#define JEMALLOC_C_ #include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/atomic.h" #include "jemalloc/internal/ctl.h" #include "jemalloc/internal/extent_dss.h" #include "jemalloc/internal/extent_mmap.h" #include "jemalloc/internal/hook.h" #include "jemalloc/internal/jemalloc_internal_types.h" #include "jemalloc/internal/log.h" #include "jemalloc/internal/malloc_io.h" #include "jemalloc/internal/mutex.h" #include "jemalloc/internal/rtree.h" #include "jemalloc/internal/safety_check.h" #include "jemalloc/internal/sc.h" #include "jemalloc/internal/spin.h" #include "jemalloc/internal/sz.h" #include "jemalloc/internal/ticker.h" #include "jemalloc/internal/util.h" /******************************************************************************/ /* Data. */ /* Runtime configuration options. */ const char *je_malloc_conf #ifndef _WIN32 JEMALLOC_ATTR(weak) #endif ; bool opt_abort = #ifdef JEMALLOC_DEBUG true #else false #endif ; bool opt_abort_conf = #ifdef JEMALLOC_DEBUG true #else false #endif ; /* Intentionally default off, even with debug builds. */ bool opt_confirm_conf = false; const char *opt_junk = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) "true" #else "false" #endif ; bool opt_junk_alloc = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) true #else false #endif ; bool opt_junk_free = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) true #else false #endif ; bool opt_utrace = false; bool opt_xmalloc = false; bool opt_zero = false; unsigned opt_narenas = 0; unsigned ncpus; /* Protects arenas initialization. */ malloc_mutex_t arenas_lock; /* * Arenas that are used to service external requests. Not all elements of the * arenas array are necessarily used; arenas are created lazily as needed. * * arenas[0..narenas_auto) are used for automatic multiplexing of threads and * arenas. arenas[narenas_auto..narenas_total) are only used if the application * takes some action to create them and allocate from them. * * Points to an arena_t. */ JEMALLOC_ALIGNED(CACHELINE) atomic_p_t arenas[MALLOCX_ARENA_LIMIT]; static atomic_u_t narenas_total; /* Use narenas_total_*(). */ /* Below three are read-only after initialization. */ static arena_t *a0; /* arenas[0]. */ unsigned narenas_auto; unsigned manual_arena_base; typedef enum { malloc_init_uninitialized = 3, malloc_init_a0_initialized = 2, malloc_init_recursible = 1, malloc_init_initialized = 0 /* Common case --> jnz. */ } malloc_init_t; static malloc_init_t malloc_init_state = malloc_init_uninitialized; /* False should be the common case. Set to true to trigger initialization. */ bool malloc_slow = true; /* When malloc_slow is true, set the corresponding bits for sanity check. */ enum { flag_opt_junk_alloc = (1U), flag_opt_junk_free = (1U << 1), flag_opt_zero = (1U << 2), flag_opt_utrace = (1U << 3), flag_opt_xmalloc = (1U << 4) }; static uint8_t malloc_slow_flags; #ifdef JEMALLOC_THREADED_INIT /* Used to let the initializing thread recursively allocate. */ # define NO_INITIALIZER ((unsigned long)0) # define INITIALIZER pthread_self() # define IS_INITIALIZER (malloc_initializer == pthread_self()) static pthread_t malloc_initializer = NO_INITIALIZER; #else # define NO_INITIALIZER false # define INITIALIZER true # define IS_INITIALIZER malloc_initializer static bool malloc_initializer = NO_INITIALIZER; #endif /* Used to avoid initialization races. */ #ifdef _WIN32 #if _WIN32_WINNT >= 0x0600 static malloc_mutex_t init_lock = SRWLOCK_INIT; #else static malloc_mutex_t init_lock; static bool init_lock_initialized = false; JEMALLOC_ATTR(constructor) static void WINAPI _init_init_lock(void) { /* * If another constructor in the same binary is using mallctl to e.g. * set up extent hooks, it may end up running before this one, and * malloc_init_hard will crash trying to lock the uninitialized lock. So * we force an initialization of the lock in malloc_init_hard as well. * We don't try to care about atomicity of the accessed to the * init_lock_initialized boolean, since it really only matters early in * the process creation, before any separate thread normally starts * doing anything. */ if (!init_lock_initialized) { malloc_mutex_init(&init_lock, "init", WITNESS_RANK_INIT, malloc_mutex_rank_exclusive); } init_lock_initialized = true; } #ifdef _MSC_VER # pragma section(".CRT$XCU", read) JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used) static const void (WINAPI *init_init_lock)(void) = _init_init_lock; #endif #endif #else static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER; #endif typedef struct { void *p; /* Input pointer (as in realloc(p, s)). */ size_t s; /* Request size. */ void *r; /* Result pointer. */ } malloc_utrace_t; #ifdef JEMALLOC_UTRACE # define UTRACE(a, b, c) do { \ if (unlikely(opt_utrace)) { \ int utrace_serrno = errno; \ malloc_utrace_t ut; \ ut.p = (a); \ ut.s = (b); \ ut.r = (c); \ utrace(&ut, sizeof(ut)); \ errno = utrace_serrno; \ } \ } while (0) #else # define UTRACE(a, b, c) #endif /* Whether encountered any invalid config options. */ static bool had_conf_error = false; /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static bool malloc_init_hard_a0(void); static bool malloc_init_hard(void); /******************************************************************************/ /* * Begin miscellaneous support functions. */ bool malloc_initialized(void) { return (malloc_init_state == malloc_init_initialized); } JEMALLOC_ALWAYS_INLINE bool malloc_init_a0(void) { if (unlikely(malloc_init_state == malloc_init_uninitialized)) { return malloc_init_hard_a0(); } return false; } JEMALLOC_ALWAYS_INLINE bool malloc_init(void) { if (unlikely(!malloc_initialized()) && malloc_init_hard()) { return true; } return false; } /* * The a0*() functions are used instead of i{d,}alloc() in situations that * cannot tolerate TLS variable access. */ static void * a0ialloc(size_t size, bool zero, bool is_internal) { if (unlikely(malloc_init_a0())) { return NULL; } return iallocztm(TSDN_NULL, size, sz_size2index(size), zero, NULL, is_internal, arena_get(TSDN_NULL, 0, true), true); } static void a0idalloc(void *ptr, bool is_internal) { idalloctm(TSDN_NULL, ptr, NULL, NULL, is_internal, true); } void * a0malloc(size_t size) { return a0ialloc(size, false, true); } void a0dalloc(void *ptr) { a0idalloc(ptr, true); } /* * FreeBSD's libc uses the bootstrap_*() functions in bootstrap-senstive * situations that cannot tolerate TLS variable access (TLS allocation and very * early internal data structure initialization). */ void * bootstrap_malloc(size_t size) { if (unlikely(size == 0)) { size = 1; } return a0ialloc(size, false, false); } void * bootstrap_calloc(size_t num, size_t size) { size_t num_size; num_size = num * size; if (unlikely(num_size == 0)) { assert(num == 0 || size == 0); num_size = 1; } return a0ialloc(num_size, true, false); } void bootstrap_free(void *ptr) { if (unlikely(ptr == NULL)) { return; } a0idalloc(ptr, false); } void arena_set(unsigned ind, arena_t *arena) { atomic_store_p(&arenas[ind], arena, ATOMIC_RELEASE); } static void narenas_total_set(unsigned narenas) { atomic_store_u(&narenas_total, narenas, ATOMIC_RELEASE); } static void narenas_total_inc(void) { atomic_fetch_add_u(&narenas_total, 1, ATOMIC_RELEASE); } unsigned narenas_total_get(void) { return atomic_load_u(&narenas_total, ATOMIC_ACQUIRE); } /* Create a new arena and insert it into the arenas array at index ind. */ static arena_t * arena_init_locked(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) { arena_t *arena; assert(ind <= narenas_total_get()); if (ind >= MALLOCX_ARENA_LIMIT) { return NULL; } if (ind == narenas_total_get()) { narenas_total_inc(); } /* * Another thread may have already initialized arenas[ind] if it's an * auto arena. */ arena = arena_get(tsdn, ind, false); if (arena != NULL) { assert(arena_is_auto(arena)); return arena; } /* Actually initialize the arena. */ arena = arena_new(tsdn, ind, extent_hooks); return arena; } static void arena_new_create_background_thread(tsdn_t *tsdn, unsigned ind) { if (ind == 0) { return; } /* * Avoid creating a new background thread just for the huge arena, which * purges eagerly by default. */ if (have_background_thread && !arena_is_huge(ind)) { if (background_thread_create(tsdn_tsd(tsdn), ind)) { malloc_printf(": error in background thread " "creation for arena %u. Abort.\n", ind); abort(); } } } arena_t * arena_init(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) { arena_t *arena; malloc_mutex_lock(tsdn, &arenas_lock); arena = arena_init_locked(tsdn, ind, extent_hooks); malloc_mutex_unlock(tsdn, &arenas_lock); arena_new_create_background_thread(tsdn, ind); return arena; } static void arena_bind(tsd_t *tsd, unsigned ind, bool internal) { arena_t *arena = arena_get(tsd_tsdn(tsd), ind, false); arena_nthreads_inc(arena, internal); if (internal) { tsd_iarena_set(tsd, arena); } else { tsd_arena_set(tsd, arena); unsigned shard = atomic_fetch_add_u(&arena->binshard_next, 1, ATOMIC_RELAXED); tsd_binshards_t *bins = tsd_binshardsp_get(tsd); for (unsigned i = 0; i < SC_NBINS; i++) { assert(bin_infos[i].n_shards > 0 && bin_infos[i].n_shards <= BIN_SHARDS_MAX); bins->binshard[i] = shard % bin_infos[i].n_shards; } } } void arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind) { arena_t *oldarena, *newarena; oldarena = arena_get(tsd_tsdn(tsd), oldind, false); newarena = arena_get(tsd_tsdn(tsd), newind, false); arena_nthreads_dec(oldarena, false); arena_nthreads_inc(newarena, false); tsd_arena_set(tsd, newarena); } static void arena_unbind(tsd_t *tsd, unsigned ind, bool internal) { arena_t *arena; arena = arena_get(tsd_tsdn(tsd), ind, false); arena_nthreads_dec(arena, internal); if (internal) { tsd_iarena_set(tsd, NULL); } else { tsd_arena_set(tsd, NULL); } } arena_tdata_t * arena_tdata_get_hard(tsd_t *tsd, unsigned ind) { arena_tdata_t *tdata, *arenas_tdata_old; arena_tdata_t *arenas_tdata = tsd_arenas_tdata_get(tsd); unsigned narenas_tdata_old, i; unsigned narenas_tdata = tsd_narenas_tdata_get(tsd); unsigned narenas_actual = narenas_total_get(); /* * Dissociate old tdata array (and set up for deallocation upon return) * if it's too small. */ if (arenas_tdata != NULL && narenas_tdata < narenas_actual) { arenas_tdata_old = arenas_tdata; narenas_tdata_old = narenas_tdata; arenas_tdata = NULL; narenas_tdata = 0; tsd_arenas_tdata_set(tsd, arenas_tdata); tsd_narenas_tdata_set(tsd, narenas_tdata); } else { arenas_tdata_old = NULL; narenas_tdata_old = 0; } /* Allocate tdata array if it's missing. */ if (arenas_tdata == NULL) { bool *arenas_tdata_bypassp = tsd_arenas_tdata_bypassp_get(tsd); narenas_tdata = (ind < narenas_actual) ? narenas_actual : ind+1; if (tsd_nominal(tsd) && !*arenas_tdata_bypassp) { *arenas_tdata_bypassp = true; arenas_tdata = (arena_tdata_t *)a0malloc( sizeof(arena_tdata_t) * narenas_tdata); *arenas_tdata_bypassp = false; } if (arenas_tdata == NULL) { tdata = NULL; goto label_return; } assert(tsd_nominal(tsd) && !*arenas_tdata_bypassp); tsd_arenas_tdata_set(tsd, arenas_tdata); tsd_narenas_tdata_set(tsd, narenas_tdata); } /* * Copy to tdata array. It's possible that the actual number of arenas * has increased since narenas_total_get() was called above, but that * causes no correctness issues unless two threads concurrently execute * the arenas.create mallctl, which we trust mallctl synchronization to * prevent. */ /* Copy/initialize tickers. */ for (i = 0; i < narenas_actual; i++) { if (i < narenas_tdata_old) { ticker_copy(&arenas_tdata[i].decay_ticker, &arenas_tdata_old[i].decay_ticker); } else { ticker_init(&arenas_tdata[i].decay_ticker, DECAY_NTICKS_PER_UPDATE); } } if (narenas_tdata > narenas_actual) { memset(&arenas_tdata[narenas_actual], 0, sizeof(arena_tdata_t) * (narenas_tdata - narenas_actual)); } /* Read the refreshed tdata array. */ tdata = &arenas_tdata[ind]; label_return: if (arenas_tdata_old != NULL) { a0dalloc(arenas_tdata_old); } return tdata; } /* Slow path, called only by arena_choose(). */ arena_t * arena_choose_hard(tsd_t *tsd, bool internal) { arena_t *ret JEMALLOC_CC_SILENCE_INIT(NULL); if (have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena)) { unsigned choose = percpu_arena_choose(); ret = arena_get(tsd_tsdn(tsd), choose, true); assert(ret != NULL); arena_bind(tsd, arena_ind_get(ret), false); arena_bind(tsd, arena_ind_get(ret), true); return ret; } if (narenas_auto > 1) { unsigned i, j, choose[2], first_null; bool is_new_arena[2]; /* * Determine binding for both non-internal and internal * allocation. * * choose[0]: For application allocation. * choose[1]: For internal metadata allocation. */ for (j = 0; j < 2; j++) { choose[j] = 0; is_new_arena[j] = false; } first_null = narenas_auto; malloc_mutex_lock(tsd_tsdn(tsd), &arenas_lock); assert(arena_get(tsd_tsdn(tsd), 0, false) != NULL); for (i = 1; i < narenas_auto; i++) { if (arena_get(tsd_tsdn(tsd), i, false) != NULL) { /* * Choose the first arena that has the lowest * number of threads assigned to it. */ for (j = 0; j < 2; j++) { if (arena_nthreads_get(arena_get( tsd_tsdn(tsd), i, false), !!j) < arena_nthreads_get(arena_get( tsd_tsdn(tsd), choose[j], false), !!j)) { choose[j] = i; } } } else if (first_null == narenas_auto) { /* * Record the index of the first uninitialized * arena, in case all extant arenas are in use. * * NB: It is possible for there to be * discontinuities in terms of initialized * versus uninitialized arenas, due to the * "thread.arena" mallctl. */ first_null = i; } } for (j = 0; j < 2; j++) { if (arena_nthreads_get(arena_get(tsd_tsdn(tsd), choose[j], false), !!j) == 0 || first_null == narenas_auto) { /* * Use an unloaded arena, or the least loaded * arena if all arenas are already initialized. */ if (!!j == internal) { ret = arena_get(tsd_tsdn(tsd), choose[j], false); } } else { arena_t *arena; /* Initialize a new arena. */ choose[j] = first_null; arena = arena_init_locked(tsd_tsdn(tsd), choose[j], (extent_hooks_t *)&extent_hooks_default); if (arena == NULL) { malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock); return NULL; } is_new_arena[j] = true; if (!!j == internal) { ret = arena; } } arena_bind(tsd, choose[j], !!j); } malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock); for (j = 0; j < 2; j++) { if (is_new_arena[j]) { assert(choose[j] > 0); arena_new_create_background_thread( tsd_tsdn(tsd), choose[j]); } } } else { ret = arena_get(tsd_tsdn(tsd), 0, false); arena_bind(tsd, 0, false); arena_bind(tsd, 0, true); } return ret; } void iarena_cleanup(tsd_t *tsd) { arena_t *iarena; iarena = tsd_iarena_get(tsd); if (iarena != NULL) { arena_unbind(tsd, arena_ind_get(iarena), true); } } void arena_cleanup(tsd_t *tsd) { arena_t *arena; arena = tsd_arena_get(tsd); if (arena != NULL) { arena_unbind(tsd, arena_ind_get(arena), false); } } void arenas_tdata_cleanup(tsd_t *tsd) { arena_tdata_t *arenas_tdata; /* Prevent tsd->arenas_tdata from being (re)created. */ *tsd_arenas_tdata_bypassp_get(tsd) = true; arenas_tdata = tsd_arenas_tdata_get(tsd); if (arenas_tdata != NULL) { tsd_arenas_tdata_set(tsd, NULL); a0dalloc(arenas_tdata); } } static void stats_print_atexit(void) { if (config_stats) { tsdn_t *tsdn; unsigned narenas, i; tsdn = tsdn_fetch(); /* * Merge stats from extant threads. This is racy, since * individual threads do not lock when recording tcache stats * events. As a consequence, the final stats may be slightly * out of date by the time they are reported, if other threads * continue to allocate. */ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena = arena_get(tsdn, i, false); if (arena != NULL) { tcache_t *tcache; malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx); ql_foreach(tcache, &arena->tcache_ql, link) { tcache_stats_merge(tsdn, tcache, arena); } malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx); } } } je_malloc_stats_print(NULL, NULL, opt_stats_print_opts); } /* * Ensure that we don't hold any locks upon entry to or exit from allocator * code (in a "broad" sense that doesn't count a reentrant allocation as an * entrance or exit). */ JEMALLOC_ALWAYS_INLINE void check_entry_exit_locking(tsdn_t *tsdn) { if (!config_debug) { return; } if (tsdn_null(tsdn)) { return; } tsd_t *tsd = tsdn_tsd(tsdn); /* * It's possible we hold locks at entry/exit if we're in a nested * allocation. */ int8_t reentrancy_level = tsd_reentrancy_level_get(tsd); if (reentrancy_level != 0) { return; } witness_assert_lockless(tsdn_witness_tsdp_get(tsdn)); } /* * End miscellaneous support functions. */ /******************************************************************************/ /* * Begin initialization functions. */ static char * jemalloc_secure_getenv(const char *name) { #ifdef JEMALLOC_HAVE_SECURE_GETENV return secure_getenv(name); #else # ifdef JEMALLOC_HAVE_ISSETUGID if (issetugid() != 0) { return NULL; } # endif return getenv(name); #endif } static unsigned malloc_ncpus(void) { long result; #ifdef _WIN32 SYSTEM_INFO si; GetSystemInfo(&si); result = si.dwNumberOfProcessors; #elif defined(JEMALLOC_GLIBC_MALLOC_HOOK) && defined(CPU_COUNT) /* * glibc >= 2.6 has the CPU_COUNT macro. * * glibc's sysconf() uses isspace(). glibc allocates for the first time * *before* setting up the isspace tables. Therefore we need a * different method to get the number of CPUs. */ { cpu_set_t set; pthread_getaffinity_np(pthread_self(), sizeof(set), &set); result = CPU_COUNT(&set); } #else result = sysconf(_SC_NPROCESSORS_ONLN); #endif return ((result == -1) ? 1 : (unsigned)result); } static void init_opt_stats_print_opts(const char *v, size_t vlen) { size_t opts_len = strlen(opt_stats_print_opts); assert(opts_len <= stats_print_tot_num_options); for (size_t i = 0; i < vlen; i++) { switch (v[i]) { #define OPTION(o, v, d, s) case o: break; STATS_PRINT_OPTIONS #undef OPTION default: continue; } if (strchr(opt_stats_print_opts, v[i]) != NULL) { /* Ignore repeated. */ continue; } opt_stats_print_opts[opts_len++] = v[i]; opt_stats_print_opts[opts_len] = '\0'; assert(opts_len <= stats_print_tot_num_options); } assert(opts_len == strlen(opt_stats_print_opts)); } /* Reads the next size pair in a multi-sized option. */ static bool malloc_conf_multi_sizes_next(const char **slab_size_segment_cur, size_t *vlen_left, size_t *slab_start, size_t *slab_end, size_t *new_size) { const char *cur = *slab_size_segment_cur; char *end; uintmax_t um; set_errno(0); /* First number, then '-' */ um = malloc_strtoumax(cur, &end, 0); if (get_errno() != 0 || *end != '-') { return true; } *slab_start = (size_t)um; cur = end + 1; /* Second number, then ':' */ um = malloc_strtoumax(cur, &end, 0); if (get_errno() != 0 || *end != ':') { return true; } *slab_end = (size_t)um; cur = end + 1; /* Last number */ um = malloc_strtoumax(cur, &end, 0); if (get_errno() != 0) { return true; } *new_size = (size_t)um; /* Consume the separator if there is one. */ if (*end == '|') { end++; } *vlen_left -= end - *slab_size_segment_cur; *slab_size_segment_cur = end; return false; } static bool malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p, char const **v_p, size_t *vlen_p) { bool accept; const char *opts = *opts_p; *k_p = opts; for (accept = false; !accept;) { switch (*opts) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '_': opts++; break; case ':': opts++; *klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p; *v_p = opts; accept = true; break; case '\0': if (opts != *opts_p) { malloc_write(": Conf string ends " "with key\n"); } return true; default: malloc_write(": Malformed conf string\n"); return true; } } for (accept = false; !accept;) { switch (*opts) { case ',': opts++; /* * Look ahead one character here, because the next time * this function is called, it will assume that end of * input has been cleanly reached if no input remains, * but we have optimistically already consumed the * comma if one exists. */ if (*opts == '\0') { malloc_write(": Conf string ends " "with comma\n"); } *vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p; accept = true; break; case '\0': *vlen_p = (uintptr_t)opts - (uintptr_t)*v_p; accept = true; break; default: opts++; break; } } *opts_p = opts; return false; } static void malloc_abort_invalid_conf(void) { assert(opt_abort_conf); malloc_printf(": Abort (abort_conf:true) on invalid conf " "value (see above).\n"); abort(); } static void malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v, size_t vlen) { malloc_printf(": %s: %.*s:%.*s\n", msg, (int)klen, k, (int)vlen, v); /* If abort_conf is set, error out after processing all options. */ const char *experimental = "experimental_"; if (strncmp(k, experimental, strlen(experimental)) == 0) { /* However, tolerate experimental features. */ return; } had_conf_error = true; } static void malloc_slow_flag_init(void) { /* * Combine the runtime options into malloc_slow for fast path. Called * after processing all the options. */ malloc_slow_flags |= (opt_junk_alloc ? flag_opt_junk_alloc : 0) | (opt_junk_free ? flag_opt_junk_free : 0) | (opt_zero ? flag_opt_zero : 0) | (opt_utrace ? flag_opt_utrace : 0) | (opt_xmalloc ? flag_opt_xmalloc : 0); malloc_slow = (malloc_slow_flags != 0); } /* Number of sources for initializing malloc_conf */ #define MALLOC_CONF_NSOURCES 4 static const char * obtain_malloc_conf(unsigned which_source, char buf[PATH_MAX + 1]) { if (config_debug) { static unsigned read_source = 0; /* * Each source should only be read once, to minimize # of * syscalls on init. */ assert(read_source++ == which_source); } assert(which_source < MALLOC_CONF_NSOURCES); const char *ret; switch (which_source) { case 0: ret = config_malloc_conf; break; case 1: if (je_malloc_conf != NULL) { /* Use options that were compiled into the program. */ ret = je_malloc_conf; } else { /* No configuration specified. */ ret = NULL; } break; case 2: { ssize_t linklen = 0; #ifndef _WIN32 int saved_errno = errno; const char *linkname = # ifdef JEMALLOC_PREFIX "/etc/"JEMALLOC_PREFIX"malloc.conf" # else "/etc/malloc.conf" # endif ; /* * Try to use the contents of the "/etc/malloc.conf" symbolic * link's name. */ #ifndef JEMALLOC_READLINKAT linklen = readlink(linkname, buf, PATH_MAX); #else linklen = readlinkat(AT_FDCWD, linkname, buf, PATH_MAX); #endif if (linklen == -1) { /* No configuration specified. */ linklen = 0; /* Restore errno. */ set_errno(saved_errno); } #endif buf[linklen] = '\0'; ret = buf; break; } case 3: { const char *envname = #ifdef JEMALLOC_PREFIX JEMALLOC_CPREFIX"MALLOC_CONF" #else "MALLOC_CONF" #endif ; if ((ret = jemalloc_secure_getenv(envname)) != NULL) { /* * Do nothing; opts is already initialized to the value * of the MALLOC_CONF environment variable. */ } else { /* No configuration specified. */ ret = NULL; } break; } default: not_reached(); ret = NULL; } return ret; } static void malloc_conf_init_helper(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS], bool initial_call, const char *opts_cache[MALLOC_CONF_NSOURCES], char buf[PATH_MAX + 1]) { static const char *opts_explain[MALLOC_CONF_NSOURCES] = { "string specified via --with-malloc-conf", "string pointed to by the global variable malloc_conf", "\"name\" of the file referenced by the symbolic link named " "/etc/malloc.conf", "value of the environment variable MALLOC_CONF" }; unsigned i; const char *opts, *k, *v; size_t klen, vlen; for (i = 0; i < MALLOC_CONF_NSOURCES; i++) { /* Get runtime configuration. */ if (initial_call) { opts_cache[i] = obtain_malloc_conf(i, buf); } opts = opts_cache[i]; if (!initial_call && opt_confirm_conf) { malloc_printf( ": malloc_conf #%u (%s): \"%s\"\n", i + 1, opts_explain[i], opts != NULL ? opts : ""); } if (opts == NULL) { continue; } while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v, &vlen)) { #define CONF_ERROR(msg, k, klen, v, vlen) \ if (!initial_call) { \ malloc_conf_error( \ msg, k, klen, v, vlen); \ cur_opt_valid = false; \ } #define CONF_CONTINUE { \ if (!initial_call && opt_confirm_conf \ && cur_opt_valid) { \ malloc_printf(": -- " \ "Set conf value: %.*s:%.*s" \ "\n", (int)klen, k, \ (int)vlen, v); \ } \ continue; \ } #define CONF_MATCH(n) \ (sizeof(n)-1 == klen && strncmp(n, k, klen) == 0) #define CONF_MATCH_VALUE(n) \ (sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0) #define CONF_HANDLE_BOOL(o, n) \ if (CONF_MATCH(n)) { \ if (CONF_MATCH_VALUE("true")) { \ o = true; \ } else if (CONF_MATCH_VALUE("false")) { \ o = false; \ } else { \ CONF_ERROR("Invalid conf value",\ k, klen, v, vlen); \ } \ CONF_CONTINUE; \ } /* * One of the CONF_MIN macros below expands, in one of the use points, * to "unsigned integer < 0", which is always false, triggering the * GCC -Wtype-limits warning, which we disable here and re-enable below. */ JEMALLOC_DIAGNOSTIC_PUSH JEMALLOC_DIAGNOSTIC_IGNORE_TYPE_LIMITS #define CONF_DONT_CHECK_MIN(um, min) false #define CONF_CHECK_MIN(um, min) ((um) < (min)) #define CONF_DONT_CHECK_MAX(um, max) false #define CONF_CHECK_MAX(um, max) ((um) > (max)) #define CONF_HANDLE_T_U(t, o, n, min, max, check_min, check_max, clip) \ if (CONF_MATCH(n)) { \ uintmax_t um; \ char *end; \ \ set_errno(0); \ um = malloc_strtoumax(v, &end, 0); \ if (get_errno() != 0 || (uintptr_t)end -\ (uintptr_t)v != vlen) { \ CONF_ERROR("Invalid conf value",\ k, klen, v, vlen); \ } else if (clip) { \ if (check_min(um, (t)(min))) { \ o = (t)(min); \ } else if ( \ check_max(um, (t)(max))) { \ o = (t)(max); \ } else { \ o = (t)um; \ } \ } else { \ if (check_min(um, (t)(min)) || \ check_max(um, (t)(max))) { \ CONF_ERROR( \ "Out-of-range " \ "conf value", \ k, klen, v, vlen); \ } else { \ o = (t)um; \ } \ } \ CONF_CONTINUE; \ } #define CONF_HANDLE_UNSIGNED(o, n, min, max, check_min, check_max, \ clip) \ CONF_HANDLE_T_U(unsigned, o, n, min, max, \ check_min, check_max, clip) #define CONF_HANDLE_SIZE_T(o, n, min, max, check_min, check_max, clip) \ CONF_HANDLE_T_U(size_t, o, n, min, max, \ check_min, check_max, clip) #define CONF_HANDLE_SSIZE_T(o, n, min, max) \ if (CONF_MATCH(n)) { \ long l; \ char *end; \ \ set_errno(0); \ l = strtol(v, &end, 0); \ if (get_errno() != 0 || (uintptr_t)end -\ (uintptr_t)v != vlen) { \ CONF_ERROR("Invalid conf value",\ k, klen, v, vlen); \ } else if (l < (ssize_t)(min) || l > \ (ssize_t)(max)) { \ CONF_ERROR( \ "Out-of-range conf value", \ k, klen, v, vlen); \ } else { \ o = l; \ } \ CONF_CONTINUE; \ } #define CONF_HANDLE_CHAR_P(o, n, d) \ if (CONF_MATCH(n)) { \ size_t cpylen = (vlen <= \ sizeof(o)-1) ? vlen : \ sizeof(o)-1; \ strncpy(o, v, cpylen); \ o[cpylen] = '\0'; \ CONF_CONTINUE; \ } bool cur_opt_valid = true; CONF_HANDLE_BOOL(opt_confirm_conf, "confirm_conf") if (initial_call) { continue; } CONF_HANDLE_BOOL(opt_abort, "abort") CONF_HANDLE_BOOL(opt_abort_conf, "abort_conf") if (strncmp("metadata_thp", k, klen) == 0) { int i; bool match = false; for (i = 0; i < metadata_thp_mode_limit; i++) { if (strncmp(metadata_thp_mode_names[i], v, vlen) == 0) { opt_metadata_thp = i; match = true; break; } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_HANDLE_BOOL(opt_retain, "retain") if (strncmp("dss", k, klen) == 0) { int i; bool match = false; for (i = 0; i < dss_prec_limit; i++) { if (strncmp(dss_prec_names[i], v, vlen) == 0) { if (extent_dss_prec_set(i)) { CONF_ERROR( "Error setting dss", k, klen, v, vlen); } else { opt_dss = dss_prec_names[i]; match = true; break; } } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_HANDLE_UNSIGNED(opt_narenas, "narenas", 1, UINT_MAX, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, false) if (CONF_MATCH("bin_shards")) { const char *bin_shards_segment_cur = v; size_t vlen_left = vlen; do { size_t size_start; size_t size_end; size_t nshards; bool err = malloc_conf_multi_sizes_next( &bin_shards_segment_cur, &vlen_left, &size_start, &size_end, &nshards); if (err || bin_update_shard_size( bin_shard_sizes, size_start, size_end, nshards)) { CONF_ERROR( "Invalid settings for " "bin_shards", k, klen, v, vlen); break; } } while (vlen_left > 0); CONF_CONTINUE; } CONF_HANDLE_SSIZE_T(opt_dirty_decay_ms, "dirty_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) < QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) : SSIZE_MAX); CONF_HANDLE_SSIZE_T(opt_muzzy_decay_ms, "muzzy_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) < QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) : SSIZE_MAX); CONF_HANDLE_BOOL(opt_stats_print, "stats_print") if (CONF_MATCH("stats_print_opts")) { init_opt_stats_print_opts(v, vlen); CONF_CONTINUE; } if (config_fill) { if (CONF_MATCH("junk")) { if (CONF_MATCH_VALUE("true")) { opt_junk = "true"; opt_junk_alloc = opt_junk_free = true; } else if (CONF_MATCH_VALUE("false")) { opt_junk = "false"; opt_junk_alloc = opt_junk_free = false; } else if (CONF_MATCH_VALUE("alloc")) { opt_junk = "alloc"; opt_junk_alloc = true; opt_junk_free = false; } else if (CONF_MATCH_VALUE("free")) { opt_junk = "free"; opt_junk_alloc = false; opt_junk_free = true; } else { CONF_ERROR( "Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_HANDLE_BOOL(opt_zero, "zero") } if (config_utrace) { CONF_HANDLE_BOOL(opt_utrace, "utrace") } if (config_xmalloc) { CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc") } CONF_HANDLE_BOOL(opt_tcache, "tcache") CONF_HANDLE_SSIZE_T(opt_lg_tcache_max, "lg_tcache_max", -1, (sizeof(size_t) << 3) - 1) /* * The runtime option of oversize_threshold remains * undocumented. It may be tweaked in the next major * release (6.0). The default value 8M is rather * conservative / safe. Tuning it further down may * improve fragmentation a bit more, but may also cause * contention on the huge arena. */ CONF_HANDLE_SIZE_T(opt_oversize_threshold, "oversize_threshold", 0, SC_LARGE_MAXCLASS, CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, false) CONF_HANDLE_SIZE_T(opt_lg_extent_max_active_fit, "lg_extent_max_active_fit", 0, (sizeof(size_t) << 3), CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, false) if (strncmp("percpu_arena", k, klen) == 0) { bool match = false; for (int i = percpu_arena_mode_names_base; i < percpu_arena_mode_names_limit; i++) { if (strncmp(percpu_arena_mode_names[i], v, vlen) == 0) { if (!have_percpu_arena) { CONF_ERROR( "No getcpu support", k, klen, v, vlen); } opt_percpu_arena = i; match = true; break; } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_HANDLE_BOOL(opt_background_thread, "background_thread"); CONF_HANDLE_SIZE_T(opt_max_background_threads, "max_background_threads", 1, opt_max_background_threads, CONF_CHECK_MIN, CONF_CHECK_MAX, true); if (CONF_MATCH("slab_sizes")) { bool err; const char *slab_size_segment_cur = v; size_t vlen_left = vlen; do { size_t slab_start; size_t slab_end; size_t pgs; err = malloc_conf_multi_sizes_next( &slab_size_segment_cur, &vlen_left, &slab_start, &slab_end, &pgs); if (!err) { sc_data_update_slab_size( sc_data, slab_start, slab_end, (int)pgs); } else { CONF_ERROR("Invalid settings " "for slab_sizes", k, klen, v, vlen); } } while (!err && vlen_left > 0); CONF_CONTINUE; } if (config_prof) { CONF_HANDLE_BOOL(opt_prof, "prof") CONF_HANDLE_CHAR_P(opt_prof_prefix, "prof_prefix", "jeprof") CONF_HANDLE_BOOL(opt_prof_active, "prof_active") CONF_HANDLE_BOOL(opt_prof_thread_active_init, "prof_thread_active_init") CONF_HANDLE_SIZE_T(opt_lg_prof_sample, "lg_prof_sample", 0, (sizeof(uint64_t) << 3) - 1, CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, true) CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum") CONF_HANDLE_SSIZE_T(opt_lg_prof_interval, "lg_prof_interval", -1, (sizeof(uint64_t) << 3) - 1) CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump") CONF_HANDLE_BOOL(opt_prof_final, "prof_final") CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak") CONF_HANDLE_BOOL(opt_prof_log, "prof_log") } if (config_log) { if (CONF_MATCH("log")) { size_t cpylen = ( vlen <= sizeof(log_var_names) ? vlen : sizeof(log_var_names) - 1); strncpy(log_var_names, v, cpylen); log_var_names[cpylen] = '\0'; CONF_CONTINUE; } } if (CONF_MATCH("thp")) { bool match = false; for (int i = 0; i < thp_mode_names_limit; i++) { if (strncmp(thp_mode_names[i],v, vlen) == 0) { if (!have_madvise_huge) { CONF_ERROR( "No THP support", k, klen, v, vlen); } opt_thp = i; match = true; break; } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_ERROR("Invalid conf pair", k, klen, v, vlen); #undef CONF_ERROR #undef CONF_CONTINUE #undef CONF_MATCH #undef CONF_MATCH_VALUE #undef CONF_HANDLE_BOOL #undef CONF_DONT_CHECK_MIN #undef CONF_CHECK_MIN #undef CONF_DONT_CHECK_MAX #undef CONF_CHECK_MAX #undef CONF_HANDLE_T_U #undef CONF_HANDLE_UNSIGNED #undef CONF_HANDLE_SIZE_T #undef CONF_HANDLE_SSIZE_T #undef CONF_HANDLE_CHAR_P /* Re-enable diagnostic "-Wtype-limits" */ JEMALLOC_DIAGNOSTIC_POP } if (opt_abort_conf && had_conf_error) { malloc_abort_invalid_conf(); } } atomic_store_b(&log_init_done, true, ATOMIC_RELEASE); } static void malloc_conf_init(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS]) { const char *opts_cache[MALLOC_CONF_NSOURCES] = {NULL, NULL, NULL, NULL}; char buf[PATH_MAX + 1]; /* The first call only set the confirm_conf option and opts_cache */ malloc_conf_init_helper(NULL, NULL, true, opts_cache, buf); malloc_conf_init_helper(sc_data, bin_shard_sizes, false, opts_cache, NULL); } #undef MALLOC_CONF_NSOURCES static bool malloc_init_hard_needed(void) { if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state == malloc_init_recursible)) { /* * Another thread initialized the allocator before this one * acquired init_lock, or this thread is the initializing * thread, and it is recursively allocating. */ return false; } #ifdef JEMALLOC_THREADED_INIT if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) { /* Busy-wait until the initializing thread completes. */ spin_t spinner = SPIN_INITIALIZER; do { malloc_mutex_unlock(TSDN_NULL, &init_lock); spin_adaptive(&spinner); malloc_mutex_lock(TSDN_NULL, &init_lock); } while (!malloc_initialized()); return false; } #endif return true; } static bool malloc_init_hard_a0_locked() { malloc_initializer = INITIALIZER; JEMALLOC_DIAGNOSTIC_PUSH JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS sc_data_t sc_data = {0}; JEMALLOC_DIAGNOSTIC_POP /* * Ordering here is somewhat tricky; we need sc_boot() first, since that * determines what the size classes will be, and then * malloc_conf_init(), since any slab size tweaking will need to be done * before sz_boot and bin_boot, which assume that the values they read * out of sc_data_global are final. */ sc_boot(&sc_data); unsigned bin_shard_sizes[SC_NBINS]; bin_shard_sizes_boot(bin_shard_sizes); /* * prof_boot0 only initializes opt_prof_prefix. We need to do it before * we parse malloc_conf options, in case malloc_conf parsing overwrites * it. */ if (config_prof) { prof_boot0(); } malloc_conf_init(&sc_data, bin_shard_sizes); sz_boot(&sc_data); bin_boot(&sc_data, bin_shard_sizes); if (opt_stats_print) { /* Print statistics at exit. */ if (atexit(stats_print_atexit) != 0) { malloc_write(": Error in atexit()\n"); if (opt_abort) { abort(); } } } if (pages_boot()) { return true; } if (base_boot(TSDN_NULL)) { return true; } if (extent_boot()) { return true; } if (ctl_boot()) { return true; } if (config_prof) { prof_boot1(); } arena_boot(&sc_data); if (tcache_boot(TSDN_NULL)) { return true; } if (malloc_mutex_init(&arenas_lock, "arenas", WITNESS_RANK_ARENAS, malloc_mutex_rank_exclusive)) { return true; } hook_boot(); /* * Create enough scaffolding to allow recursive allocation in * malloc_ncpus(). */ narenas_auto = 1; manual_arena_base = narenas_auto + 1; memset(arenas, 0, sizeof(arena_t *) * narenas_auto); /* * Initialize one arena here. The rest are lazily created in * arena_choose_hard(). */ if (arena_init(TSDN_NULL, 0, (extent_hooks_t *)&extent_hooks_default) == NULL) { return true; } a0 = arena_get(TSDN_NULL, 0, false); malloc_init_state = malloc_init_a0_initialized; return false; } static bool malloc_init_hard_a0(void) { bool ret; malloc_mutex_lock(TSDN_NULL, &init_lock); ret = malloc_init_hard_a0_locked(); malloc_mutex_unlock(TSDN_NULL, &init_lock); return ret; } /* Initialize data structures which may trigger recursive allocation. */ static bool malloc_init_hard_recursible(void) { malloc_init_state = malloc_init_recursible; ncpus = malloc_ncpus(); #if (defined(JEMALLOC_HAVE_PTHREAD_ATFORK) && !defined(JEMALLOC_MUTEX_INIT_CB) \ && !defined(JEMALLOC_ZONE) && !defined(_WIN32) && \ !defined(__native_client__)) /* LinuxThreads' pthread_atfork() allocates. */ if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent, jemalloc_postfork_child) != 0) { malloc_write(": Error in pthread_atfork()\n"); if (opt_abort) { abort(); } return true; } #endif if (background_thread_boot0()) { return true; } return false; } static unsigned malloc_narenas_default(void) { assert(ncpus > 0); /* * For SMP systems, create more than one arena per CPU by * default. */ if (ncpus > 1) { return ncpus << 2; } else { return 1; } } static percpu_arena_mode_t percpu_arena_as_initialized(percpu_arena_mode_t mode) { assert(!malloc_initialized()); assert(mode <= percpu_arena_disabled); if (mode != percpu_arena_disabled) { mode += percpu_arena_mode_enabled_base; } return mode; } static bool malloc_init_narenas(void) { assert(ncpus > 0); if (opt_percpu_arena != percpu_arena_disabled) { if (!have_percpu_arena || malloc_getcpu() < 0) { opt_percpu_arena = percpu_arena_disabled; malloc_printf(": perCPU arena getcpu() not " "available. Setting narenas to %u.\n", opt_narenas ? opt_narenas : malloc_narenas_default()); if (opt_abort) { abort(); } } else { if (ncpus >= MALLOCX_ARENA_LIMIT) { malloc_printf(": narenas w/ percpu" "arena beyond limit (%d)\n", ncpus); if (opt_abort) { abort(); } return true; } /* NB: opt_percpu_arena isn't fully initialized yet. */ if (percpu_arena_as_initialized(opt_percpu_arena) == per_phycpu_arena && ncpus % 2 != 0) { malloc_printf(": invalid " "configuration -- per physical CPU arena " "with odd number (%u) of CPUs (no hyper " "threading?).\n", ncpus); if (opt_abort) abort(); } unsigned n = percpu_arena_ind_limit( percpu_arena_as_initialized(opt_percpu_arena)); if (opt_narenas < n) { /* * If narenas is specified with percpu_arena * enabled, actual narenas is set as the greater * of the two. percpu_arena_choose will be free * to use any of the arenas based on CPU * id. This is conservative (at a small cost) * but ensures correctness. * * If for some reason the ncpus determined at * boot is not the actual number (e.g. because * of affinity setting from numactl), reserving * narenas this way provides a workaround for * percpu_arena. */ opt_narenas = n; } } } if (opt_narenas == 0) { opt_narenas = malloc_narenas_default(); } assert(opt_narenas > 0); narenas_auto = opt_narenas; /* * Limit the number of arenas to the indexing range of MALLOCX_ARENA(). */ if (narenas_auto >= MALLOCX_ARENA_LIMIT) { narenas_auto = MALLOCX_ARENA_LIMIT - 1; malloc_printf(": Reducing narenas to limit (%d)\n", narenas_auto); } narenas_total_set(narenas_auto); if (arena_init_huge()) { narenas_total_inc(); } manual_arena_base = narenas_total_get(); return false; } static void malloc_init_percpu(void) { opt_percpu_arena = percpu_arena_as_initialized(opt_percpu_arena); } static bool malloc_init_hard_finish(void) { if (malloc_mutex_boot()) { return true; } malloc_init_state = malloc_init_initialized; malloc_slow_flag_init(); return false; } static void malloc_init_hard_cleanup(tsdn_t *tsdn, bool reentrancy_set) { malloc_mutex_assert_owner(tsdn, &init_lock); malloc_mutex_unlock(tsdn, &init_lock); if (reentrancy_set) { assert(!tsdn_null(tsdn)); tsd_t *tsd = tsdn_tsd(tsdn); assert(tsd_reentrancy_level_get(tsd) > 0); post_reentrancy(tsd); } } static bool malloc_init_hard(void) { tsd_t *tsd; #if defined(_WIN32) && _WIN32_WINNT < 0x0600 _init_init_lock(); #endif malloc_mutex_lock(TSDN_NULL, &init_lock); #define UNLOCK_RETURN(tsdn, ret, reentrancy) \ malloc_init_hard_cleanup(tsdn, reentrancy); \ return ret; if (!malloc_init_hard_needed()) { UNLOCK_RETURN(TSDN_NULL, false, false) } if (malloc_init_state != malloc_init_a0_initialized && malloc_init_hard_a0_locked()) { UNLOCK_RETURN(TSDN_NULL, true, false) } malloc_mutex_unlock(TSDN_NULL, &init_lock); /* Recursive allocation relies on functional tsd. */ tsd = malloc_tsd_boot0(); if (tsd == NULL) { return true; } if (malloc_init_hard_recursible()) { return true; } malloc_mutex_lock(tsd_tsdn(tsd), &init_lock); /* Set reentrancy level to 1 during init. */ pre_reentrancy(tsd, NULL); /* Initialize narenas before prof_boot2 (for allocation). */ if (malloc_init_narenas() || background_thread_boot1(tsd_tsdn(tsd))) { UNLOCK_RETURN(tsd_tsdn(tsd), true, true) } if (config_prof && prof_boot2(tsd)) { UNLOCK_RETURN(tsd_tsdn(tsd), true, true) } malloc_init_percpu(); if (malloc_init_hard_finish()) { UNLOCK_RETURN(tsd_tsdn(tsd), true, true) } post_reentrancy(tsd); malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock); witness_assert_lockless(witness_tsd_tsdn( tsd_witness_tsdp_get_unsafe(tsd))); malloc_tsd_boot1(); /* Update TSD after tsd_boot1. */ tsd = tsd_fetch(); if (opt_background_thread) { assert(have_background_thread); /* * Need to finish init & unlock first before creating background * threads (pthread_create depends on malloc). ctl_init (which * sets isthreaded) needs to be called without holding any lock. */ background_thread_ctl_init(tsd_tsdn(tsd)); if (background_thread_create(tsd, 0)) { return true; } } #undef UNLOCK_RETURN return false; } /* * End initialization functions. */ /******************************************************************************/ /* * Begin allocation-path internal functions and data structures. */ /* * Settings determined by the documented behavior of the allocation functions. */ typedef struct static_opts_s static_opts_t; struct static_opts_s { /* Whether or not allocation size may overflow. */ bool may_overflow; /* * Whether or not allocations (with alignment) of size 0 should be * treated as size 1. */ bool bump_empty_aligned_alloc; /* * Whether to assert that allocations are not of size 0 (after any * bumping). */ bool assert_nonempty_alloc; /* * Whether or not to modify the 'result' argument to malloc in case of * error. */ bool null_out_result_on_error; /* Whether to set errno when we encounter an error condition. */ bool set_errno_on_error; /* * The minimum valid alignment for functions requesting aligned storage. */ size_t min_alignment; /* The error string to use if we oom. */ const char *oom_string; /* The error string to use if the passed-in alignment is invalid. */ const char *invalid_alignment_string; /* * False if we're configured to skip some time-consuming operations. * * This isn't really a malloc "behavior", but it acts as a useful * summary of several other static (or at least, static after program * initialization) options. */ bool slow; /* * Return size. */ bool usize; }; JEMALLOC_ALWAYS_INLINE void static_opts_init(static_opts_t *static_opts) { static_opts->may_overflow = false; static_opts->bump_empty_aligned_alloc = false; static_opts->assert_nonempty_alloc = false; static_opts->null_out_result_on_error = false; static_opts->set_errno_on_error = false; static_opts->min_alignment = 0; static_opts->oom_string = ""; static_opts->invalid_alignment_string = ""; static_opts->slow = false; static_opts->usize = false; } /* * These correspond to the macros in jemalloc/jemalloc_macros.h. Broadly, we * should have one constant here per magic value there. Note however that the * representations need not be related. */ #define TCACHE_IND_NONE ((unsigned)-1) #define TCACHE_IND_AUTOMATIC ((unsigned)-2) #define ARENA_IND_AUTOMATIC ((unsigned)-1) typedef struct dynamic_opts_s dynamic_opts_t; struct dynamic_opts_s { void **result; size_t usize; size_t num_items; size_t item_size; size_t alignment; bool zero; unsigned tcache_ind; unsigned arena_ind; }; JEMALLOC_ALWAYS_INLINE void dynamic_opts_init(dynamic_opts_t *dynamic_opts) { dynamic_opts->result = NULL; dynamic_opts->usize = 0; dynamic_opts->num_items = 0; dynamic_opts->item_size = 0; dynamic_opts->alignment = 0; dynamic_opts->zero = false; dynamic_opts->tcache_ind = TCACHE_IND_AUTOMATIC; dynamic_opts->arena_ind = ARENA_IND_AUTOMATIC; } /* ind is ignored if dopts->alignment > 0. */ JEMALLOC_ALWAYS_INLINE void * imalloc_no_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd, size_t size, size_t usize, szind_t ind) { tcache_t *tcache; arena_t *arena; /* Fill in the tcache. */ if (dopts->tcache_ind == TCACHE_IND_AUTOMATIC) { if (likely(!sopts->slow)) { /* Getting tcache ptr unconditionally. */ tcache = tsd_tcachep_get(tsd); assert(tcache == tcache_get(tsd)); } else { tcache = tcache_get(tsd); } } else if (dopts->tcache_ind == TCACHE_IND_NONE) { tcache = NULL; } else { tcache = tcaches_get(tsd, dopts->tcache_ind); } /* Fill in the arena. */ if (dopts->arena_ind == ARENA_IND_AUTOMATIC) { /* * In case of automatic arena management, we defer arena * computation until as late as we can, hoping to fill the * allocation out of the tcache. */ arena = NULL; } else { arena = arena_get(tsd_tsdn(tsd), dopts->arena_ind, true); } if (unlikely(dopts->alignment != 0)) { return ipalloct(tsd_tsdn(tsd), usize, dopts->alignment, dopts->zero, tcache, arena); } return iallocztm(tsd_tsdn(tsd), size, ind, dopts->zero, tcache, false, arena, sopts->slow); } JEMALLOC_ALWAYS_INLINE void * imalloc_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd, size_t usize, szind_t ind) { void *ret; /* * For small allocations, sampling bumps the usize. If so, we allocate * from the ind_large bucket. */ szind_t ind_large; size_t bumped_usize = usize; if (usize <= SC_SMALL_MAXCLASS) { assert(((dopts->alignment == 0) ? sz_s2u(SC_LARGE_MINCLASS) : sz_sa2u(SC_LARGE_MINCLASS, dopts->alignment)) == SC_LARGE_MINCLASS); ind_large = sz_size2index(SC_LARGE_MINCLASS); bumped_usize = sz_s2u(SC_LARGE_MINCLASS); ret = imalloc_no_sample(sopts, dopts, tsd, bumped_usize, bumped_usize, ind_large); if (unlikely(ret == NULL)) { return NULL; } arena_prof_promote(tsd_tsdn(tsd), ret, usize); } else { ret = imalloc_no_sample(sopts, dopts, tsd, usize, usize, ind); } return ret; } /* * Returns true if the allocation will overflow, and false otherwise. Sets * *size to the product either way. */ JEMALLOC_ALWAYS_INLINE bool compute_size_with_overflow(bool may_overflow, dynamic_opts_t *dopts, size_t *size) { /* * This function is just num_items * item_size, except that we may have * to check for overflow. */ if (!may_overflow) { assert(dopts->num_items == 1); *size = dopts->item_size; return false; } /* A size_t with its high-half bits all set to 1. */ static const size_t high_bits = SIZE_T_MAX << (sizeof(size_t) * 8 / 2); *size = dopts->item_size * dopts->num_items; if (unlikely(*size == 0)) { return (dopts->num_items != 0 && dopts->item_size != 0); } /* * We got a non-zero size, but we don't know if we overflowed to get * there. To avoid having to do a divide, we'll be clever and note that * if both A and B can be represented in N/2 bits, then their product * can be represented in N bits (without the possibility of overflow). */ if (likely((high_bits & (dopts->num_items | dopts->item_size)) == 0)) { return false; } if (likely(*size / dopts->item_size == dopts->num_items)) { return false; } return true; } JEMALLOC_ALWAYS_INLINE int imalloc_body(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd) { /* Where the actual allocated memory will live. */ void *allocation = NULL; /* Filled in by compute_size_with_overflow below. */ size_t size = 0; /* * For unaligned allocations, we need only ind. For aligned * allocations, or in case of stats or profiling we need usize. * * These are actually dead stores, in that their values are reset before * any branch on their value is taken. Sometimes though, it's * convenient to pass them as arguments before this point. To avoid * undefined behavior then, we initialize them with dummy stores. */ szind_t ind = 0; size_t usize = 0; /* Reentrancy is only checked on slow path. */ int8_t reentrancy_level; /* Compute the amount of memory the user wants. */ if (unlikely(compute_size_with_overflow(sopts->may_overflow, dopts, &size))) { goto label_oom; } if (unlikely(dopts->alignment < sopts->min_alignment || (dopts->alignment & (dopts->alignment - 1)) != 0)) { goto label_invalid_alignment; } /* This is the beginning of the "core" algorithm. */ if (dopts->alignment == 0) { ind = sz_size2index(size); if (unlikely(ind >= SC_NSIZES)) { goto label_oom; } if (config_stats || (config_prof && opt_prof) || sopts->usize) { usize = sz_index2size(ind); dopts->usize = usize; assert(usize > 0 && usize <= SC_LARGE_MAXCLASS); } } else { if (sopts->bump_empty_aligned_alloc) { if (unlikely(size == 0)) { size = 1; } } usize = sz_sa2u(size, dopts->alignment); dopts->usize = usize; if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) { goto label_oom; } } /* Validate the user input. */ if (sopts->assert_nonempty_alloc) { assert (size != 0); } check_entry_exit_locking(tsd_tsdn(tsd)); /* * If we need to handle reentrancy, we can do it out of a * known-initialized arena (i.e. arena 0). */ reentrancy_level = tsd_reentrancy_level_get(tsd); if (sopts->slow && unlikely(reentrancy_level > 0)) { /* * We should never specify particular arenas or tcaches from * within our internal allocations. */ assert(dopts->tcache_ind == TCACHE_IND_AUTOMATIC || dopts->tcache_ind == TCACHE_IND_NONE); assert(dopts->arena_ind == ARENA_IND_AUTOMATIC); dopts->tcache_ind = TCACHE_IND_NONE; /* We know that arena 0 has already been initialized. */ dopts->arena_ind = 0; } /* If profiling is on, get our profiling context. */ if (config_prof && opt_prof) { /* * Note that if we're going down this path, usize must have been * initialized in the previous if statement. */ prof_tctx_t *tctx = prof_alloc_prep( tsd, usize, prof_active_get_unlocked(), true); alloc_ctx_t alloc_ctx; if (likely((uintptr_t)tctx == (uintptr_t)1U)) { alloc_ctx.slab = (usize <= SC_SMALL_MAXCLASS); allocation = imalloc_no_sample( sopts, dopts, tsd, usize, usize, ind); } else if ((uintptr_t)tctx > (uintptr_t)1U) { /* * Note that ind might still be 0 here. This is fine; * imalloc_sample ignores ind if dopts->alignment > 0. */ allocation = imalloc_sample( sopts, dopts, tsd, usize, ind); alloc_ctx.slab = false; } else { allocation = NULL; } if (unlikely(allocation == NULL)) { prof_alloc_rollback(tsd, tctx, true); goto label_oom; } prof_malloc(tsd_tsdn(tsd), allocation, usize, &alloc_ctx, tctx); } else { /* * If dopts->alignment > 0, then ind is still 0, but usize was * computed in the previous if statement. Down the positive * alignment path, imalloc_no_sample ignores ind and size * (relying only on usize). */ allocation = imalloc_no_sample(sopts, dopts, tsd, size, usize, ind); if (unlikely(allocation == NULL)) { goto label_oom; } } /* * Allocation has been done at this point. We still have some * post-allocation work to do though. */ assert(dopts->alignment == 0 || ((uintptr_t)allocation & (dopts->alignment - 1)) == ZU(0)); if (config_stats) { assert(usize == isalloc(tsd_tsdn(tsd), allocation)); *tsd_thread_allocatedp_get(tsd) += usize; } if (sopts->slow) { UTRACE(0, size, allocation); } /* Success! */ check_entry_exit_locking(tsd_tsdn(tsd)); *dopts->result = allocation; return 0; label_oom: if (unlikely(sopts->slow) && config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(sopts->oom_string); abort(); } if (sopts->slow) { UTRACE(NULL, size, NULL); } check_entry_exit_locking(tsd_tsdn(tsd)); if (sopts->set_errno_on_error) { set_errno(ENOMEM); } if (sopts->null_out_result_on_error) { *dopts->result = NULL; } return ENOMEM; /* * This label is only jumped to by one goto; we move it out of line * anyways to avoid obscuring the non-error paths, and for symmetry with * the oom case. */ label_invalid_alignment: if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(sopts->invalid_alignment_string); abort(); } if (sopts->set_errno_on_error) { set_errno(EINVAL); } if (sopts->slow) { UTRACE(NULL, size, NULL); } check_entry_exit_locking(tsd_tsdn(tsd)); if (sopts->null_out_result_on_error) { *dopts->result = NULL; } return EINVAL; } JEMALLOC_ALWAYS_INLINE bool imalloc_init_check(static_opts_t *sopts, dynamic_opts_t *dopts) { if (unlikely(!malloc_initialized()) && unlikely(malloc_init())) { if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(sopts->oom_string); abort(); } UTRACE(NULL, dopts->num_items * dopts->item_size, NULL); set_errno(ENOMEM); *dopts->result = NULL; return false; } return true; } /* Returns the errno-style error code of the allocation. */ JEMALLOC_ALWAYS_INLINE int imalloc(static_opts_t *sopts, dynamic_opts_t *dopts) { if (tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) { return ENOMEM; } /* We always need the tsd. Let's grab it right away. */ tsd_t *tsd = tsd_fetch(); assert(tsd); if (likely(tsd_fast(tsd))) { /* Fast and common path. */ tsd_assert_fast(tsd); sopts->slow = false; return imalloc_body(sopts, dopts, tsd); } else { if (!tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) { return ENOMEM; } sopts->slow = true; return imalloc_body(sopts, dopts, tsd); } } JEMALLOC_NOINLINE void * malloc_default(size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.malloc.entry", "size: %zu", size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.oom_string = ": Error in malloc(): out of memory\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; imalloc(&sopts, &dopts); /* * Note that this branch gets optimized away -- it immediately follows * the check on tsd_fast that sets sopts.slow. */ if (sopts.slow) { uintptr_t args[3] = {size}; hook_invoke_alloc(hook_alloc_malloc, ret, (uintptr_t)ret, args); } LOG("core.malloc.exit", "result: %p", ret); return ret; } /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ /* * malloc() fastpath. * * Fastpath assumes size <= SC_LOOKUP_MAXCLASS, and that we hit * tcache. If either of these is false, we tail-call to the slowpath, * malloc_default(). Tail-calling is used to avoid any caller-saved * registers. * * fastpath supports ticker and profiling, both of which will also * tail-call to the slowpath if they fire. */ JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1) je_malloc(size_t size) { LOG("core.malloc.entry", "size: %zu", size); if (tsd_get_allocates() && unlikely(!malloc_initialized())) { return malloc_default(size); } tsd_t *tsd = tsd_get(false); if (unlikely(!tsd || !tsd_fast(tsd) || (size > SC_LOOKUP_MAXCLASS))) { return malloc_default(size); } tcache_t *tcache = tsd_tcachep_get(tsd); if (unlikely(ticker_trytick(&tcache->gc_ticker))) { return malloc_default(size); } szind_t ind = sz_size2index_lookup(size); size_t usize; if (config_stats || config_prof) { usize = sz_index2size(ind); } /* Fast path relies on size being a bin. I.e. SC_LOOKUP_MAXCLASS < SC_SMALL_MAXCLASS */ assert(ind < SC_NBINS); assert(size <= SC_SMALL_MAXCLASS); if (config_prof) { int64_t bytes_until_sample = tsd_bytes_until_sample_get(tsd); bytes_until_sample -= usize; tsd_bytes_until_sample_set(tsd, bytes_until_sample); if (unlikely(bytes_until_sample < 0)) { /* * Avoid a prof_active check on the fastpath. * If prof_active is false, set bytes_until_sample to * a large value. If prof_active is set to true, * bytes_until_sample will be reset. */ if (!prof_active) { tsd_bytes_until_sample_set(tsd, SSIZE_MAX); } return malloc_default(size); } } cache_bin_t *bin = tcache_small_bin_get(tcache, ind); bool tcache_success; void* ret = cache_bin_alloc_easy(bin, &tcache_success); if (tcache_success) { if (config_stats) { *tsd_thread_allocatedp_get(tsd) += usize; bin->tstats.nrequests++; } if (config_prof) { tcache->prof_accumbytes += usize; } LOG("core.malloc.exit", "result: %p", ret); /* Fastpath success */ return ret; } return malloc_default(size); } JEMALLOC_EXPORT int JEMALLOC_NOTHROW JEMALLOC_ATTR(nonnull(1)) je_posix_memalign(void **memptr, size_t alignment, size_t size) { int ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.posix_memalign.entry", "mem ptr: %p, alignment: %zu, " "size: %zu", memptr, alignment, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.bump_empty_aligned_alloc = true; sopts.min_alignment = sizeof(void *); sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; dopts.result = memptr; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = alignment; ret = imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)memptr, (uintptr_t)alignment, (uintptr_t)size}; hook_invoke_alloc(hook_alloc_posix_memalign, *memptr, (uintptr_t)ret, args); } LOG("core.posix_memalign.exit", "result: %d, alloc ptr: %p", ret, *memptr); return ret; } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(2) je_aligned_alloc(size_t alignment, size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.aligned_alloc.entry", "alignment: %zu, size: %zu\n", alignment, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.bump_empty_aligned_alloc = true; sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.min_alignment = 1; sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = alignment; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)alignment, (uintptr_t)size}; hook_invoke_alloc(hook_alloc_aligned_alloc, ret, (uintptr_t)ret, args); } LOG("core.aligned_alloc.exit", "result: %p", ret); return ret; } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2) je_calloc(size_t num, size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.calloc.entry", "num: %zu, size: %zu\n", num, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.may_overflow = true; sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.oom_string = ": Error in calloc(): out of memory\n"; dopts.result = &ret; dopts.num_items = num; dopts.item_size = size; dopts.zero = true; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)num, (uintptr_t)size}; hook_invoke_alloc(hook_alloc_calloc, ret, (uintptr_t)ret, args); } LOG("core.calloc.exit", "result: %p", ret); return ret; } static void * irealloc_prof_sample(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t usize, prof_tctx_t *tctx, hook_ralloc_args_t *hook_args) { void *p; if (tctx == NULL) { return NULL; } if (usize <= SC_SMALL_MAXCLASS) { p = iralloc(tsd, old_ptr, old_usize, SC_LARGE_MINCLASS, 0, false, hook_args); if (p == NULL) { return NULL; } arena_prof_promote(tsd_tsdn(tsd), p, usize); } else { p = iralloc(tsd, old_ptr, old_usize, usize, 0, false, hook_args); } return p; } JEMALLOC_ALWAYS_INLINE void * irealloc_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t usize, alloc_ctx_t *alloc_ctx, hook_ralloc_args_t *hook_args) { void *p; bool prof_active; prof_tctx_t *old_tctx, *tctx; prof_active = prof_active_get_unlocked(); old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_ptr, alloc_ctx); tctx = prof_alloc_prep(tsd, usize, prof_active, true); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) { p = irealloc_prof_sample(tsd, old_ptr, old_usize, usize, tctx, hook_args); } else { p = iralloc(tsd, old_ptr, old_usize, usize, 0, false, hook_args); } if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx, true); return NULL; } prof_realloc(tsd, p, usize, tctx, prof_active, true, old_ptr, old_usize, old_tctx); return p; } JEMALLOC_ALWAYS_INLINE void ifree(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path) { if (!slow_path) { tsd_assert_fast(tsd); } check_entry_exit_locking(tsd_tsdn(tsd)); if (tsd_reentrancy_level_get(tsd) != 0) { assert(slow_path); } assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); alloc_ctx_t alloc_ctx; rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab); assert(alloc_ctx.szind != SC_NSIZES); size_t usize; if (config_prof && opt_prof) { usize = sz_index2size(alloc_ctx.szind); prof_free(tsd, ptr, usize, &alloc_ctx); } else if (config_stats) { usize = sz_index2size(alloc_ctx.szind); } if (config_stats) { *tsd_thread_deallocatedp_get(tsd) += usize; } if (likely(!slow_path)) { idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false, false); } else { idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false, true); } } JEMALLOC_ALWAYS_INLINE void isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache, bool slow_path) { if (!slow_path) { tsd_assert_fast(tsd); } check_entry_exit_locking(tsd_tsdn(tsd)); if (tsd_reentrancy_level_get(tsd) != 0) { assert(slow_path); } assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); alloc_ctx_t alloc_ctx, *ctx; if (!config_cache_oblivious && ((uintptr_t)ptr & PAGE_MASK) != 0) { /* * When cache_oblivious is disabled and ptr is not page aligned, * the allocation was not sampled -- usize can be used to * determine szind directly. */ alloc_ctx.szind = sz_size2index(usize); alloc_ctx.slab = true; ctx = &alloc_ctx; if (config_debug) { alloc_ctx_t dbg_ctx; rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &dbg_ctx.szind, &dbg_ctx.slab); assert(dbg_ctx.szind == alloc_ctx.szind); assert(dbg_ctx.slab == alloc_ctx.slab); } } else if (config_prof && opt_prof) { rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab); assert(alloc_ctx.szind == sz_size2index(usize)); ctx = &alloc_ctx; } else { ctx = NULL; } if (config_prof && opt_prof) { prof_free(tsd, ptr, usize, ctx); } if (config_stats) { *tsd_thread_deallocatedp_get(tsd) += usize; } if (likely(!slow_path)) { isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, ctx, false); } else { isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, ctx, true); } } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ALLOC_SIZE(2) je_realloc(void *ptr, size_t arg_size) { void *ret; tsdn_t *tsdn JEMALLOC_CC_SILENCE_INIT(NULL); size_t usize JEMALLOC_CC_SILENCE_INIT(0); size_t old_usize = 0; size_t size = arg_size; LOG("core.realloc.entry", "ptr: %p, size: %zu\n", ptr, size); if (unlikely(size == 0)) { if (ptr != NULL) { /* realloc(ptr, 0) is equivalent to free(ptr). */ UTRACE(ptr, 0, 0); tcache_t *tcache; tsd_t *tsd = tsd_fetch(); if (tsd_reentrancy_level_get(tsd) == 0) { tcache = tcache_get(tsd); } else { tcache = NULL; } uintptr_t args[3] = {(uintptr_t)ptr, size}; hook_invoke_dalloc(hook_dalloc_realloc, ptr, args); ifree(tsd, ptr, tcache, true); LOG("core.realloc.exit", "result: %p", NULL); return NULL; } size = 1; } if (likely(ptr != NULL)) { assert(malloc_initialized() || IS_INITIALIZER); tsd_t *tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); hook_ralloc_args_t hook_args = {true, {(uintptr_t)ptr, (uintptr_t)arg_size, 0, 0}}; alloc_ctx_t alloc_ctx; rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab); assert(alloc_ctx.szind != SC_NSIZES); old_usize = sz_index2size(alloc_ctx.szind); assert(old_usize == isalloc(tsd_tsdn(tsd), ptr)); if (config_prof && opt_prof) { usize = sz_s2u(size); if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) { ret = NULL; } else { ret = irealloc_prof(tsd, ptr, old_usize, usize, &alloc_ctx, &hook_args); } } else { if (config_stats) { usize = sz_s2u(size); } ret = iralloc(tsd, ptr, old_usize, size, 0, false, &hook_args); } tsdn = tsd_tsdn(tsd); } else { /* realloc(NULL, size) is equivalent to malloc(size). */ static_opts_t sopts; dynamic_opts_t dopts; static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.oom_string = ": Error in realloc(): out of memory\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)ptr, arg_size}; hook_invoke_alloc(hook_alloc_realloc, ret, (uintptr_t)ret, args); } return ret; } if (unlikely(ret == NULL)) { if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(": Error in realloc(): " "out of memory\n"); abort(); } set_errno(ENOMEM); } if (config_stats && likely(ret != NULL)) { tsd_t *tsd; assert(usize == isalloc(tsdn, ret)); tsd = tsdn_tsd(tsdn); *tsd_thread_allocatedp_get(tsd) += usize; *tsd_thread_deallocatedp_get(tsd) += old_usize; } UTRACE(ptr, size, ret); check_entry_exit_locking(tsdn); LOG("core.realloc.exit", "result: %p", ret); return ret; } JEMALLOC_NOINLINE void free_default(void *ptr) { UTRACE(ptr, 0, 0); if (likely(ptr != NULL)) { /* * We avoid setting up tsd fully (e.g. tcache, arena binding) * based on only free() calls -- other activities trigger the * minimal to full transition. This is because free() may * happen during thread shutdown after tls deallocation: if a * thread never had any malloc activities until then, a * fully-setup tsd won't be destructed properly. */ tsd_t *tsd = tsd_fetch_min(); check_entry_exit_locking(tsd_tsdn(tsd)); tcache_t *tcache; if (likely(tsd_fast(tsd))) { tsd_assert_fast(tsd); /* Unconditionally get tcache ptr on fast path. */ tcache = tsd_tcachep_get(tsd); ifree(tsd, ptr, tcache, false); } else { if (likely(tsd_reentrancy_level_get(tsd) == 0)) { tcache = tcache_get(tsd); } else { tcache = NULL; } uintptr_t args_raw[3] = {(uintptr_t)ptr}; hook_invoke_dalloc(hook_dalloc_free, ptr, args_raw); ifree(tsd, ptr, tcache, true); } check_entry_exit_locking(tsd_tsdn(tsd)); } } JEMALLOC_ALWAYS_INLINE bool free_fastpath(void *ptr, size_t size, bool size_hint) { tsd_t *tsd = tsd_get(false); if (unlikely(!tsd || !tsd_fast(tsd))) { return false; } tcache_t *tcache = tsd_tcachep_get(tsd); alloc_ctx_t alloc_ctx; /* * If !config_cache_oblivious, we can check PAGE alignment to * detect sampled objects. Otherwise addresses are * randomized, and we have to look it up in the rtree anyway. * See also isfree(). */ if (!size_hint || config_cache_oblivious) { rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); bool res = rtree_szind_slab_read_fast(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, &alloc_ctx.szind, &alloc_ctx.slab); /* Note: profiled objects will have alloc_ctx.slab set */ if (!res || !alloc_ctx.slab) { return false; } assert(alloc_ctx.szind != SC_NSIZES); } else { /* * Check for both sizes that are too large, and for sampled objects. * Sampled objects are always page-aligned. The sampled object check * will also check for null ptr. */ if (size > SC_LOOKUP_MAXCLASS || (((uintptr_t)ptr & PAGE_MASK) == 0)) { return false; } alloc_ctx.szind = sz_size2index_lookup(size); } if (unlikely(ticker_trytick(&tcache->gc_ticker))) { return false; } cache_bin_t *bin = tcache_small_bin_get(tcache, alloc_ctx.szind); cache_bin_info_t *bin_info = &tcache_bin_info[alloc_ctx.szind]; if (!cache_bin_dalloc_easy(bin, bin_info, ptr)) { return false; } if (config_stats) { size_t usize = sz_index2size(alloc_ctx.szind); *tsd_thread_deallocatedp_get(tsd) += usize; } return true; } JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_free(void *ptr) { LOG("core.free.entry", "ptr: %p", ptr); if (!free_fastpath(ptr, 0, false)) { free_default(ptr); } LOG("core.free.exit", ""); } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard override functions. */ #ifdef JEMALLOC_OVERRIDE_MEMALIGN JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) je_memalign(size_t alignment, size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.memalign.entry", "alignment: %zu, size: %zu\n", alignment, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.min_alignment = 1; sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; sopts.null_out_result_on_error = true; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = alignment; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {alignment, size}; hook_invoke_alloc(hook_alloc_memalign, ret, (uintptr_t)ret, args); } LOG("core.memalign.exit", "result: %p", ret); return ret; } #endif #ifdef JEMALLOC_OVERRIDE_VALLOC JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) je_valloc(size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.valloc.entry", "size: %zu\n", size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.null_out_result_on_error = true; sopts.min_alignment = PAGE; sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = PAGE; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {size}; hook_invoke_alloc(hook_alloc_valloc, ret, (uintptr_t)ret, args); } LOG("core.valloc.exit", "result: %p\n", ret); return ret; } #endif #if defined(JEMALLOC_IS_MALLOC) && defined(JEMALLOC_GLIBC_MALLOC_HOOK) /* * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible * to inconsistently reference libc's malloc(3)-compatible functions * (https://bugzilla.mozilla.org/show_bug.cgi?id=493541). * * These definitions interpose hooks in glibc. The functions are actually * passed an extra argument for the caller return address, which will be * ignored. */ JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free; JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc; JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc; # ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) = je_memalign; # endif # ifdef CPU_COUNT /* * To enable static linking with glibc, the libc specific malloc interface must * be implemented also, so none of glibc's malloc.o functions are added to the * link. */ # define ALIAS(je_fn) __attribute__((alias (#je_fn), used)) /* To force macro expansion of je_ prefix before stringification. */ # define PREALIAS(je_fn) ALIAS(je_fn) # ifdef JEMALLOC_OVERRIDE___LIBC_CALLOC void *__libc_calloc(size_t n, size_t size) PREALIAS(je_calloc); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_FREE void __libc_free(void* ptr) PREALIAS(je_free); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_MALLOC void *__libc_malloc(size_t size) PREALIAS(je_malloc); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_MEMALIGN void *__libc_memalign(size_t align, size_t s) PREALIAS(je_memalign); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_REALLOC void *__libc_realloc(void* ptr, size_t size) PREALIAS(je_realloc); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_VALLOC void *__libc_valloc(size_t size) PREALIAS(je_valloc); # endif # ifdef JEMALLOC_OVERRIDE___POSIX_MEMALIGN int __posix_memalign(void** r, size_t a, size_t s) PREALIAS(je_posix_memalign); # endif # undef PREALIAS # undef ALIAS # endif #endif /* * End non-standard override functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ #ifdef JEMALLOC_EXPERIMENTAL_SMALLOCX_API #define JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y) x ## y #define JEMALLOC_SMALLOCX_CONCAT_HELPER2(x, y) \ JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y) typedef struct { void *ptr; size_t size; } smallocx_return_t; JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN smallocx_return_t JEMALLOC_NOTHROW /* * The attribute JEMALLOC_ATTR(malloc) cannot be used due to: * - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86488 */ JEMALLOC_SMALLOCX_CONCAT_HELPER2(je_smallocx_, JEMALLOC_VERSION_GID_IDENT) (size_t size, int flags) { /* * Note: the attribute JEMALLOC_ALLOC_SIZE(1) cannot be * used here because it makes writing beyond the `size` * of the `ptr` undefined behavior, but the objective * of this function is to allow writing beyond `size` * up to `smallocx_return_t::size`. */ smallocx_return_t ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.smallocx.entry", "size: %zu, flags: %d", size, flags); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.assert_nonempty_alloc = true; sopts.null_out_result_on_error = true; sopts.oom_string = ": Error in mallocx(): out of memory\n"; sopts.usize = true; dopts.result = &ret.ptr; dopts.num_items = 1; dopts.item_size = size; if (unlikely(flags != 0)) { if ((flags & MALLOCX_LG_ALIGN_MASK) != 0) { dopts.alignment = MALLOCX_ALIGN_GET_SPECIFIED(flags); } dopts.zero = MALLOCX_ZERO_GET(flags); if ((flags & MALLOCX_TCACHE_MASK) != 0) { if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) { dopts.tcache_ind = TCACHE_IND_NONE; } else { dopts.tcache_ind = MALLOCX_TCACHE_GET(flags); } } else { dopts.tcache_ind = TCACHE_IND_AUTOMATIC; } if ((flags & MALLOCX_ARENA_MASK) != 0) dopts.arena_ind = MALLOCX_ARENA_GET(flags); } imalloc(&sopts, &dopts); assert(dopts.usize == je_nallocx(size, flags)); ret.size = dopts.usize; LOG("core.smallocx.exit", "result: %p, size: %zu", ret.ptr, ret.size); return ret; } #undef JEMALLOC_SMALLOCX_CONCAT_HELPER #undef JEMALLOC_SMALLOCX_CONCAT_HELPER2 #endif JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1) je_mallocx(size_t size, int flags) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.mallocx.entry", "size: %zu, flags: %d", size, flags); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.assert_nonempty_alloc = true; sopts.null_out_result_on_error = true; sopts.oom_string = ": Error in mallocx(): out of memory\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; if (unlikely(flags != 0)) { if ((flags & MALLOCX_LG_ALIGN_MASK) != 0) { dopts.alignment = MALLOCX_ALIGN_GET_SPECIFIED(flags); } dopts.zero = MALLOCX_ZERO_GET(flags); if ((flags & MALLOCX_TCACHE_MASK) != 0) { if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) { dopts.tcache_ind = TCACHE_IND_NONE; } else { dopts.tcache_ind = MALLOCX_TCACHE_GET(flags); } } else { dopts.tcache_ind = TCACHE_IND_AUTOMATIC; } if ((flags & MALLOCX_ARENA_MASK) != 0) dopts.arena_ind = MALLOCX_ARENA_GET(flags); } imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {size, flags}; hook_invoke_alloc(hook_alloc_mallocx, ret, (uintptr_t)ret, args); } LOG("core.mallocx.exit", "result: %p", ret); return ret; } static void * irallocx_prof_sample(tsdn_t *tsdn, void *old_ptr, size_t old_usize, size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena, prof_tctx_t *tctx, hook_ralloc_args_t *hook_args) { void *p; if (tctx == NULL) { return NULL; } if (usize <= SC_SMALL_MAXCLASS) { p = iralloct(tsdn, old_ptr, old_usize, SC_LARGE_MINCLASS, alignment, zero, tcache, arena, hook_args); if (p == NULL) { return NULL; } arena_prof_promote(tsdn, p, usize); } else { p = iralloct(tsdn, old_ptr, old_usize, usize, alignment, zero, tcache, arena, hook_args); } return p; } JEMALLOC_ALWAYS_INLINE void * irallocx_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t size, size_t alignment, size_t *usize, bool zero, tcache_t *tcache, arena_t *arena, alloc_ctx_t *alloc_ctx, hook_ralloc_args_t *hook_args) { void *p; bool prof_active; prof_tctx_t *old_tctx, *tctx; prof_active = prof_active_get_unlocked(); old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_ptr, alloc_ctx); tctx = prof_alloc_prep(tsd, *usize, prof_active, false); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) { p = irallocx_prof_sample(tsd_tsdn(tsd), old_ptr, old_usize, *usize, alignment, zero, tcache, arena, tctx, hook_args); } else { p = iralloct(tsd_tsdn(tsd), old_ptr, old_usize, size, alignment, zero, tcache, arena, hook_args); } if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx, false); return NULL; } if (p == old_ptr && alignment != 0) { /* * The allocation did not move, so it is possible that the size * class is smaller than would guarantee the requested * alignment, and that the alignment constraint was * serendipitously satisfied. Additionally, old_usize may not * be the same as the current usize because of in-place large * reallocation. Therefore, query the actual value of usize. */ *usize = isalloc(tsd_tsdn(tsd), p); } prof_realloc(tsd, p, *usize, tctx, prof_active, false, old_ptr, old_usize, old_tctx); return p; } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ALLOC_SIZE(2) je_rallocx(void *ptr, size_t size, int flags) { void *p; tsd_t *tsd; size_t usize; size_t old_usize; size_t alignment = MALLOCX_ALIGN_GET(flags); bool zero = flags & MALLOCX_ZERO; arena_t *arena; tcache_t *tcache; LOG("core.rallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr, size, flags); assert(ptr != NULL); assert(size != 0); assert(malloc_initialized() || IS_INITIALIZER); tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) { unsigned arena_ind = MALLOCX_ARENA_GET(flags); arena = arena_get(tsd_tsdn(tsd), arena_ind, true); if (unlikely(arena == NULL)) { goto label_oom; } } else { arena = NULL; } if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) { if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) { tcache = NULL; } else { tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags)); } } else { tcache = tcache_get(tsd); } alloc_ctx_t alloc_ctx; rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab); assert(alloc_ctx.szind != SC_NSIZES); old_usize = sz_index2size(alloc_ctx.szind); assert(old_usize == isalloc(tsd_tsdn(tsd), ptr)); hook_ralloc_args_t hook_args = {false, {(uintptr_t)ptr, size, flags, 0}}; if (config_prof && opt_prof) { usize = (alignment == 0) ? sz_s2u(size) : sz_sa2u(size, alignment); if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) { goto label_oom; } p = irallocx_prof(tsd, ptr, old_usize, size, alignment, &usize, zero, tcache, arena, &alloc_ctx, &hook_args); if (unlikely(p == NULL)) { goto label_oom; } } else { p = iralloct(tsd_tsdn(tsd), ptr, old_usize, size, alignment, zero, tcache, arena, &hook_args); if (unlikely(p == NULL)) { goto label_oom; } if (config_stats) { usize = isalloc(tsd_tsdn(tsd), p); } } assert(alignment == 0 || ((uintptr_t)p & (alignment - 1)) == ZU(0)); if (config_stats) { *tsd_thread_allocatedp_get(tsd) += usize; *tsd_thread_deallocatedp_get(tsd) += old_usize; } UTRACE(ptr, size, p); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.rallocx.exit", "result: %p", p); return p; label_oom: if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(": Error in rallocx(): out of memory\n"); abort(); } UTRACE(ptr, size, 0); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.rallocx.exit", "result: %p", NULL); return NULL; } JEMALLOC_ALWAYS_INLINE size_t ixallocx_helper(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero) { size_t newsize; if (ixalloc(tsdn, ptr, old_usize, size, extra, alignment, zero, &newsize)) { return old_usize; } return newsize; } static size_t ixallocx_prof_sample(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero, prof_tctx_t *tctx) { size_t usize; if (tctx == NULL) { return old_usize; } usize = ixallocx_helper(tsdn, ptr, old_usize, size, extra, alignment, zero); return usize; } JEMALLOC_ALWAYS_INLINE size_t ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero, alloc_ctx_t *alloc_ctx) { size_t usize_max, usize; bool prof_active; prof_tctx_t *old_tctx, *tctx; prof_active = prof_active_get_unlocked(); old_tctx = prof_tctx_get(tsd_tsdn(tsd), ptr, alloc_ctx); /* * usize isn't knowable before ixalloc() returns when extra is non-zero. * Therefore, compute its maximum possible value and use that in * prof_alloc_prep() to decide whether to capture a backtrace. * prof_realloc() will use the actual usize to decide whether to sample. */ if (alignment == 0) { usize_max = sz_s2u(size+extra); assert(usize_max > 0 && usize_max <= SC_LARGE_MAXCLASS); } else { usize_max = sz_sa2u(size+extra, alignment); if (unlikely(usize_max == 0 || usize_max > SC_LARGE_MAXCLASS)) { /* * usize_max is out of range, and chances are that * allocation will fail, but use the maximum possible * value and carry on with prof_alloc_prep(), just in * case allocation succeeds. */ usize_max = SC_LARGE_MAXCLASS; } } tctx = prof_alloc_prep(tsd, usize_max, prof_active, false); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) { usize = ixallocx_prof_sample(tsd_tsdn(tsd), ptr, old_usize, size, extra, alignment, zero, tctx); } else { usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size, extra, alignment, zero); } if (usize == old_usize) { prof_alloc_rollback(tsd, tctx, false); return usize; } prof_realloc(tsd, ptr, usize, tctx, prof_active, false, ptr, old_usize, old_tctx); return usize; } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW je_xallocx(void *ptr, size_t size, size_t extra, int flags) { tsd_t *tsd; size_t usize, old_usize; size_t alignment = MALLOCX_ALIGN_GET(flags); bool zero = flags & MALLOCX_ZERO; LOG("core.xallocx.entry", "ptr: %p, size: %zu, extra: %zu, " "flags: %d", ptr, size, extra, flags); assert(ptr != NULL); assert(size != 0); assert(SIZE_T_MAX - size >= extra); assert(malloc_initialized() || IS_INITIALIZER); tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); alloc_ctx_t alloc_ctx; rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab); assert(alloc_ctx.szind != SC_NSIZES); old_usize = sz_index2size(alloc_ctx.szind); assert(old_usize == isalloc(tsd_tsdn(tsd), ptr)); /* * The API explicitly absolves itself of protecting against (size + * extra) numerical overflow, but we may need to clamp extra to avoid * exceeding SC_LARGE_MAXCLASS. * * Ordinarily, size limit checking is handled deeper down, but here we * have to check as part of (size + extra) clamping, since we need the * clamped value in the above helper functions. */ if (unlikely(size > SC_LARGE_MAXCLASS)) { usize = old_usize; goto label_not_resized; } if (unlikely(SC_LARGE_MAXCLASS - size < extra)) { extra = SC_LARGE_MAXCLASS - size; } if (config_prof && opt_prof) { usize = ixallocx_prof(tsd, ptr, old_usize, size, extra, alignment, zero, &alloc_ctx); } else { usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size, extra, alignment, zero); } if (unlikely(usize == old_usize)) { goto label_not_resized; } if (config_stats) { *tsd_thread_allocatedp_get(tsd) += usize; *tsd_thread_deallocatedp_get(tsd) += old_usize; } label_not_resized: if (unlikely(!tsd_fast(tsd))) { uintptr_t args[4] = {(uintptr_t)ptr, size, extra, flags}; hook_invoke_expand(hook_expand_xallocx, ptr, old_usize, usize, (uintptr_t)usize, args); } UTRACE(ptr, size, ptr); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.xallocx.exit", "result: %zu", usize); return usize; } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW JEMALLOC_ATTR(pure) je_sallocx(const void *ptr, int flags) { size_t usize; tsdn_t *tsdn; LOG("core.sallocx.entry", "ptr: %p, flags: %d", ptr, flags); assert(malloc_initialized() || IS_INITIALIZER); assert(ptr != NULL); tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); if (config_debug || force_ivsalloc) { usize = ivsalloc(tsdn, ptr); assert(force_ivsalloc || usize != 0); } else { usize = isalloc(tsdn, ptr); } check_entry_exit_locking(tsdn); LOG("core.sallocx.exit", "result: %zu", usize); return usize; } JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_dallocx(void *ptr, int flags) { LOG("core.dallocx.entry", "ptr: %p, flags: %d", ptr, flags); assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); tsd_t *tsd = tsd_fetch(); bool fast = tsd_fast(tsd); check_entry_exit_locking(tsd_tsdn(tsd)); tcache_t *tcache; if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) { /* Not allowed to be reentrant and specify a custom tcache. */ assert(tsd_reentrancy_level_get(tsd) == 0); if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) { tcache = NULL; } else { tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags)); } } else { if (likely(fast)) { tcache = tsd_tcachep_get(tsd); assert(tcache == tcache_get(tsd)); } else { if (likely(tsd_reentrancy_level_get(tsd) == 0)) { tcache = tcache_get(tsd); } else { tcache = NULL; } } } UTRACE(ptr, 0, 0); if (likely(fast)) { tsd_assert_fast(tsd); ifree(tsd, ptr, tcache, false); } else { uintptr_t args_raw[3] = {(uintptr_t)ptr, flags}; hook_invoke_dalloc(hook_dalloc_dallocx, ptr, args_raw); ifree(tsd, ptr, tcache, true); } check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.dallocx.exit", ""); } JEMALLOC_ALWAYS_INLINE size_t inallocx(tsdn_t *tsdn, size_t size, int flags) { check_entry_exit_locking(tsdn); size_t usize; if (likely((flags & MALLOCX_LG_ALIGN_MASK) == 0)) { usize = sz_s2u(size); } else { usize = sz_sa2u(size, MALLOCX_ALIGN_GET_SPECIFIED(flags)); } check_entry_exit_locking(tsdn); return usize; } JEMALLOC_NOINLINE void sdallocx_default(void *ptr, size_t size, int flags) { assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); tsd_t *tsd = tsd_fetch(); bool fast = tsd_fast(tsd); size_t usize = inallocx(tsd_tsdn(tsd), size, flags); assert(usize == isalloc(tsd_tsdn(tsd), ptr)); check_entry_exit_locking(tsd_tsdn(tsd)); tcache_t *tcache; if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) { /* Not allowed to be reentrant and specify a custom tcache. */ assert(tsd_reentrancy_level_get(tsd) == 0); if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) { tcache = NULL; } else { tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags)); } } else { if (likely(fast)) { tcache = tsd_tcachep_get(tsd); assert(tcache == tcache_get(tsd)); } else { if (likely(tsd_reentrancy_level_get(tsd) == 0)) { tcache = tcache_get(tsd); } else { tcache = NULL; } } } UTRACE(ptr, 0, 0); if (likely(fast)) { tsd_assert_fast(tsd); isfree(tsd, ptr, usize, tcache, false); } else { uintptr_t args_raw[3] = {(uintptr_t)ptr, size, flags}; hook_invoke_dalloc(hook_dalloc_sdallocx, ptr, args_raw); isfree(tsd, ptr, usize, tcache, true); } check_entry_exit_locking(tsd_tsdn(tsd)); } JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_sdallocx(void *ptr, size_t size, int flags) { LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr, size, flags); if (flags !=0 || !free_fastpath(ptr, size, true)) { sdallocx_default(ptr, size, flags); } LOG("core.sdallocx.exit", ""); } void JEMALLOC_NOTHROW je_sdallocx_noflags(void *ptr, size_t size) { LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: 0", ptr, size); if (!free_fastpath(ptr, size, true)) { sdallocx_default(ptr, size, 0); } LOG("core.sdallocx.exit", ""); } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW JEMALLOC_ATTR(pure) je_nallocx(size_t size, int flags) { size_t usize; tsdn_t *tsdn; assert(size != 0); if (unlikely(malloc_init())) { LOG("core.nallocx.exit", "result: %zu", ZU(0)); return 0; } tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); usize = inallocx(tsdn, size, flags); if (unlikely(usize > SC_LARGE_MAXCLASS)) { LOG("core.nallocx.exit", "result: %zu", ZU(0)); return 0; } check_entry_exit_locking(tsdn); LOG("core.nallocx.exit", "result: %zu", usize); return usize; } JEMALLOC_EXPORT int JEMALLOC_NOTHROW je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int ret; tsd_t *tsd; LOG("core.mallctl.entry", "name: %s", name); if (unlikely(malloc_init())) { LOG("core.mallctl.exit", "result: %d", EAGAIN); return EAGAIN; } tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); ret = ctl_byname(tsd, name, oldp, oldlenp, newp, newlen); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.mallctl.exit", "result: %d", ret); return ret; } JEMALLOC_EXPORT int JEMALLOC_NOTHROW je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) { int ret; LOG("core.mallctlnametomib.entry", "name: %s", name); if (unlikely(malloc_init())) { LOG("core.mallctlnametomib.exit", "result: %d", EAGAIN); return EAGAIN; } tsd_t *tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); ret = ctl_nametomib(tsd, name, mibp, miblenp); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.mallctlnametomib.exit", "result: %d", ret); return ret; } JEMALLOC_EXPORT int JEMALLOC_NOTHROW je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int ret; tsd_t *tsd; LOG("core.mallctlbymib.entry", ""); if (unlikely(malloc_init())) { LOG("core.mallctlbymib.exit", "result: %d", EAGAIN); return EAGAIN; } tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); ret = ctl_bymib(tsd, mib, miblen, oldp, oldlenp, newp, newlen); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.mallctlbymib.exit", "result: %d", ret); return ret; } JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque, const char *opts) { tsdn_t *tsdn; LOG("core.malloc_stats_print.entry", ""); tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); stats_print(write_cb, cbopaque, opts); check_entry_exit_locking(tsdn); LOG("core.malloc_stats_print.exit", ""); } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) { size_t ret; tsdn_t *tsdn; LOG("core.malloc_usable_size.entry", "ptr: %p", ptr); assert(malloc_initialized() || IS_INITIALIZER); tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); if (unlikely(ptr == NULL)) { ret = 0; } else { if (config_debug || force_ivsalloc) { ret = ivsalloc(tsdn, ptr); assert(force_ivsalloc || ret != 0); } else { ret = isalloc(tsdn, ptr); } } check_entry_exit_locking(tsdn); LOG("core.malloc_usable_size.exit", "result: %zu", ret); return ret; } /* * End non-standard functions. */ /******************************************************************************/ /* * The following functions are used by threading libraries for protection of * malloc during fork(). */ /* * If an application creates a thread before doing any allocation in the main * thread, then calls fork(2) in the main thread followed by memory allocation * in the child process, a race can occur that results in deadlock within the * child: the main thread may have forked while the created thread had * partially initialized the allocator. Ordinarily jemalloc prevents * fork/malloc races via the following functions it registers during * initialization using pthread_atfork(), but of course that does no good if * the allocator isn't fully initialized at fork time. The following library * constructor is a partial solution to this problem. It may still be possible * to trigger the deadlock described above, but doing so would involve forking * via a library constructor that runs before jemalloc's runs. */ #ifndef JEMALLOC_JET JEMALLOC_ATTR(constructor) static void jemalloc_constructor(void) { malloc_init(); } #endif #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_prefork(void) #else JEMALLOC_EXPORT void _malloc_prefork(void) #endif { tsd_t *tsd; unsigned i, j, narenas; arena_t *arena; #ifdef JEMALLOC_MUTEX_INIT_CB if (!malloc_initialized()) { return; } #endif assert(malloc_initialized()); tsd = tsd_fetch(); narenas = narenas_total_get(); witness_prefork(tsd_witness_tsdp_get(tsd)); /* Acquire all mutexes in a safe order. */ ctl_prefork(tsd_tsdn(tsd)); tcache_prefork(tsd_tsdn(tsd)); malloc_mutex_prefork(tsd_tsdn(tsd), &arenas_lock); if (have_background_thread) { background_thread_prefork0(tsd_tsdn(tsd)); } prof_prefork0(tsd_tsdn(tsd)); if (have_background_thread) { background_thread_prefork1(tsd_tsdn(tsd)); } /* Break arena prefork into stages to preserve lock order. */ for (i = 0; i < 8; i++) { for (j = 0; j < narenas; j++) { if ((arena = arena_get(tsd_tsdn(tsd), j, false)) != NULL) { switch (i) { case 0: arena_prefork0(tsd_tsdn(tsd), arena); break; case 1: arena_prefork1(tsd_tsdn(tsd), arena); break; case 2: arena_prefork2(tsd_tsdn(tsd), arena); break; case 3: arena_prefork3(tsd_tsdn(tsd), arena); break; case 4: arena_prefork4(tsd_tsdn(tsd), arena); break; case 5: arena_prefork5(tsd_tsdn(tsd), arena); break; case 6: arena_prefork6(tsd_tsdn(tsd), arena); break; case 7: arena_prefork7(tsd_tsdn(tsd), arena); break; default: not_reached(); } } } } prof_prefork1(tsd_tsdn(tsd)); tsd_prefork(tsd); } #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_postfork_parent(void) #else JEMALLOC_EXPORT void _malloc_postfork(void) #endif { tsd_t *tsd; unsigned i, narenas; #ifdef JEMALLOC_MUTEX_INIT_CB if (!malloc_initialized()) { return; } #endif assert(malloc_initialized()); tsd = tsd_fetch(); tsd_postfork_parent(tsd); witness_postfork_parent(tsd_witness_tsdp_get(tsd)); /* Release all mutexes, now that fork() has completed. */ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena; if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) { arena_postfork_parent(tsd_tsdn(tsd), arena); } } prof_postfork_parent(tsd_tsdn(tsd)); if (have_background_thread) { background_thread_postfork_parent(tsd_tsdn(tsd)); } malloc_mutex_postfork_parent(tsd_tsdn(tsd), &arenas_lock); tcache_postfork_parent(tsd_tsdn(tsd)); ctl_postfork_parent(tsd_tsdn(tsd)); } void jemalloc_postfork_child(void) { tsd_t *tsd; unsigned i, narenas; assert(malloc_initialized()); tsd = tsd_fetch(); tsd_postfork_child(tsd); witness_postfork_child(tsd_witness_tsdp_get(tsd)); /* Release all mutexes, now that fork() has completed. */ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena; if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) { arena_postfork_child(tsd_tsdn(tsd), arena); } } prof_postfork_child(tsd_tsdn(tsd)); if (have_background_thread) { background_thread_postfork_child(tsd_tsdn(tsd)); } malloc_mutex_postfork_child(tsd_tsdn(tsd), &arenas_lock); tcache_postfork_child(tsd_tsdn(tsd)); ctl_postfork_child(tsd_tsdn(tsd)); } /******************************************************************************/