#define JEMALLOC_ARENA_C_ #include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/div.h" #include "jemalloc/internal/extent_dss.h" #include "jemalloc/internal/extent_mmap.h" #include "jemalloc/internal/mutex.h" #include "jemalloc/internal/rtree.h" #include "jemalloc/internal/safety_check.h" #include "jemalloc/internal/util.h" JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS /******************************************************************************/ /* Data. */ /* * Define names for both unininitialized and initialized phases, so that * options and mallctl processing are straightforward. */ const char *percpu_arena_mode_names[] = { "percpu", "phycpu", "disabled", "percpu", "phycpu" }; percpu_arena_mode_t opt_percpu_arena = PERCPU_ARENA_DEFAULT; ssize_t opt_dirty_decay_ms = DIRTY_DECAY_MS_DEFAULT; ssize_t opt_muzzy_decay_ms = MUZZY_DECAY_MS_DEFAULT; static atomic_zd_t dirty_decay_ms_default; static atomic_zd_t muzzy_decay_ms_default; const uint64_t h_steps[SMOOTHSTEP_NSTEPS] = { #define STEP(step, h, x, y) \ h, SMOOTHSTEP #undef STEP }; static div_info_t arena_binind_div_info[SC_NBINS]; size_t opt_oversize_threshold = OVERSIZE_THRESHOLD_DEFAULT; size_t oversize_threshold = OVERSIZE_THRESHOLD_DEFAULT; static unsigned huge_arena_ind; /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static void arena_decay_to_limit(tsdn_t *tsdn, arena_t *arena, arena_decay_t *decay, extents_t *extents, bool all, size_t npages_limit, size_t npages_decay_max, bool is_background_thread); static bool arena_decay_dirty(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all); static void arena_dalloc_bin_slab(tsdn_t *tsdn, arena_t *arena, extent_t *slab, bin_t *bin); static void arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena, extent_t *slab, bin_t *bin); /******************************************************************************/ void arena_basic_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads, const char **dss, ssize_t *dirty_decay_ms, ssize_t *muzzy_decay_ms, size_t *nactive, size_t *ndirty, size_t *nmuzzy) { *nthreads += arena_nthreads_get(arena, false); *dss = dss_prec_names[arena_dss_prec_get(arena)]; *dirty_decay_ms = arena_dirty_decay_ms_get(arena); *muzzy_decay_ms = arena_muzzy_decay_ms_get(arena); *nactive += atomic_load_zu(&arena->nactive, ATOMIC_RELAXED); *ndirty += extents_npages_get(&arena->extents_dirty); *nmuzzy += extents_npages_get(&arena->extents_muzzy); } void arena_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads, const char **dss, ssize_t *dirty_decay_ms, ssize_t *muzzy_decay_ms, size_t *nactive, size_t *ndirty, size_t *nmuzzy, arena_stats_t *astats, bin_stats_t *bstats, arena_stats_large_t *lstats, arena_stats_extents_t *estats) { cassert(config_stats); arena_basic_stats_merge(tsdn, arena, nthreads, dss, dirty_decay_ms, muzzy_decay_ms, nactive, ndirty, nmuzzy); size_t base_allocated, base_resident, base_mapped, metadata_thp; base_stats_get(tsdn, arena->base, &base_allocated, &base_resident, &base_mapped, &metadata_thp); arena_stats_lock(tsdn, &arena->stats); arena_stats_accum_zu(&astats->mapped, base_mapped + arena_stats_read_zu(tsdn, &arena->stats, &arena->stats.mapped)); arena_stats_accum_zu(&astats->retained, extents_npages_get(&arena->extents_retained) << LG_PAGE); atomic_store_zu(&astats->extent_avail, atomic_load_zu(&arena->extent_avail_cnt, ATOMIC_RELAXED), ATOMIC_RELAXED); arena_stats_accum_u64(&astats->decay_dirty.npurge, arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.decay_dirty.npurge)); arena_stats_accum_u64(&astats->decay_dirty.nmadvise, arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.decay_dirty.nmadvise)); arena_stats_accum_u64(&astats->decay_dirty.purged, arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.decay_dirty.purged)); arena_stats_accum_u64(&astats->decay_muzzy.npurge, arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.decay_muzzy.npurge)); arena_stats_accum_u64(&astats->decay_muzzy.nmadvise, arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.decay_muzzy.nmadvise)); arena_stats_accum_u64(&astats->decay_muzzy.purged, arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.decay_muzzy.purged)); arena_stats_accum_zu(&astats->base, base_allocated); arena_stats_accum_zu(&astats->internal, arena_internal_get(arena)); arena_stats_accum_zu(&astats->metadata_thp, metadata_thp); arena_stats_accum_zu(&astats->resident, base_resident + (((atomic_load_zu(&arena->nactive, ATOMIC_RELAXED) + extents_npages_get(&arena->extents_dirty) + extents_npages_get(&arena->extents_muzzy)) << LG_PAGE))); arena_stats_accum_zu(&astats->abandoned_vm, atomic_load_zu( &arena->stats.abandoned_vm, ATOMIC_RELAXED)); for (szind_t i = 0; i < SC_NSIZES - SC_NBINS; i++) { uint64_t nmalloc = arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.lstats[i].nmalloc); arena_stats_accum_u64(&lstats[i].nmalloc, nmalloc); arena_stats_accum_u64(&astats->nmalloc_large, nmalloc); uint64_t ndalloc = arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.lstats[i].ndalloc); arena_stats_accum_u64(&lstats[i].ndalloc, ndalloc); arena_stats_accum_u64(&astats->ndalloc_large, ndalloc); uint64_t nrequests = arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.lstats[i].nrequests); arena_stats_accum_u64(&lstats[i].nrequests, nmalloc + nrequests); arena_stats_accum_u64(&astats->nrequests_large, nmalloc + nrequests); /* nfill == nmalloc for large currently. */ arena_stats_accum_u64(&lstats[i].nfills, nmalloc); arena_stats_accum_u64(&astats->nfills_large, nmalloc); uint64_t nflush = arena_stats_read_u64(tsdn, &arena->stats, &arena->stats.lstats[i].nflushes); arena_stats_accum_u64(&lstats[i].nflushes, nflush); arena_stats_accum_u64(&astats->nflushes_large, nflush); assert(nmalloc >= ndalloc); assert(nmalloc - ndalloc <= SIZE_T_MAX); size_t curlextents = (size_t)(nmalloc - ndalloc); lstats[i].curlextents += curlextents; arena_stats_accum_zu(&astats->allocated_large, curlextents * sz_index2size(SC_NBINS + i)); } for (pszind_t i = 0; i < SC_NPSIZES; i++) { size_t dirty, muzzy, retained, dirty_bytes, muzzy_bytes, retained_bytes; dirty = extents_nextents_get(&arena->extents_dirty, i); muzzy = extents_nextents_get(&arena->extents_muzzy, i); retained = extents_nextents_get(&arena->extents_retained, i); dirty_bytes = extents_nbytes_get(&arena->extents_dirty, i); muzzy_bytes = extents_nbytes_get(&arena->extents_muzzy, i); retained_bytes = extents_nbytes_get(&arena->extents_retained, i); atomic_store_zu(&estats[i].ndirty, dirty, ATOMIC_RELAXED); atomic_store_zu(&estats[i].nmuzzy, muzzy, ATOMIC_RELAXED); atomic_store_zu(&estats[i].nretained, retained, ATOMIC_RELAXED); atomic_store_zu(&estats[i].dirty_bytes, dirty_bytes, ATOMIC_RELAXED); atomic_store_zu(&estats[i].muzzy_bytes, muzzy_bytes, ATOMIC_RELAXED); atomic_store_zu(&estats[i].retained_bytes, retained_bytes, ATOMIC_RELAXED); } arena_stats_unlock(tsdn, &arena->stats); /* tcache_bytes counts currently cached bytes. */ atomic_store_zu(&astats->tcache_bytes, 0, ATOMIC_RELAXED); malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx); cache_bin_array_descriptor_t *descriptor; ql_foreach(descriptor, &arena->cache_bin_array_descriptor_ql, link) { szind_t i = 0; for (; i < SC_NBINS; i++) { cache_bin_t *tbin = &descriptor->bins_small[i]; arena_stats_accum_zu(&astats->tcache_bytes, tbin->ncached * sz_index2size(i)); } for (; i < nhbins; i++) { cache_bin_t *tbin = &descriptor->bins_large[i]; arena_stats_accum_zu(&astats->tcache_bytes, tbin->ncached * sz_index2size(i)); } } malloc_mutex_prof_read(tsdn, &astats->mutex_prof_data[arena_prof_mutex_tcache_list], &arena->tcache_ql_mtx); malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx); #define READ_ARENA_MUTEX_PROF_DATA(mtx, ind) \ malloc_mutex_lock(tsdn, &arena->mtx); \ malloc_mutex_prof_read(tsdn, &astats->mutex_prof_data[ind], \ &arena->mtx); \ malloc_mutex_unlock(tsdn, &arena->mtx); /* Gather per arena mutex profiling data. */ READ_ARENA_MUTEX_PROF_DATA(large_mtx, arena_prof_mutex_large); READ_ARENA_MUTEX_PROF_DATA(extent_avail_mtx, arena_prof_mutex_extent_avail) READ_ARENA_MUTEX_PROF_DATA(extents_dirty.mtx, arena_prof_mutex_extents_dirty) READ_ARENA_MUTEX_PROF_DATA(extents_muzzy.mtx, arena_prof_mutex_extents_muzzy) READ_ARENA_MUTEX_PROF_DATA(extents_retained.mtx, arena_prof_mutex_extents_retained) READ_ARENA_MUTEX_PROF_DATA(decay_dirty.mtx, arena_prof_mutex_decay_dirty) READ_ARENA_MUTEX_PROF_DATA(decay_muzzy.mtx, arena_prof_mutex_decay_muzzy) READ_ARENA_MUTEX_PROF_DATA(base->mtx, arena_prof_mutex_base) #undef READ_ARENA_MUTEX_PROF_DATA nstime_copy(&astats->uptime, &arena->create_time); nstime_update(&astats->uptime); nstime_subtract(&astats->uptime, &arena->create_time); for (szind_t i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_stats_merge(tsdn, &bstats[i], &arena->bins[i].bin_shards[j]); } } } void arena_extents_dirty_dalloc(tsdn_t *tsdn, arena_t *arena, extent_hooks_t **r_extent_hooks, extent_t *extent) { witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); extents_dalloc(tsdn, arena, r_extent_hooks, &arena->extents_dirty, extent); if (arena_dirty_decay_ms_get(arena) == 0) { arena_decay_dirty(tsdn, arena, false, true); } else { arena_background_thread_inactivity_check(tsdn, arena, false); } } static void * arena_slab_reg_alloc(extent_t *slab, const bin_info_t *bin_info) { void *ret; arena_slab_data_t *slab_data = extent_slab_data_get(slab); size_t regind; assert(extent_nfree_get(slab) > 0); assert(!bitmap_full(slab_data->bitmap, &bin_info->bitmap_info)); regind = bitmap_sfu(slab_data->bitmap, &bin_info->bitmap_info); ret = (void *)((uintptr_t)extent_addr_get(slab) + (uintptr_t)(bin_info->reg_size * regind)); extent_nfree_dec(slab); return ret; } static void arena_slab_reg_alloc_batch(extent_t *slab, const bin_info_t *bin_info, unsigned cnt, void** ptrs) { arena_slab_data_t *slab_data = extent_slab_data_get(slab); assert(extent_nfree_get(slab) >= cnt); assert(!bitmap_full(slab_data->bitmap, &bin_info->bitmap_info)); #if (! defined JEMALLOC_INTERNAL_POPCOUNTL) || (defined BITMAP_USE_TREE) for (unsigned i = 0; i < cnt; i++) { size_t regind = bitmap_sfu(slab_data->bitmap, &bin_info->bitmap_info); *(ptrs + i) = (void *)((uintptr_t)extent_addr_get(slab) + (uintptr_t)(bin_info->reg_size * regind)); } #else unsigned group = 0; bitmap_t g = slab_data->bitmap[group]; unsigned i = 0; while (i < cnt) { while (g == 0) { g = slab_data->bitmap[++group]; } size_t shift = group << LG_BITMAP_GROUP_NBITS; size_t pop = popcount_lu(g); if (pop > (cnt - i)) { pop = cnt - i; } /* * Load from memory locations only once, outside the * hot loop below. */ uintptr_t base = (uintptr_t)extent_addr_get(slab); uintptr_t regsize = (uintptr_t)bin_info->reg_size; while (pop--) { size_t bit = cfs_lu(&g); size_t regind = shift + bit; *(ptrs + i) = (void *)(base + regsize * regind); i++; } slab_data->bitmap[group] = g; } #endif extent_nfree_sub(slab, cnt); } #ifndef JEMALLOC_JET static #endif size_t arena_slab_regind(extent_t *slab, szind_t binind, const void *ptr) { size_t diff, regind; /* Freeing a pointer outside the slab can cause assertion failure. */ assert((uintptr_t)ptr >= (uintptr_t)extent_addr_get(slab)); assert((uintptr_t)ptr < (uintptr_t)extent_past_get(slab)); /* Freeing an interior pointer can cause assertion failure. */ assert(((uintptr_t)ptr - (uintptr_t)extent_addr_get(slab)) % (uintptr_t)bin_infos[binind].reg_size == 0); diff = (size_t)((uintptr_t)ptr - (uintptr_t)extent_addr_get(slab)); /* Avoid doing division with a variable divisor. */ regind = div_compute(&arena_binind_div_info[binind], diff); assert(regind < bin_infos[binind].nregs); return regind; } static void arena_slab_reg_dalloc(extent_t *slab, arena_slab_data_t *slab_data, void *ptr) { szind_t binind = extent_szind_get(slab); const bin_info_t *bin_info = &bin_infos[binind]; size_t regind = arena_slab_regind(slab, binind, ptr); assert(extent_nfree_get(slab) < bin_info->nregs); /* Freeing an unallocated pointer can cause assertion failure. */ assert(bitmap_get(slab_data->bitmap, &bin_info->bitmap_info, regind)); bitmap_unset(slab_data->bitmap, &bin_info->bitmap_info, regind); extent_nfree_inc(slab); } static void arena_nactive_add(arena_t *arena, size_t add_pages) { atomic_fetch_add_zu(&arena->nactive, add_pages, ATOMIC_RELAXED); } static void arena_nactive_sub(arena_t *arena, size_t sub_pages) { assert(atomic_load_zu(&arena->nactive, ATOMIC_RELAXED) >= sub_pages); atomic_fetch_sub_zu(&arena->nactive, sub_pages, ATOMIC_RELAXED); } static void arena_large_malloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t usize) { szind_t index, hindex; cassert(config_stats); if (usize < SC_LARGE_MINCLASS) { usize = SC_LARGE_MINCLASS; } index = sz_size2index(usize); hindex = (index >= SC_NBINS) ? index - SC_NBINS : 0; arena_stats_add_u64(tsdn, &arena->stats, &arena->stats.lstats[hindex].nmalloc, 1); } static void arena_large_dalloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t usize) { szind_t index, hindex; cassert(config_stats); if (usize < SC_LARGE_MINCLASS) { usize = SC_LARGE_MINCLASS; } index = sz_size2index(usize); hindex = (index >= SC_NBINS) ? index - SC_NBINS : 0; arena_stats_add_u64(tsdn, &arena->stats, &arena->stats.lstats[hindex].ndalloc, 1); } static void arena_large_ralloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t oldusize, size_t usize) { arena_large_dalloc_stats_update(tsdn, arena, oldusize); arena_large_malloc_stats_update(tsdn, arena, usize); } static bool arena_may_have_muzzy(arena_t *arena) { return (pages_can_purge_lazy && (arena_muzzy_decay_ms_get(arena) != 0)); } extent_t * arena_extent_alloc_large(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool *zero) { extent_hooks_t *extent_hooks = EXTENT_HOOKS_INITIALIZER; witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); szind_t szind = sz_size2index(usize); size_t mapped_add; bool commit = true; extent_t *extent = extents_alloc(tsdn, arena, &extent_hooks, &arena->extents_dirty, NULL, usize, sz_large_pad, alignment, false, szind, zero, &commit); if (extent == NULL && arena_may_have_muzzy(arena)) { extent = extents_alloc(tsdn, arena, &extent_hooks, &arena->extents_muzzy, NULL, usize, sz_large_pad, alignment, false, szind, zero, &commit); } size_t size = usize + sz_large_pad; if (extent == NULL) { extent = extent_alloc_wrapper(tsdn, arena, &extent_hooks, NULL, usize, sz_large_pad, alignment, false, szind, zero, &commit); if (config_stats) { /* * extent may be NULL on OOM, but in that case * mapped_add isn't used below, so there's no need to * conditionlly set it to 0 here. */ mapped_add = size; } } else if (config_stats) { mapped_add = 0; } if (extent != NULL) { if (config_stats) { arena_stats_lock(tsdn, &arena->stats); arena_large_malloc_stats_update(tsdn, arena, usize); if (mapped_add != 0) { arena_stats_add_zu(tsdn, &arena->stats, &arena->stats.mapped, mapped_add); } arena_stats_unlock(tsdn, &arena->stats); } arena_nactive_add(arena, size >> LG_PAGE); } return extent; } void arena_extent_dalloc_large_prep(tsdn_t *tsdn, arena_t *arena, extent_t *extent) { if (config_stats) { arena_stats_lock(tsdn, &arena->stats); arena_large_dalloc_stats_update(tsdn, arena, extent_usize_get(extent)); arena_stats_unlock(tsdn, &arena->stats); } arena_nactive_sub(arena, extent_size_get(extent) >> LG_PAGE); } void arena_extent_ralloc_large_shrink(tsdn_t *tsdn, arena_t *arena, extent_t *extent, size_t oldusize) { size_t usize = extent_usize_get(extent); size_t udiff = oldusize - usize; if (config_stats) { arena_stats_lock(tsdn, &arena->stats); arena_large_ralloc_stats_update(tsdn, arena, oldusize, usize); arena_stats_unlock(tsdn, &arena->stats); } arena_nactive_sub(arena, udiff >> LG_PAGE); } void arena_extent_ralloc_large_expand(tsdn_t *tsdn, arena_t *arena, extent_t *extent, size_t oldusize) { size_t usize = extent_usize_get(extent); size_t udiff = usize - oldusize; if (config_stats) { arena_stats_lock(tsdn, &arena->stats); arena_large_ralloc_stats_update(tsdn, arena, oldusize, usize); arena_stats_unlock(tsdn, &arena->stats); } arena_nactive_add(arena, udiff >> LG_PAGE); } static ssize_t arena_decay_ms_read(arena_decay_t *decay) { return atomic_load_zd(&decay->time_ms, ATOMIC_RELAXED); } static void arena_decay_ms_write(arena_decay_t *decay, ssize_t decay_ms) { atomic_store_zd(&decay->time_ms, decay_ms, ATOMIC_RELAXED); } static void arena_decay_deadline_init(arena_decay_t *decay) { /* * Generate a new deadline that is uniformly random within the next * epoch after the current one. */ nstime_copy(&decay->deadline, &decay->epoch); nstime_add(&decay->deadline, &decay->interval); if (arena_decay_ms_read(decay) > 0) { nstime_t jitter; nstime_init(&jitter, prng_range_u64(&decay->jitter_state, nstime_ns(&decay->interval))); nstime_add(&decay->deadline, &jitter); } } static bool arena_decay_deadline_reached(const arena_decay_t *decay, const nstime_t *time) { return (nstime_compare(&decay->deadline, time) <= 0); } static size_t arena_decay_backlog_npages_limit(const arena_decay_t *decay) { uint64_t sum; size_t npages_limit_backlog; unsigned i; /* * For each element of decay_backlog, multiply by the corresponding * fixed-point smoothstep decay factor. Sum the products, then divide * to round down to the nearest whole number of pages. */ sum = 0; for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) { sum += decay->backlog[i] * h_steps[i]; } npages_limit_backlog = (size_t)(sum >> SMOOTHSTEP_BFP); return npages_limit_backlog; } static void arena_decay_backlog_update_last(arena_decay_t *decay, size_t current_npages) { size_t npages_delta = (current_npages > decay->nunpurged) ? current_npages - decay->nunpurged : 0; decay->backlog[SMOOTHSTEP_NSTEPS-1] = npages_delta; if (config_debug) { if (current_npages > decay->ceil_npages) { decay->ceil_npages = current_npages; } size_t npages_limit = arena_decay_backlog_npages_limit(decay); assert(decay->ceil_npages >= npages_limit); if (decay->ceil_npages > npages_limit) { decay->ceil_npages = npages_limit; } } } static void arena_decay_backlog_update(arena_decay_t *decay, uint64_t nadvance_u64, size_t current_npages) { if (nadvance_u64 >= SMOOTHSTEP_NSTEPS) { memset(decay->backlog, 0, (SMOOTHSTEP_NSTEPS-1) * sizeof(size_t)); } else { size_t nadvance_z = (size_t)nadvance_u64; assert((uint64_t)nadvance_z == nadvance_u64); memmove(decay->backlog, &decay->backlog[nadvance_z], (SMOOTHSTEP_NSTEPS - nadvance_z) * sizeof(size_t)); if (nadvance_z > 1) { memset(&decay->backlog[SMOOTHSTEP_NSTEPS - nadvance_z], 0, (nadvance_z-1) * sizeof(size_t)); } } arena_decay_backlog_update_last(decay, current_npages); } static void arena_decay_try_purge(tsdn_t *tsdn, arena_t *arena, arena_decay_t *decay, extents_t *extents, size_t current_npages, size_t npages_limit, bool is_background_thread) { if (current_npages > npages_limit) { arena_decay_to_limit(tsdn, arena, decay, extents, false, npages_limit, current_npages - npages_limit, is_background_thread); } } static void arena_decay_epoch_advance_helper(arena_decay_t *decay, const nstime_t *time, size_t current_npages) { assert(arena_decay_deadline_reached(decay, time)); nstime_t delta; nstime_copy(&delta, time); nstime_subtract(&delta, &decay->epoch); uint64_t nadvance_u64 = nstime_divide(&delta, &decay->interval); assert(nadvance_u64 > 0); /* Add nadvance_u64 decay intervals to epoch. */ nstime_copy(&delta, &decay->interval); nstime_imultiply(&delta, nadvance_u64); nstime_add(&decay->epoch, &delta); /* Set a new deadline. */ arena_decay_deadline_init(decay); /* Update the backlog. */ arena_decay_backlog_update(decay, nadvance_u64, current_npages); } static void arena_decay_epoch_advance(tsdn_t *tsdn, arena_t *arena, arena_decay_t *decay, extents_t *extents, const nstime_t *time, bool is_background_thread) { size_t current_npages = extents_npages_get(extents); arena_decay_epoch_advance_helper(decay, time, current_npages); size_t npages_limit = arena_decay_backlog_npages_limit(decay); /* We may unlock decay->mtx when try_purge(). Finish logging first. */ decay->nunpurged = (npages_limit > current_npages) ? npages_limit : current_npages; if (!background_thread_enabled() || is_background_thread) { arena_decay_try_purge(tsdn, arena, decay, extents, current_npages, npages_limit, is_background_thread); } } static void arena_decay_reinit(arena_decay_t *decay, ssize_t decay_ms) { arena_decay_ms_write(decay, decay_ms); if (decay_ms > 0) { nstime_init(&decay->interval, (uint64_t)decay_ms * KQU(1000000)); nstime_idivide(&decay->interval, SMOOTHSTEP_NSTEPS); } nstime_init(&decay->epoch, 0); nstime_update(&decay->epoch); decay->jitter_state = (uint64_t)(uintptr_t)decay; arena_decay_deadline_init(decay); decay->nunpurged = 0; memset(decay->backlog, 0, SMOOTHSTEP_NSTEPS * sizeof(size_t)); } static bool arena_decay_init(arena_decay_t *decay, ssize_t decay_ms, arena_stats_decay_t *stats) { if (config_debug) { for (size_t i = 0; i < sizeof(arena_decay_t); i++) { assert(((char *)decay)[i] == 0); } decay->ceil_npages = 0; } if (malloc_mutex_init(&decay->mtx, "decay", WITNESS_RANK_DECAY, malloc_mutex_rank_exclusive)) { return true; } decay->purging = false; arena_decay_reinit(decay, decay_ms); /* Memory is zeroed, so there is no need to clear stats. */ if (config_stats) { decay->stats = stats; } return false; } static bool arena_decay_ms_valid(ssize_t decay_ms) { if (decay_ms < -1) { return false; } if (decay_ms == -1 || (uint64_t)decay_ms <= NSTIME_SEC_MAX * KQU(1000)) { return true; } return false; } static bool arena_maybe_decay(tsdn_t *tsdn, arena_t *arena, arena_decay_t *decay, extents_t *extents, bool is_background_thread) { malloc_mutex_assert_owner(tsdn, &decay->mtx); /* Purge all or nothing if the option is disabled. */ ssize_t decay_ms = arena_decay_ms_read(decay); if (decay_ms <= 0) { if (decay_ms == 0) { arena_decay_to_limit(tsdn, arena, decay, extents, false, 0, extents_npages_get(extents), is_background_thread); } return false; } nstime_t time; nstime_init(&time, 0); nstime_update(&time); if (unlikely(!nstime_monotonic() && nstime_compare(&decay->epoch, &time) > 0)) { /* * Time went backwards. Move the epoch back in time and * generate a new deadline, with the expectation that time * typically flows forward for long enough periods of time that * epochs complete. Unfortunately, this strategy is susceptible * to clock jitter triggering premature epoch advances, but * clock jitter estimation and compensation isn't feasible here * because calls into this code are event-driven. */ nstime_copy(&decay->epoch, &time); arena_decay_deadline_init(decay); } else { /* Verify that time does not go backwards. */ assert(nstime_compare(&decay->epoch, &time) <= 0); } /* * If the deadline has been reached, advance to the current epoch and * purge to the new limit if necessary. Note that dirty pages created * during the current epoch are not subject to purge until a future * epoch, so as a result purging only happens during epoch advances, or * being triggered by background threads (scheduled event). */ bool advance_epoch = arena_decay_deadline_reached(decay, &time); if (advance_epoch) { arena_decay_epoch_advance(tsdn, arena, decay, extents, &time, is_background_thread); } else if (is_background_thread) { arena_decay_try_purge(tsdn, arena, decay, extents, extents_npages_get(extents), arena_decay_backlog_npages_limit(decay), is_background_thread); } return advance_epoch; } static ssize_t arena_decay_ms_get(arena_decay_t *decay) { return arena_decay_ms_read(decay); } ssize_t arena_dirty_decay_ms_get(arena_t *arena) { return arena_decay_ms_get(&arena->decay_dirty); } ssize_t arena_muzzy_decay_ms_get(arena_t *arena) { return arena_decay_ms_get(&arena->decay_muzzy); } static bool arena_decay_ms_set(tsdn_t *tsdn, arena_t *arena, arena_decay_t *decay, extents_t *extents, ssize_t decay_ms) { if (!arena_decay_ms_valid(decay_ms)) { return true; } malloc_mutex_lock(tsdn, &decay->mtx); /* * Restart decay backlog from scratch, which may cause many dirty pages * to be immediately purged. It would conceptually be possible to map * the old backlog onto the new backlog, but there is no justification * for such complexity since decay_ms changes are intended to be * infrequent, either between the {-1, 0, >0} states, or a one-time * arbitrary change during initial arena configuration. */ arena_decay_reinit(decay, decay_ms); arena_maybe_decay(tsdn, arena, decay, extents, false); malloc_mutex_unlock(tsdn, &decay->mtx); return false; } bool arena_dirty_decay_ms_set(tsdn_t *tsdn, arena_t *arena, ssize_t decay_ms) { return arena_decay_ms_set(tsdn, arena, &arena->decay_dirty, &arena->extents_dirty, decay_ms); } bool arena_muzzy_decay_ms_set(tsdn_t *tsdn, arena_t *arena, ssize_t decay_ms) { return arena_decay_ms_set(tsdn, arena, &arena->decay_muzzy, &arena->extents_muzzy, decay_ms); } static size_t arena_stash_decayed(tsdn_t *tsdn, arena_t *arena, extent_hooks_t **r_extent_hooks, extents_t *extents, size_t npages_limit, size_t npages_decay_max, extent_list_t *decay_extents) { witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); /* Stash extents according to npages_limit. */ size_t nstashed = 0; extent_t *extent; while (nstashed < npages_decay_max && (extent = extents_evict(tsdn, arena, r_extent_hooks, extents, npages_limit)) != NULL) { extent_list_append(decay_extents, extent); nstashed += extent_size_get(extent) >> LG_PAGE; } return nstashed; } static size_t arena_decay_stashed(tsdn_t *tsdn, arena_t *arena, extent_hooks_t **r_extent_hooks, arena_decay_t *decay, extents_t *extents, bool all, extent_list_t *decay_extents, bool is_background_thread) { size_t nmadvise, nunmapped; size_t npurged; if (config_stats) { nmadvise = 0; nunmapped = 0; } npurged = 0; ssize_t muzzy_decay_ms = arena_muzzy_decay_ms_get(arena); for (extent_t *extent = extent_list_first(decay_extents); extent != NULL; extent = extent_list_first(decay_extents)) { if (config_stats) { nmadvise++; } size_t npages = extent_size_get(extent) >> LG_PAGE; npurged += npages; extent_list_remove(decay_extents, extent); switch (extents_state_get(extents)) { case extent_state_active: not_reached(); case extent_state_dirty: if (!all && muzzy_decay_ms != 0 && !extent_purge_lazy_wrapper(tsdn, arena, r_extent_hooks, extent, 0, extent_size_get(extent))) { extents_dalloc(tsdn, arena, r_extent_hooks, &arena->extents_muzzy, extent); arena_background_thread_inactivity_check(tsdn, arena, is_background_thread); break; } /* Fall through. */ case extent_state_muzzy: extent_dalloc_wrapper(tsdn, arena, r_extent_hooks, extent); if (config_stats) { nunmapped += npages; } break; case extent_state_retained: default: not_reached(); } } if (config_stats) { arena_stats_lock(tsdn, &arena->stats); arena_stats_add_u64(tsdn, &arena->stats, &decay->stats->npurge, 1); arena_stats_add_u64(tsdn, &arena->stats, &decay->stats->nmadvise, nmadvise); arena_stats_add_u64(tsdn, &arena->stats, &decay->stats->purged, npurged); arena_stats_sub_zu(tsdn, &arena->stats, &arena->stats.mapped, nunmapped << LG_PAGE); arena_stats_unlock(tsdn, &arena->stats); } return npurged; } /* * npages_limit: Decay at most npages_decay_max pages without violating the * invariant: (extents_npages_get(extents) >= npages_limit). We need an upper * bound on number of pages in order to prevent unbounded growth (namely in * stashed), otherwise unbounded new pages could be added to extents during the * current decay run, so that the purging thread never finishes. */ static void arena_decay_to_limit(tsdn_t *tsdn, arena_t *arena, arena_decay_t *decay, extents_t *extents, bool all, size_t npages_limit, size_t npages_decay_max, bool is_background_thread) { witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 1); malloc_mutex_assert_owner(tsdn, &decay->mtx); if (decay->purging) { return; } decay->purging = true; malloc_mutex_unlock(tsdn, &decay->mtx); extent_hooks_t *extent_hooks = extent_hooks_get(arena); extent_list_t decay_extents; extent_list_init(&decay_extents); size_t npurge = arena_stash_decayed(tsdn, arena, &extent_hooks, extents, npages_limit, npages_decay_max, &decay_extents); if (npurge != 0) { size_t npurged = arena_decay_stashed(tsdn, arena, &extent_hooks, decay, extents, all, &decay_extents, is_background_thread); assert(npurged == npurge); } malloc_mutex_lock(tsdn, &decay->mtx); decay->purging = false; } static bool arena_decay_impl(tsdn_t *tsdn, arena_t *arena, arena_decay_t *decay, extents_t *extents, bool is_background_thread, bool all) { if (all) { malloc_mutex_lock(tsdn, &decay->mtx); arena_decay_to_limit(tsdn, arena, decay, extents, all, 0, extents_npages_get(extents), is_background_thread); malloc_mutex_unlock(tsdn, &decay->mtx); return false; } if (malloc_mutex_trylock(tsdn, &decay->mtx)) { /* No need to wait if another thread is in progress. */ return true; } bool epoch_advanced = arena_maybe_decay(tsdn, arena, decay, extents, is_background_thread); size_t npages_new; if (epoch_advanced) { /* Backlog is updated on epoch advance. */ npages_new = decay->backlog[SMOOTHSTEP_NSTEPS-1]; } malloc_mutex_unlock(tsdn, &decay->mtx); if (have_background_thread && background_thread_enabled() && epoch_advanced && !is_background_thread) { background_thread_interval_check(tsdn, arena, decay, npages_new); } return false; } static bool arena_decay_dirty(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all) { return arena_decay_impl(tsdn, arena, &arena->decay_dirty, &arena->extents_dirty, is_background_thread, all); } static bool arena_decay_muzzy(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all) { return arena_decay_impl(tsdn, arena, &arena->decay_muzzy, &arena->extents_muzzy, is_background_thread, all); } void arena_decay(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all) { if (arena_decay_dirty(tsdn, arena, is_background_thread, all)) { return; } arena_decay_muzzy(tsdn, arena, is_background_thread, all); } static void arena_slab_dalloc(tsdn_t *tsdn, arena_t *arena, extent_t *slab) { arena_nactive_sub(arena, extent_size_get(slab) >> LG_PAGE); extent_hooks_t *extent_hooks = EXTENT_HOOKS_INITIALIZER; arena_extents_dirty_dalloc(tsdn, arena, &extent_hooks, slab); } static void arena_bin_slabs_nonfull_insert(bin_t *bin, extent_t *slab) { assert(extent_nfree_get(slab) > 0); extent_heap_insert(&bin->slabs_nonfull, slab); if (config_stats) { bin->stats.nonfull_slabs++; } } static void arena_bin_slabs_nonfull_remove(bin_t *bin, extent_t *slab) { extent_heap_remove(&bin->slabs_nonfull, slab); if (config_stats) { bin->stats.nonfull_slabs--; } } static extent_t * arena_bin_slabs_nonfull_tryget(bin_t *bin) { extent_t *slab = extent_heap_remove_first(&bin->slabs_nonfull); if (slab == NULL) { return NULL; } if (config_stats) { bin->stats.reslabs++; bin->stats.nonfull_slabs--; } return slab; } static void arena_bin_slabs_full_insert(arena_t *arena, bin_t *bin, extent_t *slab) { assert(extent_nfree_get(slab) == 0); /* * Tracking extents is required by arena_reset, which is not allowed * for auto arenas. Bypass this step to avoid touching the extent * linkage (often results in cache misses) for auto arenas. */ if (arena_is_auto(arena)) { return; } extent_list_append(&bin->slabs_full, slab); } static void arena_bin_slabs_full_remove(arena_t *arena, bin_t *bin, extent_t *slab) { if (arena_is_auto(arena)) { return; } extent_list_remove(&bin->slabs_full, slab); } static void arena_bin_reset(tsd_t *tsd, arena_t *arena, bin_t *bin) { extent_t *slab; malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); if (bin->slabcur != NULL) { slab = bin->slabcur; bin->slabcur = NULL; malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); arena_slab_dalloc(tsd_tsdn(tsd), arena, slab); malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); } while ((slab = extent_heap_remove_first(&bin->slabs_nonfull)) != NULL) { malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); arena_slab_dalloc(tsd_tsdn(tsd), arena, slab); malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); } for (slab = extent_list_first(&bin->slabs_full); slab != NULL; slab = extent_list_first(&bin->slabs_full)) { arena_bin_slabs_full_remove(arena, bin, slab); malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); arena_slab_dalloc(tsd_tsdn(tsd), arena, slab); malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); } if (config_stats) { bin->stats.curregs = 0; bin->stats.curslabs = 0; } malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); } void arena_reset(tsd_t *tsd, arena_t *arena) { /* * Locking in this function is unintuitive. The caller guarantees that * no concurrent operations are happening in this arena, but there are * still reasons that some locking is necessary: * * - Some of the functions in the transitive closure of calls assume * appropriate locks are held, and in some cases these locks are * temporarily dropped to avoid lock order reversal or deadlock due to * reentry. * - mallctl("epoch", ...) may concurrently refresh stats. While * strictly speaking this is a "concurrent operation", disallowing * stats refreshes would impose an inconvenient burden. */ /* Large allocations. */ malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx); for (extent_t *extent = extent_list_first(&arena->large); extent != NULL; extent = extent_list_first(&arena->large)) { void *ptr = extent_base_get(extent); size_t usize; malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx); alloc_ctx_t alloc_ctx; rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd); rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab); assert(alloc_ctx.szind != SC_NSIZES); if (config_stats || (config_prof && opt_prof)) { usize = sz_index2size(alloc_ctx.szind); assert(usize == isalloc(tsd_tsdn(tsd), ptr)); } /* Remove large allocation from prof sample set. */ if (config_prof && opt_prof) { prof_free(tsd, ptr, usize, &alloc_ctx); } large_dalloc(tsd_tsdn(tsd), extent); malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx); } malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx); /* Bins. */ for (unsigned i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { arena_bin_reset(tsd, arena, &arena->bins[i].bin_shards[j]); } } atomic_store_zu(&arena->nactive, 0, ATOMIC_RELAXED); } static void arena_destroy_retained(tsdn_t *tsdn, arena_t *arena) { /* * Iterate over the retained extents and destroy them. This gives the * extent allocator underlying the extent hooks an opportunity to unmap * all retained memory without having to keep its own metadata * structures. In practice, virtual memory for dss-allocated extents is * leaked here, so best practice is to avoid dss for arenas to be * destroyed, or provide custom extent hooks that track retained * dss-based extents for later reuse. */ extent_hooks_t *extent_hooks = extent_hooks_get(arena); extent_t *extent; while ((extent = extents_evict(tsdn, arena, &extent_hooks, &arena->extents_retained, 0)) != NULL) { extent_destroy_wrapper(tsdn, arena, &extent_hooks, extent); } } void arena_destroy(tsd_t *tsd, arena_t *arena) { assert(base_ind_get(arena->base) >= narenas_auto); assert(arena_nthreads_get(arena, false) == 0); assert(arena_nthreads_get(arena, true) == 0); /* * No allocations have occurred since arena_reset() was called. * Furthermore, the caller (arena_i_destroy_ctl()) purged all cached * extents, so only retained extents may remain. */ assert(extents_npages_get(&arena->extents_dirty) == 0); assert(extents_npages_get(&arena->extents_muzzy) == 0); /* Deallocate retained memory. */ arena_destroy_retained(tsd_tsdn(tsd), arena); /* * Remove the arena pointer from the arenas array. We rely on the fact * that there is no way for the application to get a dirty read from the * arenas array unless there is an inherent race in the application * involving access of an arena being concurrently destroyed. The * application must synchronize knowledge of the arena's validity, so as * long as we use an atomic write to update the arenas array, the * application will get a clean read any time after it synchronizes * knowledge that the arena is no longer valid. */ arena_set(base_ind_get(arena->base), NULL); /* * Destroy the base allocator, which manages all metadata ever mapped by * this arena. */ base_delete(tsd_tsdn(tsd), arena->base); } static extent_t * arena_slab_alloc_hard(tsdn_t *tsdn, arena_t *arena, extent_hooks_t **r_extent_hooks, const bin_info_t *bin_info, szind_t szind) { extent_t *slab; bool zero, commit; witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); zero = false; commit = true; slab = extent_alloc_wrapper(tsdn, arena, r_extent_hooks, NULL, bin_info->slab_size, 0, PAGE, true, szind, &zero, &commit); if (config_stats && slab != NULL) { arena_stats_mapped_add(tsdn, &arena->stats, bin_info->slab_size); } return slab; } static extent_t * arena_slab_alloc(tsdn_t *tsdn, arena_t *arena, szind_t binind, unsigned binshard, const bin_info_t *bin_info) { witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); extent_hooks_t *extent_hooks = EXTENT_HOOKS_INITIALIZER; szind_t szind = sz_size2index(bin_info->reg_size); bool zero = false; bool commit = true; extent_t *slab = extents_alloc(tsdn, arena, &extent_hooks, &arena->extents_dirty, NULL, bin_info->slab_size, 0, PAGE, true, binind, &zero, &commit); if (slab == NULL && arena_may_have_muzzy(arena)) { slab = extents_alloc(tsdn, arena, &extent_hooks, &arena->extents_muzzy, NULL, bin_info->slab_size, 0, PAGE, true, binind, &zero, &commit); } if (slab == NULL) { slab = arena_slab_alloc_hard(tsdn, arena, &extent_hooks, bin_info, szind); if (slab == NULL) { return NULL; } } assert(extent_slab_get(slab)); /* Initialize slab internals. */ arena_slab_data_t *slab_data = extent_slab_data_get(slab); extent_nfree_binshard_set(slab, bin_info->nregs, binshard); bitmap_init(slab_data->bitmap, &bin_info->bitmap_info, false); arena_nactive_add(arena, extent_size_get(slab) >> LG_PAGE); return slab; } static extent_t * arena_bin_nonfull_slab_get(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, unsigned binshard) { extent_t *slab; const bin_info_t *bin_info; /* Look for a usable slab. */ slab = arena_bin_slabs_nonfull_tryget(bin); if (slab != NULL) { return slab; } /* No existing slabs have any space available. */ bin_info = &bin_infos[binind]; /* Allocate a new slab. */ malloc_mutex_unlock(tsdn, &bin->lock); /******************************/ slab = arena_slab_alloc(tsdn, arena, binind, binshard, bin_info); /********************************/ malloc_mutex_lock(tsdn, &bin->lock); if (slab != NULL) { if (config_stats) { bin->stats.nslabs++; bin->stats.curslabs++; } return slab; } /* * arena_slab_alloc() failed, but another thread may have made * sufficient memory available while this one dropped bin->lock above, * so search one more time. */ slab = arena_bin_slabs_nonfull_tryget(bin); if (slab != NULL) { return slab; } return NULL; } /* Re-fill bin->slabcur, then call arena_slab_reg_alloc(). */ static void * arena_bin_malloc_hard(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, unsigned binshard) { const bin_info_t *bin_info; extent_t *slab; bin_info = &bin_infos[binind]; if (!arena_is_auto(arena) && bin->slabcur != NULL) { arena_bin_slabs_full_insert(arena, bin, bin->slabcur); bin->slabcur = NULL; } slab = arena_bin_nonfull_slab_get(tsdn, arena, bin, binind, binshard); if (bin->slabcur != NULL) { /* * Another thread updated slabcur while this one ran without the * bin lock in arena_bin_nonfull_slab_get(). */ if (extent_nfree_get(bin->slabcur) > 0) { void *ret = arena_slab_reg_alloc(bin->slabcur, bin_info); if (slab != NULL) { /* * arena_slab_alloc() may have allocated slab, * or it may have been pulled from * slabs_nonfull. Therefore it is unsafe to * make any assumptions about how slab has * previously been used, and * arena_bin_lower_slab() must be called, as if * a region were just deallocated from the slab. */ if (extent_nfree_get(slab) == bin_info->nregs) { arena_dalloc_bin_slab(tsdn, arena, slab, bin); } else { arena_bin_lower_slab(tsdn, arena, slab, bin); } } return ret; } arena_bin_slabs_full_insert(arena, bin, bin->slabcur); bin->slabcur = NULL; } if (slab == NULL) { return NULL; } bin->slabcur = slab; assert(extent_nfree_get(bin->slabcur) > 0); return arena_slab_reg_alloc(slab, bin_info); } /* Choose a bin shard and return the locked bin. */ bin_t * arena_bin_choose_lock(tsdn_t *tsdn, arena_t *arena, szind_t binind, unsigned *binshard) { bin_t *bin; if (tsdn_null(tsdn) || tsd_arena_get(tsdn_tsd(tsdn)) == NULL) { *binshard = 0; } else { *binshard = tsd_binshardsp_get(tsdn_tsd(tsdn))->binshard[binind]; } assert(*binshard < bin_infos[binind].n_shards); bin = &arena->bins[binind].bin_shards[*binshard]; malloc_mutex_lock(tsdn, &bin->lock); return bin; } void arena_tcache_fill_small(tsdn_t *tsdn, arena_t *arena, tcache_t *tcache, cache_bin_t *tbin, szind_t binind, uint64_t prof_accumbytes) { unsigned i, nfill, cnt; assert(tbin->ncached == 0); if (config_prof && arena_prof_accum(tsdn, arena, prof_accumbytes)) { prof_idump(tsdn); } unsigned binshard; bin_t *bin = arena_bin_choose_lock(tsdn, arena, binind, &binshard); for (i = 0, nfill = (tcache_bin_info[binind].ncached_max >> tcache->lg_fill_div[binind]); i < nfill; i += cnt) { extent_t *slab; if ((slab = bin->slabcur) != NULL && extent_nfree_get(slab) > 0) { unsigned tofill = nfill - i; cnt = tofill < extent_nfree_get(slab) ? tofill : extent_nfree_get(slab); arena_slab_reg_alloc_batch( slab, &bin_infos[binind], cnt, tbin->avail - nfill + i); } else { cnt = 1; void *ptr = arena_bin_malloc_hard(tsdn, arena, bin, binind, binshard); /* * OOM. tbin->avail isn't yet filled down to its first * element, so the successful allocations (if any) must * be moved just before tbin->avail before bailing out. */ if (ptr == NULL) { if (i > 0) { memmove(tbin->avail - i, tbin->avail - nfill, i * sizeof(void *)); } break; } /* Insert such that low regions get used first. */ *(tbin->avail - nfill + i) = ptr; } if (config_fill && unlikely(opt_junk_alloc)) { for (unsigned j = 0; j < cnt; j++) { void* ptr = *(tbin->avail - nfill + i + j); arena_alloc_junk_small(ptr, &bin_infos[binind], true); } } } if (config_stats) { bin->stats.nmalloc += i; bin->stats.nrequests += tbin->tstats.nrequests; bin->stats.curregs += i; bin->stats.nfills++; tbin->tstats.nrequests = 0; } malloc_mutex_unlock(tsdn, &bin->lock); tbin->ncached = i; arena_decay_tick(tsdn, arena); } void arena_alloc_junk_small(void *ptr, const bin_info_t *bin_info, bool zero) { if (!zero) { memset(ptr, JEMALLOC_ALLOC_JUNK, bin_info->reg_size); } } static void arena_dalloc_junk_small_impl(void *ptr, const bin_info_t *bin_info) { memset(ptr, JEMALLOC_FREE_JUNK, bin_info->reg_size); } arena_dalloc_junk_small_t *JET_MUTABLE arena_dalloc_junk_small = arena_dalloc_junk_small_impl; static void * arena_malloc_small(tsdn_t *tsdn, arena_t *arena, szind_t binind, bool zero) { void *ret; bin_t *bin; size_t usize; extent_t *slab; assert(binind < SC_NBINS); usize = sz_index2size(binind); unsigned binshard; bin = arena_bin_choose_lock(tsdn, arena, binind, &binshard); if ((slab = bin->slabcur) != NULL && extent_nfree_get(slab) > 0) { ret = arena_slab_reg_alloc(slab, &bin_infos[binind]); } else { ret = arena_bin_malloc_hard(tsdn, arena, bin, binind, binshard); } if (ret == NULL) { malloc_mutex_unlock(tsdn, &bin->lock); return NULL; } if (config_stats) { bin->stats.nmalloc++; bin->stats.nrequests++; bin->stats.curregs++; } malloc_mutex_unlock(tsdn, &bin->lock); if (config_prof && arena_prof_accum(tsdn, arena, usize)) { prof_idump(tsdn); } if (!zero) { if (config_fill) { if (unlikely(opt_junk_alloc)) { arena_alloc_junk_small(ret, &bin_infos[binind], false); } else if (unlikely(opt_zero)) { memset(ret, 0, usize); } } } else { if (config_fill && unlikely(opt_junk_alloc)) { arena_alloc_junk_small(ret, &bin_infos[binind], true); } memset(ret, 0, usize); } arena_decay_tick(tsdn, arena); return ret; } void * arena_malloc_hard(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind, bool zero) { assert(!tsdn_null(tsdn) || arena != NULL); if (likely(!tsdn_null(tsdn))) { arena = arena_choose_maybe_huge(tsdn_tsd(tsdn), arena, size); } if (unlikely(arena == NULL)) { return NULL; } if (likely(size <= SC_SMALL_MAXCLASS)) { return arena_malloc_small(tsdn, arena, ind, zero); } return large_malloc(tsdn, arena, sz_index2size(ind), zero); } void * arena_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool zero, tcache_t *tcache) { void *ret; if (usize <= SC_SMALL_MAXCLASS && (alignment < PAGE || (alignment == PAGE && (usize & PAGE_MASK) == 0))) { /* Small; alignment doesn't require special slab placement. */ ret = arena_malloc(tsdn, arena, usize, sz_size2index(usize), zero, tcache, true); } else { if (likely(alignment <= CACHELINE)) { ret = large_malloc(tsdn, arena, usize, zero); } else { ret = large_palloc(tsdn, arena, usize, alignment, zero); } } return ret; } void arena_prof_promote(tsdn_t *tsdn, void *ptr, size_t usize) { cassert(config_prof); assert(ptr != NULL); assert(isalloc(tsdn, ptr) == SC_LARGE_MINCLASS); assert(usize <= SC_SMALL_MAXCLASS); if (config_opt_safety_checks) { safety_check_set_redzone(ptr, usize, SC_LARGE_MINCLASS); } rtree_ctx_t rtree_ctx_fallback; rtree_ctx_t *rtree_ctx = tsdn_rtree_ctx(tsdn, &rtree_ctx_fallback); extent_t *extent = rtree_extent_read(tsdn, &extents_rtree, rtree_ctx, (uintptr_t)ptr, true); arena_t *arena = extent_arena_get(extent); szind_t szind = sz_size2index(usize); extent_szind_set(extent, szind); rtree_szind_slab_update(tsdn, &extents_rtree, rtree_ctx, (uintptr_t)ptr, szind, false); prof_accum_cancel(tsdn, &arena->prof_accum, usize); assert(isalloc(tsdn, ptr) == usize); } static size_t arena_prof_demote(tsdn_t *tsdn, extent_t *extent, const void *ptr) { cassert(config_prof); assert(ptr != NULL); extent_szind_set(extent, SC_NBINS); rtree_ctx_t rtree_ctx_fallback; rtree_ctx_t *rtree_ctx = tsdn_rtree_ctx(tsdn, &rtree_ctx_fallback); rtree_szind_slab_update(tsdn, &extents_rtree, rtree_ctx, (uintptr_t)ptr, SC_NBINS, false); assert(isalloc(tsdn, ptr) == SC_LARGE_MINCLASS); return SC_LARGE_MINCLASS; } void arena_dalloc_promoted(tsdn_t *tsdn, void *ptr, tcache_t *tcache, bool slow_path) { cassert(config_prof); assert(opt_prof); extent_t *extent = iealloc(tsdn, ptr); size_t usize = extent_usize_get(extent); size_t bumped_usize = arena_prof_demote(tsdn, extent, ptr); if (config_opt_safety_checks && usize < SC_LARGE_MINCLASS) { /* * Currently, we only do redzoning for small sampled * allocations. */ assert(bumped_usize == SC_LARGE_MINCLASS); safety_check_verify_redzone(ptr, usize, bumped_usize); } if (bumped_usize <= tcache_maxclass && tcache != NULL) { tcache_dalloc_large(tsdn_tsd(tsdn), tcache, ptr, sz_size2index(bumped_usize), slow_path); } else { large_dalloc(tsdn, extent); } } static void arena_dissociate_bin_slab(arena_t *arena, extent_t *slab, bin_t *bin) { /* Dissociate slab from bin. */ if (slab == bin->slabcur) { bin->slabcur = NULL; } else { szind_t binind = extent_szind_get(slab); const bin_info_t *bin_info = &bin_infos[binind]; /* * The following block's conditional is necessary because if the * slab only contains one region, then it never gets inserted * into the non-full slabs heap. */ if (bin_info->nregs == 1) { arena_bin_slabs_full_remove(arena, bin, slab); } else { arena_bin_slabs_nonfull_remove(bin, slab); } } } static void arena_dalloc_bin_slab(tsdn_t *tsdn, arena_t *arena, extent_t *slab, bin_t *bin) { assert(slab != bin->slabcur); malloc_mutex_unlock(tsdn, &bin->lock); /******************************/ arena_slab_dalloc(tsdn, arena, slab); /****************************/ malloc_mutex_lock(tsdn, &bin->lock); if (config_stats) { bin->stats.curslabs--; } } static void arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena, extent_t *slab, bin_t *bin) { assert(extent_nfree_get(slab) > 0); /* * Make sure that if bin->slabcur is non-NULL, it refers to the * oldest/lowest non-full slab. It is okay to NULL slabcur out rather * than proactively keeping it pointing at the oldest/lowest non-full * slab. */ if (bin->slabcur != NULL && extent_snad_comp(bin->slabcur, slab) > 0) { /* Switch slabcur. */ if (extent_nfree_get(bin->slabcur) > 0) { arena_bin_slabs_nonfull_insert(bin, bin->slabcur); } else { arena_bin_slabs_full_insert(arena, bin, bin->slabcur); } bin->slabcur = slab; if (config_stats) { bin->stats.reslabs++; } } else { arena_bin_slabs_nonfull_insert(bin, slab); } } static void arena_dalloc_bin_locked_impl(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, extent_t *slab, void *ptr, bool junked) { arena_slab_data_t *slab_data = extent_slab_data_get(slab); const bin_info_t *bin_info = &bin_infos[binind]; if (!junked && config_fill && unlikely(opt_junk_free)) { arena_dalloc_junk_small(ptr, bin_info); } arena_slab_reg_dalloc(slab, slab_data, ptr); unsigned nfree = extent_nfree_get(slab); if (nfree == bin_info->nregs) { arena_dissociate_bin_slab(arena, slab, bin); arena_dalloc_bin_slab(tsdn, arena, slab, bin); } else if (nfree == 1 && slab != bin->slabcur) { arena_bin_slabs_full_remove(arena, bin, slab); arena_bin_lower_slab(tsdn, arena, slab, bin); } if (config_stats) { bin->stats.ndalloc++; bin->stats.curregs--; } } void arena_dalloc_bin_junked_locked(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, extent_t *extent, void *ptr) { arena_dalloc_bin_locked_impl(tsdn, arena, bin, binind, extent, ptr, true); } static void arena_dalloc_bin(tsdn_t *tsdn, arena_t *arena, extent_t *extent, void *ptr) { szind_t binind = extent_szind_get(extent); unsigned binshard = extent_binshard_get(extent); bin_t *bin = &arena->bins[binind].bin_shards[binshard]; malloc_mutex_lock(tsdn, &bin->lock); arena_dalloc_bin_locked_impl(tsdn, arena, bin, binind, extent, ptr, false); malloc_mutex_unlock(tsdn, &bin->lock); } void arena_dalloc_small(tsdn_t *tsdn, void *ptr) { extent_t *extent = iealloc(tsdn, ptr); arena_t *arena = extent_arena_get(extent); arena_dalloc_bin(tsdn, arena, extent, ptr); arena_decay_tick(tsdn, arena); } bool arena_ralloc_no_move(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t extra, bool zero, size_t *newsize) { bool ret; /* Calls with non-zero extra had to clamp extra. */ assert(extra == 0 || size + extra <= SC_LARGE_MAXCLASS); extent_t *extent = iealloc(tsdn, ptr); if (unlikely(size > SC_LARGE_MAXCLASS)) { ret = true; goto done; } size_t usize_min = sz_s2u(size); size_t usize_max = sz_s2u(size + extra); if (likely(oldsize <= SC_SMALL_MAXCLASS && usize_min <= SC_SMALL_MAXCLASS)) { /* * Avoid moving the allocation if the size class can be left the * same. */ assert(bin_infos[sz_size2index(oldsize)].reg_size == oldsize); if ((usize_max > SC_SMALL_MAXCLASS || sz_size2index(usize_max) != sz_size2index(oldsize)) && (size > oldsize || usize_max < oldsize)) { ret = true; goto done; } arena_decay_tick(tsdn, extent_arena_get(extent)); ret = false; } else if (oldsize >= SC_LARGE_MINCLASS && usize_max >= SC_LARGE_MINCLASS) { ret = large_ralloc_no_move(tsdn, extent, usize_min, usize_max, zero); } else { ret = true; } done: assert(extent == iealloc(tsdn, ptr)); *newsize = extent_usize_get(extent); return ret; } static void * arena_ralloc_move_helper(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool zero, tcache_t *tcache) { if (alignment == 0) { return arena_malloc(tsdn, arena, usize, sz_size2index(usize), zero, tcache, true); } usize = sz_sa2u(usize, alignment); if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) { return NULL; } return ipalloct(tsdn, usize, alignment, zero, tcache, arena); } void * arena_ralloc(tsdn_t *tsdn, arena_t *arena, void *ptr, size_t oldsize, size_t size, size_t alignment, bool zero, tcache_t *tcache, hook_ralloc_args_t *hook_args) { size_t usize = sz_s2u(size); if (unlikely(usize == 0 || size > SC_LARGE_MAXCLASS)) { return NULL; } if (likely(usize <= SC_SMALL_MAXCLASS)) { /* Try to avoid moving the allocation. */ UNUSED size_t newsize; if (!arena_ralloc_no_move(tsdn, ptr, oldsize, usize, 0, zero, &newsize)) { hook_invoke_expand(hook_args->is_realloc ? hook_expand_realloc : hook_expand_rallocx, ptr, oldsize, usize, (uintptr_t)ptr, hook_args->args); return ptr; } } if (oldsize >= SC_LARGE_MINCLASS && usize >= SC_LARGE_MINCLASS) { return large_ralloc(tsdn, arena, ptr, usize, alignment, zero, tcache, hook_args); } /* * size and oldsize are different enough that we need to move the * object. In that case, fall back to allocating new space and copying. */ void *ret = arena_ralloc_move_helper(tsdn, arena, usize, alignment, zero, tcache); if (ret == NULL) { return NULL; } hook_invoke_alloc(hook_args->is_realloc ? hook_alloc_realloc : hook_alloc_rallocx, ret, (uintptr_t)ret, hook_args->args); hook_invoke_dalloc(hook_args->is_realloc ? hook_dalloc_realloc : hook_dalloc_rallocx, ptr, hook_args->args); /* * Junk/zero-filling were already done by * ipalloc()/arena_malloc(). */ size_t copysize = (usize < oldsize) ? usize : oldsize; memcpy(ret, ptr, copysize); isdalloct(tsdn, ptr, oldsize, tcache, NULL, true); return ret; } dss_prec_t arena_dss_prec_get(arena_t *arena) { return (dss_prec_t)atomic_load_u(&arena->dss_prec, ATOMIC_ACQUIRE); } bool arena_dss_prec_set(arena_t *arena, dss_prec_t dss_prec) { if (!have_dss) { return (dss_prec != dss_prec_disabled); } atomic_store_u(&arena->dss_prec, (unsigned)dss_prec, ATOMIC_RELEASE); return false; } ssize_t arena_dirty_decay_ms_default_get(void) { return atomic_load_zd(&dirty_decay_ms_default, ATOMIC_RELAXED); } bool arena_dirty_decay_ms_default_set(ssize_t decay_ms) { if (!arena_decay_ms_valid(decay_ms)) { return true; } atomic_store_zd(&dirty_decay_ms_default, decay_ms, ATOMIC_RELAXED); return false; } ssize_t arena_muzzy_decay_ms_default_get(void) { return atomic_load_zd(&muzzy_decay_ms_default, ATOMIC_RELAXED); } bool arena_muzzy_decay_ms_default_set(ssize_t decay_ms) { if (!arena_decay_ms_valid(decay_ms)) { return true; } atomic_store_zd(&muzzy_decay_ms_default, decay_ms, ATOMIC_RELAXED); return false; } bool arena_retain_grow_limit_get_set(tsd_t *tsd, arena_t *arena, size_t *old_limit, size_t *new_limit) { assert(opt_retain); pszind_t new_ind JEMALLOC_CC_SILENCE_INIT(0); if (new_limit != NULL) { size_t limit = *new_limit; /* Grow no more than the new limit. */ if ((new_ind = sz_psz2ind(limit + 1) - 1) >= SC_NPSIZES) { return true; } } malloc_mutex_lock(tsd_tsdn(tsd), &arena->extent_grow_mtx); if (old_limit != NULL) { *old_limit = sz_pind2sz(arena->retain_grow_limit); } if (new_limit != NULL) { arena->retain_grow_limit = new_ind; } malloc_mutex_unlock(tsd_tsdn(tsd), &arena->extent_grow_mtx); return false; } unsigned arena_nthreads_get(arena_t *arena, bool internal) { return atomic_load_u(&arena->nthreads[internal], ATOMIC_RELAXED); } void arena_nthreads_inc(arena_t *arena, bool internal) { atomic_fetch_add_u(&arena->nthreads[internal], 1, ATOMIC_RELAXED); } void arena_nthreads_dec(arena_t *arena, bool internal) { atomic_fetch_sub_u(&arena->nthreads[internal], 1, ATOMIC_RELAXED); } size_t arena_extent_sn_next(arena_t *arena) { return atomic_fetch_add_zu(&arena->extent_sn_next, 1, ATOMIC_RELAXED); } arena_t * arena_new(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) { arena_t *arena; base_t *base; unsigned i; if (ind == 0) { base = b0get(); } else { base = base_new(tsdn, ind, extent_hooks); if (base == NULL) { return NULL; } } unsigned nbins_total = 0; for (i = 0; i < SC_NBINS; i++) { nbins_total += bin_infos[i].n_shards; } size_t arena_size = sizeof(arena_t) + sizeof(bin_t) * nbins_total; arena = (arena_t *)base_alloc(tsdn, base, arena_size, CACHELINE); if (arena == NULL) { goto label_error; } atomic_store_u(&arena->nthreads[0], 0, ATOMIC_RELAXED); atomic_store_u(&arena->nthreads[1], 0, ATOMIC_RELAXED); arena->last_thd = NULL; if (config_stats) { if (arena_stats_init(tsdn, &arena->stats)) { goto label_error; } ql_new(&arena->tcache_ql); ql_new(&arena->cache_bin_array_descriptor_ql); if (malloc_mutex_init(&arena->tcache_ql_mtx, "tcache_ql", WITNESS_RANK_TCACHE_QL, malloc_mutex_rank_exclusive)) { goto label_error; } } if (config_prof) { if (prof_accum_init(tsdn, &arena->prof_accum)) { goto label_error; } } if (config_cache_oblivious) { /* * A nondeterministic seed based on the address of arena reduces * the likelihood of lockstep non-uniform cache index * utilization among identical concurrent processes, but at the * cost of test repeatability. For debug builds, instead use a * deterministic seed. */ atomic_store_zu(&arena->offset_state, config_debug ? ind : (size_t)(uintptr_t)arena, ATOMIC_RELAXED); } atomic_store_zu(&arena->extent_sn_next, 0, ATOMIC_RELAXED); atomic_store_u(&arena->dss_prec, (unsigned)extent_dss_prec_get(), ATOMIC_RELAXED); atomic_store_zu(&arena->nactive, 0, ATOMIC_RELAXED); extent_list_init(&arena->large); if (malloc_mutex_init(&arena->large_mtx, "arena_large", WITNESS_RANK_ARENA_LARGE, malloc_mutex_rank_exclusive)) { goto label_error; } /* * Delay coalescing for dirty extents despite the disruptive effect on * memory layout for best-fit extent allocation, since cached extents * are likely to be reused soon after deallocation, and the cost of * merging/splitting extents is non-trivial. */ if (extents_init(tsdn, &arena->extents_dirty, extent_state_dirty, true)) { goto label_error; } /* * Coalesce muzzy extents immediately, because operations on them are in * the critical path much less often than for dirty extents. */ if (extents_init(tsdn, &arena->extents_muzzy, extent_state_muzzy, false)) { goto label_error; } /* * Coalesce retained extents immediately, in part because they will * never be evicted (and therefore there's no opportunity for delayed * coalescing), but also because operations on retained extents are not * in the critical path. */ if (extents_init(tsdn, &arena->extents_retained, extent_state_retained, false)) { goto label_error; } if (arena_decay_init(&arena->decay_dirty, arena_dirty_decay_ms_default_get(), &arena->stats.decay_dirty)) { goto label_error; } if (arena_decay_init(&arena->decay_muzzy, arena_muzzy_decay_ms_default_get(), &arena->stats.decay_muzzy)) { goto label_error; } arena->extent_grow_next = sz_psz2ind(HUGEPAGE); arena->retain_grow_limit = sz_psz2ind(SC_LARGE_MAXCLASS); if (malloc_mutex_init(&arena->extent_grow_mtx, "extent_grow", WITNESS_RANK_EXTENT_GROW, malloc_mutex_rank_exclusive)) { goto label_error; } extent_avail_new(&arena->extent_avail); if (malloc_mutex_init(&arena->extent_avail_mtx, "extent_avail", WITNESS_RANK_EXTENT_AVAIL, malloc_mutex_rank_exclusive)) { goto label_error; } /* Initialize bins. */ uintptr_t bin_addr = (uintptr_t)arena + sizeof(arena_t); atomic_store_u(&arena->binshard_next, 0, ATOMIC_RELEASE); for (i = 0; i < SC_NBINS; i++) { unsigned nshards = bin_infos[i].n_shards; arena->bins[i].bin_shards = (bin_t *)bin_addr; bin_addr += nshards * sizeof(bin_t); for (unsigned j = 0; j < nshards; j++) { bool err = bin_init(&arena->bins[i].bin_shards[j]); if (err) { goto label_error; } } } assert(bin_addr == (uintptr_t)arena + arena_size); arena->base = base; /* Set arena before creating background threads. */ arena_set(ind, arena); nstime_init(&arena->create_time, 0); nstime_update(&arena->create_time); /* We don't support reentrancy for arena 0 bootstrapping. */ if (ind != 0) { /* * If we're here, then arena 0 already exists, so bootstrapping * is done enough that we should have tsd. */ assert(!tsdn_null(tsdn)); pre_reentrancy(tsdn_tsd(tsdn), arena); if (test_hooks_arena_new_hook) { test_hooks_arena_new_hook(); } post_reentrancy(tsdn_tsd(tsdn)); } return arena; label_error: if (ind != 0) { base_delete(tsdn, base); } return NULL; } arena_t * arena_choose_huge(tsd_t *tsd) { /* huge_arena_ind can be 0 during init (will use a0). */ if (huge_arena_ind == 0) { assert(!malloc_initialized()); } arena_t *huge_arena = arena_get(tsd_tsdn(tsd), huge_arena_ind, false); if (huge_arena == NULL) { /* Create the huge arena on demand. */ assert(huge_arena_ind != 0); huge_arena = arena_get(tsd_tsdn(tsd), huge_arena_ind, true); if (huge_arena == NULL) { return NULL; } /* * Purge eagerly for huge allocations, because: 1) number of * huge allocations is usually small, which means ticker based * decay is not reliable; and 2) less immediate reuse is * expected for huge allocations. */ if (arena_dirty_decay_ms_default_get() > 0) { arena_dirty_decay_ms_set(tsd_tsdn(tsd), huge_arena, 0); } if (arena_muzzy_decay_ms_default_get() > 0) { arena_muzzy_decay_ms_set(tsd_tsdn(tsd), huge_arena, 0); } } return huge_arena; } bool arena_init_huge(void) { bool huge_enabled; /* The threshold should be large size class. */ if (opt_oversize_threshold > SC_LARGE_MAXCLASS || opt_oversize_threshold < SC_LARGE_MINCLASS) { opt_oversize_threshold = 0; oversize_threshold = SC_LARGE_MAXCLASS + PAGE; huge_enabled = false; } else { /* Reserve the index for the huge arena. */ huge_arena_ind = narenas_total_get(); oversize_threshold = opt_oversize_threshold; huge_enabled = true; } return huge_enabled; } bool arena_is_huge(unsigned arena_ind) { if (huge_arena_ind == 0) { return false; } return (arena_ind == huge_arena_ind); } void arena_boot(sc_data_t *sc_data) { arena_dirty_decay_ms_default_set(opt_dirty_decay_ms); arena_muzzy_decay_ms_default_set(opt_muzzy_decay_ms); for (unsigned i = 0; i < SC_NBINS; i++) { sc_t *sc = &sc_data->sc[i]; div_init(&arena_binind_div_info[i], (1U << sc->lg_base) + (sc->ndelta << sc->lg_delta)); } } void arena_prefork0(tsdn_t *tsdn, arena_t *arena) { malloc_mutex_prefork(tsdn, &arena->decay_dirty.mtx); malloc_mutex_prefork(tsdn, &arena->decay_muzzy.mtx); } void arena_prefork1(tsdn_t *tsdn, arena_t *arena) { if (config_stats) { malloc_mutex_prefork(tsdn, &arena->tcache_ql_mtx); } } void arena_prefork2(tsdn_t *tsdn, arena_t *arena) { malloc_mutex_prefork(tsdn, &arena->extent_grow_mtx); } void arena_prefork3(tsdn_t *tsdn, arena_t *arena) { extents_prefork(tsdn, &arena->extents_dirty); extents_prefork(tsdn, &arena->extents_muzzy); extents_prefork(tsdn, &arena->extents_retained); } void arena_prefork4(tsdn_t *tsdn, arena_t *arena) { malloc_mutex_prefork(tsdn, &arena->extent_avail_mtx); } void arena_prefork5(tsdn_t *tsdn, arena_t *arena) { base_prefork(tsdn, arena->base); } void arena_prefork6(tsdn_t *tsdn, arena_t *arena) { malloc_mutex_prefork(tsdn, &arena->large_mtx); } void arena_prefork7(tsdn_t *tsdn, arena_t *arena) { for (unsigned i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_prefork(tsdn, &arena->bins[i].bin_shards[j]); } } } void arena_postfork_parent(tsdn_t *tsdn, arena_t *arena) { unsigned i; for (i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_postfork_parent(tsdn, &arena->bins[i].bin_shards[j]); } } malloc_mutex_postfork_parent(tsdn, &arena->large_mtx); base_postfork_parent(tsdn, arena->base); malloc_mutex_postfork_parent(tsdn, &arena->extent_avail_mtx); extents_postfork_parent(tsdn, &arena->extents_dirty); extents_postfork_parent(tsdn, &arena->extents_muzzy); extents_postfork_parent(tsdn, &arena->extents_retained); malloc_mutex_postfork_parent(tsdn, &arena->extent_grow_mtx); malloc_mutex_postfork_parent(tsdn, &arena->decay_dirty.mtx); malloc_mutex_postfork_parent(tsdn, &arena->decay_muzzy.mtx); if (config_stats) { malloc_mutex_postfork_parent(tsdn, &arena->tcache_ql_mtx); } } void arena_postfork_child(tsdn_t *tsdn, arena_t *arena) { unsigned i; atomic_store_u(&arena->nthreads[0], 0, ATOMIC_RELAXED); atomic_store_u(&arena->nthreads[1], 0, ATOMIC_RELAXED); if (tsd_arena_get(tsdn_tsd(tsdn)) == arena) { arena_nthreads_inc(arena, false); } if (tsd_iarena_get(tsdn_tsd(tsdn)) == arena) { arena_nthreads_inc(arena, true); } if (config_stats) { ql_new(&arena->tcache_ql); ql_new(&arena->cache_bin_array_descriptor_ql); tcache_t *tcache = tcache_get(tsdn_tsd(tsdn)); if (tcache != NULL && tcache->arena == arena) { ql_elm_new(tcache, link); ql_tail_insert(&arena->tcache_ql, tcache, link); cache_bin_array_descriptor_init( &tcache->cache_bin_array_descriptor, tcache->bins_small, tcache->bins_large); ql_tail_insert(&arena->cache_bin_array_descriptor_ql, &tcache->cache_bin_array_descriptor, link); } } for (i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_postfork_child(tsdn, &arena->bins[i].bin_shards[j]); } } malloc_mutex_postfork_child(tsdn, &arena->large_mtx); base_postfork_child(tsdn, arena->base); malloc_mutex_postfork_child(tsdn, &arena->extent_avail_mtx); extents_postfork_child(tsdn, &arena->extents_dirty); extents_postfork_child(tsdn, &arena->extents_muzzy); extents_postfork_child(tsdn, &arena->extents_retained); malloc_mutex_postfork_child(tsdn, &arena->extent_grow_mtx); malloc_mutex_postfork_child(tsdn, &arena->decay_dirty.mtx); malloc_mutex_postfork_child(tsdn, &arena->decay_muzzy.mtx); if (config_stats) { malloc_mutex_postfork_child(tsdn, &arena->tcache_ql_mtx); } }