Usable size * a: Aligned * * These are not always used completely consistently, but should be enough to * interpret function names. E.g. sz_psz2ind converts page size to page size * index; sz_sa2u converts a (size, alignment) allocation request to the usable * size that would result from such an allocation. */ /* * sz_pind2sz_tab encodes the same information as could be computed by * sz_pind2sz_compute(). */ extern size_t sz_pind2sz_tab[SC_NPSIZES + 1]; /* * sz_index2size_tab encodes the same information as could be computed (at * unacceptable cost in some code paths) by sz_index2size_compute(). */ extern size_t sz_index2size_tab[SC_NSIZES]; /* * sz_size2index_tab is a compact lookup table that rounds request sizes up to * size classes. In order to reduce cache footprint, the table is compressed, * and all accesses are via sz_size2index(). */ extern uint8_t sz_size2index_tab[]; static const size_t sz_large_pad = #ifdef JEMALLOC_CACHE_OBLIVIOUS PAGE #else 0 #endif ; extern void sz_boot(const sc_data_t *sc_data); JEMALLOC_ALWAYS_INLINE pszind_t sz_psz2ind(size_t psz) { if (unlikely(psz > SC_LARGE_MAXCLASS)) { return SC_NPSIZES; } pszind_t x = lg_floor((psz<<1)-1); pszind_t shift = (x < SC_LG_NGROUP + LG_PAGE) ? 0 : x - (SC_LG_NGROUP + LG_PAGE); pszind_t grp = shift << SC_LG_NGROUP; pszind_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ? LG_PAGE : x - SC_LG_NGROUP - 1; size_t delta_inverse_mask = ZU(-1) << lg_delta; pszind_t mod = ((((psz-1) & delta_inverse_mask) >> lg_delta)) & ((ZU(1) << SC_LG_NGROUP) - 1); pszind_t ind = grp + mod; return ind; } static inline size_t sz_pind2sz_compute(pszind_t pind) { if (unlikely(pind == SC_NPSIZES)) { return SC_LARGE_MAXCLASS + PAGE; } size_t grp = pind >> SC_LG_NGROUP; size_t mod = pind & ((ZU(1) << SC_LG_NGROUP) - 1); size_t grp_size_mask = ~((!!grp)-1); size_t grp_size = ((ZU(1) << (LG_PAGE + (SC_LG_NGROUP-1))) << grp) & grp_size_mask; size_t shift = (grp == 0) ? 1 : grp; size_t lg_delta = shift + (LG_PAGE-1); size_t mod_size = (mod+1) << lg_delta; size_t sz = grp_size + mod_size; return sz; } static inline size_t sz_pind2sz_lookup(pszind_t pind) { size_t ret = (size_t)sz_pind2sz_tab[pind]; assert(ret == sz_pind2sz_compute(pind)); return ret; } static inline size_t sz_pind2sz(pszind_t pind) { assert(pind < SC_NPSIZES + 1); return sz_pind2sz_lookup(pind); } static inline size_t sz_psz2u(size_t psz) { if (unlikely(psz > SC_LARGE_MAXCLASS)) { return SC_LARGE_MAXCLASS + PAGE; } size_t x = lg_floor((psz<<1)-1); size_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ? LG_PAGE : x - SC_LG_NGROUP - 1; size_t delta = ZU(1) << lg_delta; size_t delta_mask = delta - 1; size_t usize = (psz + delta_mask) & ~delta_mask; return usize; } static inline szind_t sz_size2index_compute(size_t size) { if (unlikely(size > SC_LARGE_MAXCLASS)) { return SC_NSIZES; } if (size == 0) { return 0; } #if (SC_NTINY != 0) if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) { szind_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1; szind_t lg_ceil = lg_floor(pow2_ceil_zu(size)); return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin); } #endif { szind_t x = lg_floor((size<<1)-1); szind_t shift = (x < SC_LG_NGROUP + LG_QUANTUM) ? 0 : x - (SC_LG_NGROUP + LG_QUANTUM); szind_t grp = shift << SC_LG_NGROUP; szind_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1) ? LG_QUANTUM : x - SC_LG_NGROUP - 1; size_t delta_inverse_mask = ZU(-1) << lg_delta; szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) & ((ZU(1) << SC_LG_NGROUP) - 1); szind_t index = SC_NTINY + grp + mod; return index; } } JEMALLOC_ALWAYS_INLINE szind_t sz_size2index_lookup(size_t size) { assert(size <= SC_LOOKUP_MAXCLASS); szind_t ret = (sz_size2index_tab[(size + (ZU(1) << SC_LG_TINY_MIN) - 1) >> SC_LG_TINY_MIN]); assert(ret == sz_size2index_compute(size)); return ret; } JEMALLOC_ALWAYS_INLINE szind_t sz_size2index(size_t size) { if (likely(size <= SC_LOOKUP_MAXCLASS)) { return sz_size2index_lookup(size); } return sz_size2index_compute(size); } static inline size_t sz_index2size_compute(szind_t index) { #if (SC_NTINY > 0) if (index < SC_NTINY) { return (ZU(1) << (SC_LG_TINY_MAXCLASS - SC_NTINY + 1 + index)); } #endif { size_t reduced_index = index - SC_NTINY; size_t grp = reduced_index >> SC_LG_NGROUP; size_t mod = reduced_index & ((ZU(1) << SC_LG_NGROUP) - 1); size_t grp_size_mask = ~((!!grp)-1); size_t grp_size = ((ZU(1) << (LG_QUANTUM + (SC_LG_NGROUP-1))) << grp) & grp_size_mask; size_t shift = (grp == 0) ? 1 : grp; size_t lg_delta = shift + (LG_QUANTUM-1); size_t mod_size = (mod+1) << lg_delta; size_t usize = grp_size + mod_size; return usize; } } JEMALLOC_ALWAYS_INLINE size_t sz_index2size_lookup(szind_t index) { size_t ret = (size_t)sz_index2size_tab[index]; assert(ret == sz_index2size_compute(index)); return ret; } JEMALLOC_ALWAYS_INLINE size_t sz_index2size(szind_t index) { assert(index < SC_NSIZES); return sz_index2size_lookup(index); } JEMALLOC_ALWAYS_INLINE size_t sz_s2u_compute(size_t size) { if (unlikely(size > SC_LARGE_MAXCLASS)) { return 0; } if (size == 0) { size++; } #if (SC_NTINY > 0) if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) { size_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1; size_t lg_ceil = lg_floor(pow2_ceil_zu(size)); return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) : (ZU(1) << lg_ceil)); } #endif { size_t x = lg_floor((size<<1)-1); size_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1) ? LG_QUANTUM : x - SC_LG_NGROUP - 1; size_t delta = ZU(1) << lg_delta; size_t delta_mask = delta - 1; size_t usize = (size + delta_mask) & ~delta_mask; return usize; } } JEMALLOC_ALWAYS_INLINE size_t sz_s2u_lookup(size_t size) { size_t ret = sz_index2size_lookup(sz_size2index_lookup(size)); assert(ret == sz_s2u_compute(size)); return ret; } /* * Compute usable size that would result from allocating an object with the * specified size. */ JEMALLOC_ALWAYS_INLINE size_t sz_s2u(size_t size) { if (likely(size <= SC_LOOKUP_MAXCLASS)) { return sz_s2u_lookup(size); } return sz_s2u_compute(size); } /* * Compute usable size that would result from allocating an object with the * specified size and alignment. */ JEMALLOC_ALWAYS_INLINE size_t sz_sa2u(size_t size, size_t alignment) { size_t usize; assert(alignment != 0 && ((alignment - 1) & alignment) == 0); /* Try for a small size class. */ if (size <= SC_SMALL_MAXCLASS && alignment < PAGE) { /* * Round size up to the nearest multiple of alignment. * * This done, we can take advantage of the fact that for each * small size class, every object is aligned at the smallest * power of two that is non-zero in the base two representation * of the size. For example: * * Size | Base 2 | Minimum alignment * -----+----------+------------------ * 96 | 1100000 | 32 * 144 | 10100000 | 32 * 192 | 11000000 | 64 */ usize = sz_s2u(ALIGNMENT_CEILING(size, alignment)); if (usize < SC_LARGE_MINCLASS) { return usize; } } /* Large size class. Beware of overflow. */ if (unlikely(alignment > SC_LARGE_MAXCLASS)) { return 0; } /* Make sure result is a large size class. */ if (size <= SC_LARGE_MINCLASS) { usize = SC_LARGE_MINCLASS; } else { usize = sz_s2u(size); if (usize < size) { /* size_t overflow. */ return 0; } } /* * Calculate the multi-page mapping that large_palloc() would need in * order to guarantee the alignment. */ if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) { /* size_t overflow. */ return 0; } return usize; } #endif /* JEMALLOC_INTERNAL_SIZE_H */