#ifndef SG_UNALIGNED_H #define SG_UNALIGNED_H /* * Copyright (c) 2014-2018 Douglas Gilbert. * All rights reserved. * Use of this source code is governed by a BSD-style * license that can be found in the BSD_LICENSE file. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include /* for uint8_t and friends */ #include /* for memcpy */ #ifdef __cplusplus extern "C" { #endif /* These inline functions convert integers (always unsigned) to byte streams * and vice versa. They have two goals: * - change the byte ordering of integers between host order and big * endian ("_be") or little endian ("_le") * - copy the big or little endian byte stream so it complies with any * alignment that host integers require * * Host integer to given endian byte stream is a "_put_" function taking * two arguments (integer and pointer to byte stream) returning void. * Given endian byte stream to host integer is a "_get_" function that takes * one argument and returns an integer of appropriate size (uint32_t for 24 * bit operations, uint64_t for 48 bit operations). * * Big endian byte format "on the wire" is the default used by SCSI * standards (www.t10.org). Big endian is also the network byte order. * Little endian is used by ATA, PCI and NVMe. */ /* The generic form of these routines was borrowed from the Linux kernel, * via mhvtl. There is a specialised version of the main functions for * little endian or big endian provided that not-quite-standard defines for * endianness are available from the compiler and the header * (a GNU extension) has been detected by ./configure . To force the * generic version, use './configure --disable-fast-lebe ' . */ /* Note: Assumes that the source and destination locations do not overlap. * An example of overlapping source and destination: * sg_put_unaligned_le64(j, ((uint8_t *)&j) + 1); * Best not to do things like that. */ #ifdef HAVE_CONFIG_H #include "config.h" /* need this to see if HAVE_BYTESWAP_H */ #endif #undef GOT_UNALIGNED_SPECIALS /* just in case */ #if defined(__BYTE_ORDER__) && defined(HAVE_BYTESWAP_H) && \ ! defined(IGNORE_FAST_LEBE) #if defined(__LITTLE_ENDIAN__) || (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) #define GOT_UNALIGNED_SPECIALS 1 #include /* for bswap_16(), bswap_32() and bswap_64() */ // #warning ">>>>>> Doing Little endian special unaligneds" static inline uint16_t sg_get_unaligned_be16(const void *p) { uint16_t u; memcpy(&u, p, 2); return bswap_16(u); } static inline uint32_t sg_get_unaligned_be32(const void *p) { uint32_t u; memcpy(&u, p, 4); return bswap_32(u); } static inline uint64_t sg_get_unaligned_be64(const void *p) { uint64_t u; memcpy(&u, p, 8); return bswap_64(u); } static inline void sg_put_unaligned_be16(uint16_t val, void *p) { uint16_t u = bswap_16(val); memcpy(p, &u, 2); } static inline void sg_put_unaligned_be32(uint32_t val, void *p) { uint32_t u = bswap_32(val); memcpy(p, &u, 4); } static inline void sg_put_unaligned_be64(uint64_t val, void *p) { uint64_t u = bswap_64(val); memcpy(p, &u, 8); } static inline uint16_t sg_get_unaligned_le16(const void *p) { uint16_t u; memcpy(&u, p, 2); return u; } static inline uint32_t sg_get_unaligned_le32(const void *p) { uint32_t u; memcpy(&u, p, 4); return u; } static inline uint64_t sg_get_unaligned_le64(const void *p) { uint64_t u; memcpy(&u, p, 8); return u; } static inline void sg_put_unaligned_le16(uint16_t val, void *p) { memcpy(p, &val, 2); } static inline void sg_put_unaligned_le32(uint32_t val, void *p) { memcpy(p, &val, 4); } static inline void sg_put_unaligned_le64(uint64_t val, void *p) { memcpy(p, &val, 8); } #elif defined(__BIG_ENDIAN__) || (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #define GOT_UNALIGNED_SPECIALS 1 #include // #warning ">>>>>> Doing BIG endian special unaligneds" static inline uint16_t sg_get_unaligned_le16(const void *p) { uint16_t u; memcpy(&u, p, 2); return bswap_16(u); } static inline uint32_t sg_get_unaligned_le32(const void *p) { uint32_t u; memcpy(&u, p, 4); return bswap_32(u); } static inline uint64_t sg_get_unaligned_le64(const void *p) { uint64_t u; memcpy(&u, p, 8); return bswap_64(u); } static inline void sg_put_unaligned_le16(uint16_t val, void *p) { uint16_t u = bswap_16(val); memcpy(p, &u, 2); } static inline void sg_put_unaligned_le32(uint32_t val, void *p) { uint32_t u = bswap_32(val); memcpy(p, &u, 4); } static inline void sg_put_unaligned_le64(uint64_t val, void *p) { uint64_t u = bswap_64(val); memcpy(p, &u, 8); } static inline uint16_t sg_get_unaligned_be16(const void *p) { uint16_t u; memcpy(&u, p, 2); return u; } static inline uint32_t sg_get_unaligned_be32(const void *p) { uint32_t u; memcpy(&u, p, 4); return u; } static inline uint64_t sg_get_unaligned_be64(const void *p) { uint64_t u; memcpy(&u, p, 8); return u; } static inline void sg_put_unaligned_be16(uint16_t val, void *p) { memcpy(p, &val, 2); } static inline void sg_put_unaligned_be32(uint32_t val, void *p) { memcpy(p, &val, 4); } static inline void sg_put_unaligned_be64(uint64_t val, void *p) { memcpy(p, &val, 8); } #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */ #endif /* #if defined __BYTE_ORDER__ && defined && * ! defined IGNORE_FAST_LEBE */ #ifndef GOT_UNALIGNED_SPECIALS /* Now we have no tricks left, so use the only way this can be done * correctly in C safely: lots of shifts. */ // #warning ">>>>>> Doing GENERIC unaligneds" static inline uint16_t sg_get_unaligned_be16(const void *p) { return ((const uint8_t *)p)[0] << 8 | ((const uint8_t *)p)[1]; } static inline uint32_t sg_get_unaligned_be32(const void *p) { return ((const uint8_t *)p)[0] << 24 | ((const uint8_t *)p)[1] << 16 | ((const uint8_t *)p)[2] << 8 | ((const uint8_t *)p)[3]; } static inline uint64_t sg_get_unaligned_be64(const void *p) { return (uint64_t)sg_get_unaligned_be32(p) << 32 | sg_get_unaligned_be32((const uint8_t *)p + 4); } static inline void sg_put_unaligned_be16(uint16_t val, void *p) { ((uint8_t *)p)[0] = (uint8_t)(val >> 8); ((uint8_t *)p)[1] = (uint8_t)val; } static inline void sg_put_unaligned_be32(uint32_t val, void *p) { sg_put_unaligned_be16(val >> 16, p); sg_put_unaligned_be16(val, (uint8_t *)p + 2); } static inline void sg_put_unaligned_be64(uint64_t val, void *p) { sg_put_unaligned_be32(val >> 32, p); sg_put_unaligned_be32(val, (uint8_t *)p + 4); } static inline uint16_t sg_get_unaligned_le16(const void *p) { return ((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[0]; } static inline uint32_t sg_get_unaligned_le32(const void *p) { return ((const uint8_t *)p)[3] << 24 | ((const uint8_t *)p)[2] << 16 | ((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[0]; } static inline uint64_t sg_get_unaligned_le64(const void *p) { return (uint64_t)sg_get_unaligned_le32((const uint8_t *)p + 4) << 32 | sg_get_unaligned_le32(p); } static inline void sg_put_unaligned_le16(uint16_t val, void *p) { ((uint8_t *)p)[0] = val & 0xff; ((uint8_t *)p)[1] = val >> 8; } static inline void sg_put_unaligned_le32(uint32_t val, void *p) { sg_put_unaligned_le16(val >> 16, (uint8_t *)p + 2); sg_put_unaligned_le16(val, p); } static inline void sg_put_unaligned_le64(uint64_t val, void *p) { sg_put_unaligned_le32(val >> 32, (uint8_t *)p + 4); sg_put_unaligned_le32(val, p); } #endif /* #ifndef GOT_UNALIGNED_SPECIALS */ /* Following are lesser used conversions that don't have specializations * for endianness; big endian first. In summary these are the 24, 48 bit and * given-length conversions plus the "nz" conditional put conversions. */ /* Now big endian, get 24+48 then put 24+48 */ static inline uint32_t sg_get_unaligned_be24(const void *p) { return ((const uint8_t *)p)[0] << 16 | ((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[2]; } /* Assume 48 bit value placed in uint64_t */ static inline uint64_t sg_get_unaligned_be48(const void *p) { return (uint64_t)sg_get_unaligned_be16(p) << 32 | sg_get_unaligned_be32((const uint8_t *)p + 2); } /* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than * 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is * an 8 byte unsigned integer. */ static inline uint64_t sg_get_unaligned_be(int num_bytes, const void *p) { if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t))) return 0; else { const uint8_t * xp = (const uint8_t *)p; uint64_t res = *xp; for (++xp; num_bytes > 1; ++xp, --num_bytes) res = (res << 8) | *xp; return res; } } static inline void sg_put_unaligned_be24(uint32_t val, void *p) { ((uint8_t *)p)[0] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[2] = val & 0xff; } /* Assume 48 bit value placed in uint64_t */ static inline void sg_put_unaligned_be48(uint64_t val, void *p) { sg_put_unaligned_be16(val >> 32, p); sg_put_unaligned_be32(val, (uint8_t *)p + 2); } /* Now little endian, get 24+48 then put 24+48 */ static inline uint32_t sg_get_unaligned_le24(const void *p) { return (uint32_t)sg_get_unaligned_le16(p) | ((const uint8_t *)p)[2] << 16; } /* Assume 48 bit value placed in uint64_t */ static inline uint64_t sg_get_unaligned_le48(const void *p) { return (uint64_t)sg_get_unaligned_le16((const uint8_t *)p + 4) << 32 | sg_get_unaligned_le32(p); } static inline void sg_put_unaligned_le24(uint32_t val, void *p) { ((uint8_t *)p)[2] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[0] = val & 0xff; } /* Assume 48 bit value placed in uint64_t */ static inline void sg_put_unaligned_le48(uint64_t val, void *p) { ((uint8_t *)p)[5] = (val >> 40) & 0xff; ((uint8_t *)p)[4] = (val >> 32) & 0xff; ((uint8_t *)p)[3] = (val >> 24) & 0xff; ((uint8_t *)p)[2] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[0] = val & 0xff; } /* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than * 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is * an 8 byte unsigned integer. */ static inline uint64_t sg_get_unaligned_le(int num_bytes, const void *p) { if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t))) return 0; else { const uint8_t * xp = (const uint8_t *)p + (num_bytes - 1); uint64_t res = *xp; for (--xp; num_bytes > 1; --xp, --num_bytes) res = (res << 8) | *xp; return res; } } /* Since cdb and parameter blocks are often memset to zero before these * unaligned function partially fill them, then check for a val of zero * and ignore if it is with these variants. First big endian, then little */ static inline void sg_nz_put_unaligned_be16(uint16_t val, void *p) { if (val) sg_put_unaligned_be16(val, p); } static inline void sg_nz_put_unaligned_be24(uint32_t val, void *p) { if (val) { ((uint8_t *)p)[0] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[2] = val & 0xff; } } static inline void sg_nz_put_unaligned_be32(uint32_t val, void *p) { if (val) sg_put_unaligned_be32(val, p); } static inline void sg_nz_put_unaligned_be64(uint64_t val, void *p) { if (val) sg_put_unaligned_be64(val, p); } static inline void sg_nz_put_unaligned_le16(uint16_t val, void *p) { if (val) sg_put_unaligned_le16(val, p); } static inline void sg_nz_put_unaligned_le24(uint32_t val, void *p) { if (val) { ((uint8_t *)p)[2] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[0] = val & 0xff; } } static inline void sg_nz_put_unaligned_le32(uint32_t val, void *p) { if (val) sg_put_unaligned_le32(val, p); } static inline void sg_nz_put_unaligned_le64(uint64_t val, void *p) { if (val) sg_put_unaligned_le64(val, p); } #ifdef __cplusplus } #endif #endif /* SG_UNALIGNED_H */