/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */ /* * Thread management for memcached. */ #include "memcached.h" #ifdef EXTSTORE #include "storage.h" #endif #include #include #include #include #include #include #ifdef __sun #include #endif #ifdef TLS #include #endif #define ITEMS_PER_ALLOC 64 /* An item in the connection queue. */ enum conn_queue_item_modes { queue_new_conn, /* brand new connection. */ queue_redispatch, /* redispatching from side thread */ }; typedef struct conn_queue_item CQ_ITEM; struct conn_queue_item { int sfd; enum conn_states init_state; int event_flags; int read_buffer_size; enum network_transport transport; enum conn_queue_item_modes mode; conn *c; void *ssl; CQ_ITEM *next; }; /* A connection queue. */ typedef struct conn_queue CQ; struct conn_queue { CQ_ITEM *head; CQ_ITEM *tail; pthread_mutex_t lock; }; /* Locks for cache LRU operations */ pthread_mutex_t lru_locks[POWER_LARGEST]; /* Connection lock around accepting new connections */ pthread_mutex_t conn_lock = PTHREAD_MUTEX_INITIALIZER; #if !defined(HAVE_GCC_ATOMICS) && !defined(__sun) pthread_mutex_t atomics_mutex = PTHREAD_MUTEX_INITIALIZER; #endif /* Lock for global stats */ static pthread_mutex_t stats_lock = PTHREAD_MUTEX_INITIALIZER; /* Lock to cause worker threads to hang up after being woken */ static pthread_mutex_t worker_hang_lock; /* Free list of CQ_ITEM structs */ static CQ_ITEM *cqi_freelist; static pthread_mutex_t cqi_freelist_lock; static pthread_mutex_t *item_locks; /* size of the item lock hash table */ static uint32_t item_lock_count; unsigned int item_lock_hashpower; #define hashsize(n) ((unsigned long int)1<<(n)) #define hashmask(n) (hashsize(n)-1) /* * Each libevent instance has a wakeup pipe, which other threads * can use to signal that they've put a new connection on its queue. */ static LIBEVENT_THREAD *threads; /* * Number of worker threads that have finished setting themselves up. */ static int init_count = 0; static pthread_mutex_t init_lock; static pthread_cond_t init_cond; static void thread_libevent_process(int fd, short which, void *arg); /* item_lock() must be held for an item before any modifications to either its * associated hash bucket, or the structure itself. * LRU modifications must hold the item lock, and the LRU lock. * LRU's accessing items must item_trylock() before modifying an item. * Items accessible from an LRU must not be freed or modified * without first locking and removing from the LRU. */ void item_lock(uint32_t hv) { mutex_lock(&item_locks[hv & hashmask(item_lock_hashpower)]); } void *item_trylock(uint32_t hv) { pthread_mutex_t *lock = &item_locks[hv & hashmask(item_lock_hashpower)]; if (pthread_mutex_trylock(lock) == 0) { return lock; } return NULL; } void item_trylock_unlock(void *lock) { mutex_unlock((pthread_mutex_t *) lock); } void item_unlock(uint32_t hv) { mutex_unlock(&item_locks[hv & hashmask(item_lock_hashpower)]); } static void wait_for_thread_registration(int nthreads) { while (init_count < nthreads) { pthread_cond_wait(&init_cond, &init_lock); } } static void register_thread_initialized(void) { pthread_mutex_lock(&init_lock); init_count++; pthread_cond_signal(&init_cond); pthread_mutex_unlock(&init_lock); /* Force worker threads to pile up if someone wants us to */ pthread_mutex_lock(&worker_hang_lock); pthread_mutex_unlock(&worker_hang_lock); } /* Must not be called with any deeper locks held */ void pause_threads(enum pause_thread_types type) { char buf[1]; int i; buf[0] = 0; switch (type) { case PAUSE_ALL_THREADS: slabs_rebalancer_pause(); lru_maintainer_pause(); lru_crawler_pause(); #ifdef EXTSTORE storage_compact_pause(); storage_write_pause(); #endif case PAUSE_WORKER_THREADS: buf[0] = 'p'; pthread_mutex_lock(&worker_hang_lock); break; case RESUME_ALL_THREADS: slabs_rebalancer_resume(); lru_maintainer_resume(); lru_crawler_resume(); #ifdef EXTSTORE storage_compact_resume(); storage_write_resume(); #endif case RESUME_WORKER_THREADS: pthread_mutex_unlock(&worker_hang_lock); break; default: fprintf(stderr, "Unknown lock type: %d\n", type); assert(1 == 0); break; } /* Only send a message if we have one. */ if (buf[0] == 0) { return; } pthread_mutex_lock(&init_lock); init_count = 0; for (i = 0; i < settings.num_threads; i++) { if (write(threads[i].notify_send_fd, buf, 1) != 1) { perror("Failed writing to notify pipe"); /* TODO: This is a fatal problem. Can it ever happen temporarily? */ } } wait_for_thread_registration(settings.num_threads); pthread_mutex_unlock(&init_lock); } // MUST not be called with any deeper locks held // MUST be called only by parent thread // Note: listener thread is the "main" event base, which has exited its // loop in order to call this function. void stop_threads(void) { char buf[1]; int i; // assoc can call pause_threads(), so we have to stop it first. stop_assoc_maintenance_thread(); if (settings.verbose > 0) fprintf(stderr, "stopped assoc\n"); if (settings.verbose > 0) fprintf(stderr, "asking workers to stop\n"); buf[0] = 's'; pthread_mutex_lock(&worker_hang_lock); pthread_mutex_lock(&init_lock); init_count = 0; for (i = 0; i < settings.num_threads; i++) { if (write(threads[i].notify_send_fd, buf, 1) != 1) { perror("Failed writing to notify pipe"); /* TODO: This is a fatal problem. Can it ever happen temporarily? */ } } wait_for_thread_registration(settings.num_threads); pthread_mutex_unlock(&init_lock); // All of the workers are hung but haven't done cleanup yet. if (settings.verbose > 0) fprintf(stderr, "asking background threads to stop\n"); // stop each side thread. // TODO: Verify these all work if the threads are already stopped stop_item_crawler_thread(CRAWLER_WAIT); if (settings.verbose > 0) fprintf(stderr, "stopped lru crawler\n"); if (settings.lru_maintainer_thread) { stop_lru_maintainer_thread(); if (settings.verbose > 0) fprintf(stderr, "stopped maintainer\n"); } if (settings.slab_reassign) { stop_slab_maintenance_thread(); if (settings.verbose > 0) fprintf(stderr, "stopped slab mover\n"); } logger_stop(); if (settings.verbose > 0) fprintf(stderr, "stopped logger thread\n"); stop_conn_timeout_thread(); if (settings.verbose > 0) fprintf(stderr, "stopped idle timeout thread\n"); // Close all connections then let the workers finally exit. if (settings.verbose > 0) fprintf(stderr, "closing connections\n"); conn_close_all(); pthread_mutex_unlock(&worker_hang_lock); if (settings.verbose > 0) fprintf(stderr, "reaping worker threads\n"); for (i = 0; i < settings.num_threads; i++) { pthread_join(threads[i].thread_id, NULL); } if (settings.verbose > 0) fprintf(stderr, "all background threads stopped\n"); // At this point, every background thread must be stopped. } /* * Initializes a connection queue. */ static void cq_init(CQ *cq) { pthread_mutex_init(&cq->lock, NULL); cq->head = NULL; cq->tail = NULL; } /* * Looks for an item on a connection queue, but doesn't block if there isn't * one. * Returns the item, or NULL if no item is available */ static CQ_ITEM *cq_pop(CQ *cq) { CQ_ITEM *item; pthread_mutex_lock(&cq->lock); item = cq->head; if (NULL != item) { cq->head = item->next; if (NULL == cq->head) cq->tail = NULL; } pthread_mutex_unlock(&cq->lock); return item; } /* * Adds an item to a connection queue. */ static void cq_push(CQ *cq, CQ_ITEM *item) { item->next = NULL; pthread_mutex_lock(&cq->lock); if (NULL == cq->tail) cq->head = item; else cq->tail->next = item; cq->tail = item; pthread_mutex_unlock(&cq->lock); } /* * Returns a fresh connection queue item. */ static CQ_ITEM *cqi_new(void) { CQ_ITEM *item = NULL; pthread_mutex_lock(&cqi_freelist_lock); if (cqi_freelist) { item = cqi_freelist; cqi_freelist = item->next; } pthread_mutex_unlock(&cqi_freelist_lock); if (NULL == item) { int i; /* Allocate a bunch of items at once to reduce fragmentation */ item = malloc(sizeof(CQ_ITEM) * ITEMS_PER_ALLOC); if (NULL == item) { STATS_LOCK(); stats.malloc_fails++; STATS_UNLOCK(); return NULL; } /* * Link together all the new items except the first one * (which we'll return to the caller) for placement on * the freelist. */ for (i = 2; i < ITEMS_PER_ALLOC; i++) item[i - 1].next = &item[i]; pthread_mutex_lock(&cqi_freelist_lock); item[ITEMS_PER_ALLOC - 1].next = cqi_freelist; cqi_freelist = &item[1]; pthread_mutex_unlock(&cqi_freelist_lock); } return item; } /* * Frees a connection queue item (adds it to the freelist.) */ static void cqi_free(CQ_ITEM *item) { pthread_mutex_lock(&cqi_freelist_lock); item->next = cqi_freelist; cqi_freelist = item; pthread_mutex_unlock(&cqi_freelist_lock); } /* * Creates a worker thread. */ static void create_worker(void *(*func)(void *), void *arg) { pthread_attr_t attr; int ret; pthread_attr_init(&attr); if ((ret = pthread_create(&((LIBEVENT_THREAD*)arg)->thread_id, &attr, func, arg)) != 0) { fprintf(stderr, "Can't create thread: %s\n", strerror(ret)); exit(1); } } /* * Sets whether or not we accept new connections. */ void accept_new_conns(const bool do_accept) { pthread_mutex_lock(&conn_lock); do_accept_new_conns(do_accept); pthread_mutex_unlock(&conn_lock); } /****************************** LIBEVENT THREADS *****************************/ /* * Set up a thread's information. */ static void setup_thread(LIBEVENT_THREAD *me) { #if defined(LIBEVENT_VERSION_NUMBER) && LIBEVENT_VERSION_NUMBER >= 0x02000101 struct event_config *ev_config; ev_config = event_config_new(); event_config_set_flag(ev_config, EVENT_BASE_FLAG_NOLOCK); me->base = event_base_new_with_config(ev_config); event_config_free(ev_config); #else me->base = event_init(); #endif if (! me->base) { fprintf(stderr, "Can't allocate event base\n"); exit(1); } /* Listen for notifications from other threads */ event_set(&me->notify_event, me->notify_receive_fd, EV_READ | EV_PERSIST, thread_libevent_process, me); event_base_set(me->base, &me->notify_event); if (event_add(&me->notify_event, 0) == -1) { fprintf(stderr, "Can't monitor libevent notify pipe\n"); exit(1); } me->new_conn_queue = malloc(sizeof(struct conn_queue)); if (me->new_conn_queue == NULL) { perror("Failed to allocate memory for connection queue"); exit(EXIT_FAILURE); } cq_init(me->new_conn_queue); if (pthread_mutex_init(&me->stats.mutex, NULL) != 0) { perror("Failed to initialize mutex"); exit(EXIT_FAILURE); } me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*), NULL, NULL); if (me->suffix_cache == NULL) { fprintf(stderr, "Failed to create suffix cache\n"); exit(EXIT_FAILURE); } #ifdef EXTSTORE me->io_cache = cache_create("io", sizeof(io_wrap), sizeof(char*), NULL, NULL); if (me->io_cache == NULL) { fprintf(stderr, "Failed to create IO object cache\n"); exit(EXIT_FAILURE); } #endif #ifdef TLS if (settings.ssl_enabled) { me->ssl_wbuf = (char *)malloc((size_t)settings.ssl_wbuf_size); if (me->ssl_wbuf == NULL) { fprintf(stderr, "Failed to allocate the SSL write buffer\n"); exit(EXIT_FAILURE); } } #endif } /* * Worker thread: main event loop */ static void *worker_libevent(void *arg) { LIBEVENT_THREAD *me = arg; /* Any per-thread setup can happen here; memcached_thread_init() will block until * all threads have finished initializing. */ me->l = logger_create(); me->lru_bump_buf = item_lru_bump_buf_create(); if (me->l == NULL || me->lru_bump_buf == NULL) { abort(); } if (settings.drop_privileges) { drop_worker_privileges(); } register_thread_initialized(); event_base_loop(me->base, 0); // same mechanism used to watch for all threads exiting. register_thread_initialized(); event_base_free(me->base); return NULL; } /* * Processes an incoming "handle a new connection" item. This is called when * input arrives on the libevent wakeup pipe. */ static void thread_libevent_process(int fd, short which, void *arg) { LIBEVENT_THREAD *me = arg; CQ_ITEM *item; char buf[1]; conn *c; unsigned int timeout_fd; if (read(fd, buf, 1) != 1) { if (settings.verbose > 0) fprintf(stderr, "Can't read from libevent pipe\n"); return; } switch (buf[0]) { case 'c': item = cq_pop(me->new_conn_queue); if (NULL == item) { break; } switch (item->mode) { case queue_new_conn: c = conn_new(item->sfd, item->init_state, item->event_flags, item->read_buffer_size, item->transport, me->base, item->ssl); if (c == NULL) { if (IS_UDP(item->transport)) { fprintf(stderr, "Can't listen for events on UDP socket\n"); exit(1); } else { if (settings.verbose > 0) { fprintf(stderr, "Can't listen for events on fd %d\n", item->sfd); } #ifdef TLS if (item->ssl) { SSL_shutdown(item->ssl); SSL_free(item->ssl); } #endif close(item->sfd); } } else { c->thread = me; #ifdef TLS if (settings.ssl_enabled && c->ssl != NULL) { assert(c->thread && c->thread->ssl_wbuf); c->ssl_wbuf = c->thread->ssl_wbuf; } #endif } break; case queue_redispatch: conn_worker_readd(item->c); break; } cqi_free(item); break; /* we were told to pause and report in */ case 'p': register_thread_initialized(); break; /* a client socket timed out */ case 't': if (read(fd, &timeout_fd, sizeof(timeout_fd)) != sizeof(timeout_fd)) { if (settings.verbose > 0) fprintf(stderr, "Can't read timeout fd from libevent pipe\n"); return; } conn_close_idle(conns[timeout_fd]); break; /* asked to stop */ case 's': event_base_loopexit(me->base, NULL); break; } } /* Which thread we assigned a connection to most recently. */ static int last_thread = -1; /* * Dispatches a new connection to another thread. This is only ever called * from the main thread, either during initialization (for UDP) or because * of an incoming connection. */ void dispatch_conn_new(int sfd, enum conn_states init_state, int event_flags, int read_buffer_size, enum network_transport transport, void *ssl) { CQ_ITEM *item = cqi_new(); char buf[1]; if (item == NULL) { close(sfd); /* given that malloc failed this may also fail, but let's try */ fprintf(stderr, "Failed to allocate memory for connection object\n"); return; } int tid = (last_thread + 1) % settings.num_threads; LIBEVENT_THREAD *thread = threads + tid; last_thread = tid; item->sfd = sfd; item->init_state = init_state; item->event_flags = event_flags; item->read_buffer_size = read_buffer_size; item->transport = transport; item->mode = queue_new_conn; item->ssl = ssl; cq_push(thread->new_conn_queue, item); MEMCACHED_CONN_DISPATCH(sfd, (int64_t)thread->thread_id); buf[0] = 'c'; if (write(thread->notify_send_fd, buf, 1) != 1) { perror("Writing to thread notify pipe"); } } /* * Re-dispatches a connection back to the original thread. Can be called from * any side thread borrowing a connection. */ void redispatch_conn(conn *c) { CQ_ITEM *item = cqi_new(); char buf[1]; if (item == NULL) { /* Can't cleanly redispatch connection. close it forcefully. */ c->state = conn_closed; close(c->sfd); return; } LIBEVENT_THREAD *thread = c->thread; item->sfd = c->sfd; item->init_state = conn_new_cmd; item->c = c; item->mode = queue_redispatch; cq_push(thread->new_conn_queue, item); buf[0] = 'c'; if (write(thread->notify_send_fd, buf, 1) != 1) { perror("Writing to thread notify pipe"); } } /* This misses the allow_new_conns flag :( */ void sidethread_conn_close(conn *c) { c->state = conn_closed; if (settings.verbose > 1) fprintf(stderr, "<%d connection closed from side thread.\n", c->sfd); #ifdef TLS if (c->ssl) { c->ssl_wbuf = NULL; SSL_shutdown(c->ssl); SSL_free(c->ssl); } #endif close(c->sfd); STATS_LOCK(); stats_state.curr_conns--; STATS_UNLOCK(); return; } /********************************* ITEM ACCESS *******************************/ /* * Allocates a new item. */ item *item_alloc(char *key, size_t nkey, int flags, rel_time_t exptime, int nbytes) { item *it; /* do_item_alloc handles its own locks */ it = do_item_alloc(key, nkey, flags, exptime, nbytes); return it; } /* * Returns an item if it hasn't been marked as expired, * lazy-expiring as needed. */ item *item_get(const char *key, const size_t nkey, conn *c, const bool do_update) { item *it; uint32_t hv; hv = hash(key, nkey); item_lock(hv); it = do_item_get(key, nkey, hv, c, do_update); item_unlock(hv); return it; } // returns an item with the item lock held. // lock will still be held even if return is NULL, allowing caller to replace // an item atomically if desired. item *item_get_locked(const char *key, const size_t nkey, conn *c, const bool do_update, uint32_t *hv) { item *it; *hv = hash(key, nkey); item_lock(*hv); it = do_item_get(key, nkey, *hv, c, do_update); return it; } item *item_touch(const char *key, size_t nkey, uint32_t exptime, conn *c) { item *it; uint32_t hv; hv = hash(key, nkey); item_lock(hv); it = do_item_touch(key, nkey, exptime, hv, c); item_unlock(hv); return it; } /* * Links an item into the LRU and hashtable. */ int item_link(item *item) { int ret; uint32_t hv; hv = hash(ITEM_key(item), item->nkey); item_lock(hv); ret = do_item_link(item, hv); item_unlock(hv); return ret; } /* * Decrements the reference count on an item and adds it to the freelist if * needed. */ void item_remove(item *item) { uint32_t hv; hv = hash(ITEM_key(item), item->nkey); item_lock(hv); do_item_remove(item); item_unlock(hv); } /* * Replaces one item with another in the hashtable. * Unprotected by a mutex lock since the core server does not require * it to be thread-safe. */ int item_replace(item *old_it, item *new_it, const uint32_t hv) { return do_item_replace(old_it, new_it, hv); } /* * Unlinks an item from the LRU and hashtable. */ void item_unlink(item *item) { uint32_t hv; hv = hash(ITEM_key(item), item->nkey); item_lock(hv); do_item_unlink(item, hv); item_unlock(hv); } /* * Does arithmetic on a numeric item value. */ enum delta_result_type add_delta(conn *c, const char *key, const size_t nkey, bool incr, const int64_t delta, char *buf, uint64_t *cas) { enum delta_result_type ret; uint32_t hv; hv = hash(key, nkey); item_lock(hv); ret = do_add_delta(c, key, nkey, incr, delta, buf, cas, hv); item_unlock(hv); return ret; } /* * Stores an item in the cache (high level, obeys set/add/replace semantics) */ enum store_item_type store_item(item *item, int comm, conn* c) { enum store_item_type ret; uint32_t hv; hv = hash(ITEM_key(item), item->nkey); item_lock(hv); ret = do_store_item(item, comm, c, hv); item_unlock(hv); return ret; } /******************************* GLOBAL STATS ******************************/ void STATS_LOCK() { pthread_mutex_lock(&stats_lock); } void STATS_UNLOCK() { pthread_mutex_unlock(&stats_lock); } void threadlocal_stats_reset(void) { int ii; for (ii = 0; ii < settings.num_threads; ++ii) { pthread_mutex_lock(&threads[ii].stats.mutex); #define X(name) threads[ii].stats.name = 0; THREAD_STATS_FIELDS #ifdef EXTSTORE EXTSTORE_THREAD_STATS_FIELDS #endif #undef X memset(&threads[ii].stats.slab_stats, 0, sizeof(threads[ii].stats.slab_stats)); memset(&threads[ii].stats.lru_hits, 0, sizeof(uint64_t) * POWER_LARGEST); pthread_mutex_unlock(&threads[ii].stats.mutex); } } void threadlocal_stats_aggregate(struct thread_stats *stats) { int ii, sid; /* The struct has a mutex, but we can safely set the whole thing * to zero since it is unused when aggregating. */ memset(stats, 0, sizeof(*stats)); for (ii = 0; ii < settings.num_threads; ++ii) { pthread_mutex_lock(&threads[ii].stats.mutex); #define X(name) stats->name += threads[ii].stats.name; THREAD_STATS_FIELDS #ifdef EXTSTORE EXTSTORE_THREAD_STATS_FIELDS #endif #undef X for (sid = 0; sid < MAX_NUMBER_OF_SLAB_CLASSES; sid++) { #define X(name) stats->slab_stats[sid].name += \ threads[ii].stats.slab_stats[sid].name; SLAB_STATS_FIELDS #undef X } for (sid = 0; sid < POWER_LARGEST; sid++) { stats->lru_hits[sid] += threads[ii].stats.lru_hits[sid]; stats->slab_stats[CLEAR_LRU(sid)].get_hits += threads[ii].stats.lru_hits[sid]; } pthread_mutex_unlock(&threads[ii].stats.mutex); } } void slab_stats_aggregate(struct thread_stats *stats, struct slab_stats *out) { int sid; memset(out, 0, sizeof(*out)); for (sid = 0; sid < MAX_NUMBER_OF_SLAB_CLASSES; sid++) { #define X(name) out->name += stats->slab_stats[sid].name; SLAB_STATS_FIELDS #undef X } } /* * Initializes the thread subsystem, creating various worker threads. * * nthreads Number of worker event handler threads to spawn */ void memcached_thread_init(int nthreads, void *arg) { int i; int power; for (i = 0; i < POWER_LARGEST; i++) { pthread_mutex_init(&lru_locks[i], NULL); } pthread_mutex_init(&worker_hang_lock, NULL); pthread_mutex_init(&init_lock, NULL); pthread_cond_init(&init_cond, NULL); pthread_mutex_init(&cqi_freelist_lock, NULL); cqi_freelist = NULL; /* Want a wide lock table, but don't waste memory */ if (nthreads < 3) { power = 10; } else if (nthreads < 4) { power = 11; } else if (nthreads < 5) { power = 12; } else if (nthreads <= 10) { power = 13; } else if (nthreads <= 20) { power = 14; } else { /* 32k buckets. just under the hashpower default. */ power = 15; } if (power >= hashpower) { fprintf(stderr, "Hash table power size (%d) cannot be equal to or less than item lock table (%d)\n", hashpower, power); fprintf(stderr, "Item lock table grows with `-t N` (worker threadcount)\n"); fprintf(stderr, "Hash table grows with `-o hashpower=N` \n"); exit(1); } item_lock_count = hashsize(power); item_lock_hashpower = power; item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t)); if (! item_locks) { perror("Can't allocate item locks"); exit(1); } for (i = 0; i < item_lock_count; i++) { pthread_mutex_init(&item_locks[i], NULL); } threads = calloc(nthreads, sizeof(LIBEVENT_THREAD)); if (! threads) { perror("Can't allocate thread descriptors"); exit(1); } for (i = 0; i < nthreads; i++) { int fds[2]; if (pipe(fds)) { perror("Can't create notify pipe"); exit(1); } threads[i].notify_receive_fd = fds[0]; threads[i].notify_send_fd = fds[1]; #ifdef EXTSTORE threads[i].storage = arg; #endif setup_thread(&threads[i]); /* Reserve three fds for the libevent base, and two for the pipe */ stats_state.reserved_fds += 5; } /* Create threads after we've done all the libevent setup. */ for (i = 0; i < nthreads; i++) { create_worker(worker_libevent, &threads[i]); } /* Wait for all the threads to set themselves up before returning. */ pthread_mutex_lock(&init_lock); wait_for_thread_registration(nthreads); pthread_mutex_unlock(&init_lock); }