/** * @file port.c * @note Copyright (C) 2011 Richard Cochran * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include "bmc.h" #include "clock.h" #include "filter.h" #include "missing.h" #include "msg.h" #include "phc.h" #include "port.h" #include "port_private.h" #include "print.h" #include "rtnl.h" #include "sk.h" #include "tc.h" #include "tlv.h" #include "tmv.h" #include "tsproc.h" #include "unicast_client.h" #include "unicast_service.h" #include "util.h" #define ALLOWED_LOST_RESPONSES 3 #define ANNOUNCE_SPAN 1 enum syfu_event { SYNC_MISMATCH, SYNC_MATCH, FUP_MISMATCH, FUP_MATCH, }; static int port_capable(struct port *p); static int port_is_ieee8021as(struct port *p); static void port_nrate_initialize(struct port *p); static int announce_compare(struct ptp_message *m1, struct ptp_message *m2) { struct announce_msg *a = &m1->announce, *b = &m2->announce; int len = sizeof(a->grandmasterPriority1) + sizeof(a->grandmasterClockQuality) + sizeof(a->grandmasterPriority2) + sizeof(a->grandmasterIdentity) + sizeof(a->stepsRemoved); return memcmp(&a->grandmasterPriority1, &b->grandmasterPriority1, len); } static void announce_to_dataset(struct ptp_message *m, struct port *p, struct dataset *out) { struct announce_msg *a = &m->announce; out->priority1 = a->grandmasterPriority1; out->identity = a->grandmasterIdentity; out->quality = a->grandmasterClockQuality; out->priority2 = a->grandmasterPriority2; out->localPriority = p->localPriority; out->stepsRemoved = a->stepsRemoved; out->sender = m->header.sourcePortIdentity; out->receiver = p->portIdentity; } int clear_fault_asap(struct fault_interval *faint) { switch (faint->type) { case FTMO_LINEAR_SECONDS: return faint->val == 0 ? 1 : 0; case FTMO_LOG2_SECONDS: return faint->val == FRI_ASAP ? 1 : 0; case FTMO_CNT: return 0; } return 0; } static void extract_address(struct ptp_message *m, struct PortAddress *paddr) { int len = 0; switch (paddr->networkProtocol) { case TRANS_UDP_IPV4: len = sizeof(m->address.sin.sin_addr.s_addr); memcpy(paddr->address, &m->address.sin.sin_addr.s_addr, len); break; case TRANS_UDP_IPV6: len = sizeof(m->address.sin6.sin6_addr.s6_addr); memcpy(paddr->address, &m->address.sin6.sin6_addr.s6_addr, len); break; case TRANS_IEEE_802_3: len = MAC_LEN; memcpy(paddr->address, &m->address.sll.sll_addr, len); break; default: return; } paddr->addressLength = len; } static int msg_current(struct ptp_message *m, struct timespec now) { int64_t t1, t2, tmo; t1 = m->ts.host.tv_sec * NSEC2SEC + m->ts.host.tv_nsec; t2 = now.tv_sec * NSEC2SEC + now.tv_nsec; if (m->header.logMessageInterval < -63) { tmo = 0; } else if (m->header.logMessageInterval > 31) { tmo = INT64_MAX; } else if (m->header.logMessageInterval < 0) { tmo = 4LL * NSEC2SEC / (1 << -m->header.logMessageInterval); } else { tmo = 4LL * (1 << m->header.logMessageInterval) * NSEC2SEC; } return t2 - t1 < tmo; } static int msg_source_equal(struct ptp_message *m1, struct foreign_clock *fc) { struct PortIdentity *id1, *id2; id1 = &m1->header.sourcePortIdentity; id2 = &fc->dataset.sender; return 0 == memcmp(id1, id2, sizeof(*id1)); } int source_pid_eq(struct ptp_message *m1, struct ptp_message *m2) { return pid_eq(&m1->header.sourcePortIdentity, &m2->header.sourcePortIdentity); } enum fault_type last_fault_type(struct port *port) { return port->last_fault_type; } void fault_interval(struct port *port, enum fault_type ft, struct fault_interval *i) { i->type = port->flt_interval_pertype[ft].type; i->val = port->flt_interval_pertype[ft].val; } int port_fault_fd(struct port *port) { return port->fault_fd; } struct fdarray *port_fda(struct port *port) { return &port->fda; } int set_tmo_log(int fd, unsigned int scale, int log_seconds) { struct itimerspec tmo = { {0, 0}, {0, 0} }; uint64_t ns; int i; if (log_seconds < 0) { log_seconds *= -1; for (i = 1, ns = scale * 500000000ULL; i < log_seconds; i++) { ns >>= 1; } tmo.it_value.tv_nsec = ns; while (tmo.it_value.tv_nsec >= NS_PER_SEC) { tmo.it_value.tv_nsec -= NS_PER_SEC; tmo.it_value.tv_sec++; } } else tmo.it_value.tv_sec = scale * (1 << log_seconds); return timerfd_settime(fd, 0, &tmo, NULL); } int set_tmo_lin(int fd, int seconds) { struct itimerspec tmo = { {0, 0}, {0, 0} }; tmo.it_value.tv_sec = seconds; return timerfd_settime(fd, 0, &tmo, NULL); } int set_tmo_random(int fd, int min, int span, int log_seconds) { uint64_t value_ns, min_ns, span_ns; struct itimerspec tmo = { {0, 0}, {0, 0} }; if (log_seconds >= 0) { min_ns = min * NS_PER_SEC << log_seconds; span_ns = span * NS_PER_SEC << log_seconds; } else { min_ns = min * NS_PER_SEC >> -log_seconds; span_ns = span * NS_PER_SEC >> -log_seconds; } value_ns = min_ns + (span_ns * (random() % (1 << 15) + 1) >> 15); tmo.it_value.tv_sec = value_ns / NS_PER_SEC; tmo.it_value.tv_nsec = value_ns % NS_PER_SEC; return timerfd_settime(fd, 0, &tmo, NULL); } int port_set_fault_timer_log(struct port *port, unsigned int scale, int log_seconds) { return set_tmo_log(port->fault_fd, scale, log_seconds); } int port_set_fault_timer_lin(struct port *port, int seconds) { return set_tmo_lin(port->fault_fd, seconds); } void fc_clear(struct foreign_clock *fc) { struct ptp_message *m; while (fc->n_messages) { m = TAILQ_LAST(&fc->messages, messages); TAILQ_REMOVE(&fc->messages, m, list); fc->n_messages--; msg_put(m); } } static void fc_prune(struct foreign_clock *fc) { struct timespec now; struct ptp_message *m; clock_gettime(CLOCK_MONOTONIC, &now); while (fc->n_messages > FOREIGN_MASTER_THRESHOLD) { m = TAILQ_LAST(&fc->messages, messages); TAILQ_REMOVE(&fc->messages, m, list); fc->n_messages--; msg_put(m); } while (!TAILQ_EMPTY(&fc->messages)) { m = TAILQ_LAST(&fc->messages, messages); if (msg_current(m, now)) break; TAILQ_REMOVE(&fc->messages, m, list); fc->n_messages--; msg_put(m); } } static int delay_req_current(struct ptp_message *m, struct timespec now) { int64_t t1, t2, tmo = 5 * NSEC2SEC; t1 = m->ts.host.tv_sec * NSEC2SEC + m->ts.host.tv_nsec; t2 = now.tv_sec * NSEC2SEC + now.tv_nsec; return t2 - t1 < tmo; } void delay_req_prune(struct port *p) { struct timespec now; struct ptp_message *m; clock_gettime(CLOCK_MONOTONIC, &now); while (!TAILQ_EMPTY(&p->delay_req)) { m = TAILQ_LAST(&p->delay_req, delay_req); if (delay_req_current(m, now)) { break; } TAILQ_REMOVE(&p->delay_req, m, list); msg_put(m); } } void ts_add(tmv_t *ts, Integer64 correction) { if (!correction) { return; } *ts = tmv_add(*ts, correction_to_tmv(correction)); } /* * Returns non-zero if the announce message is different than last. */ static int add_foreign_master(struct port *p, struct ptp_message *m) { struct foreign_clock *fc; struct ptp_message *tmp; int broke_threshold = 0, diff = 0; LIST_FOREACH(fc, &p->foreign_masters, list) { if (msg_source_equal(m, fc)) { break; } } if (!fc) { pr_notice("port %hu: new foreign master %s", portnum(p), pid2str(&m->header.sourcePortIdentity)); fc = malloc(sizeof(*fc)); if (!fc) { pr_err("low memory, failed to add foreign master"); return 0; } memset(fc, 0, sizeof(*fc)); TAILQ_INIT(&fc->messages); LIST_INSERT_HEAD(&p->foreign_masters, fc, list); fc->port = p; fc->dataset.sender = m->header.sourcePortIdentity; /* We do not count this first message, see 9.5.3(b) */ return 0; } /* * If this message breaks the threshold, that is an important change. */ fc_prune(fc); if (FOREIGN_MASTER_THRESHOLD - 1 == fc->n_messages) { broke_threshold = 1; } /* * Okay, go ahead and add this announcement. */ msg_get(m); fc->n_messages++; TAILQ_INSERT_HEAD(&fc->messages, m, list); /* * Test if this announcement contains changed information. */ if (fc->n_messages > 1) { tmp = TAILQ_NEXT(m, list); diff = announce_compare(m, tmp); } return broke_threshold || diff; } static int follow_up_info_append(struct ptp_message *m) { struct follow_up_info_tlv *fui; struct tlv_extra *extra; extra = msg_tlv_append(m, sizeof(*fui)); if (!extra) { return -1; } fui = (struct follow_up_info_tlv *) extra->tlv; fui->type = TLV_ORGANIZATION_EXTENSION; fui->length = sizeof(*fui) - sizeof(fui->type) - sizeof(fui->length); memcpy(fui->id, ieee8021_id, sizeof(ieee8021_id)); fui->subtype[2] = 1; return 0; } static int net_sync_resp_append(struct port *p, struct ptp_message *m) { struct timePropertiesDS *tp = clock_time_properties(p->clock); struct ClockIdentity cid = clock_identity(p->clock), pid; struct currentDS *cds = clock_current_dataset(p->clock); struct parent_ds *dad = clock_parent_ds(p->clock); struct port *best = clock_best_port(p->clock); struct nsm_resp_tlv_head *head; struct Timestamp last_sync; struct PortAddress *paddr; struct ptp_message *tmp; struct tlv_extra *extra; unsigned char *ptr; int tlv_len; uint8_t buf[sizeof(*paddr) + sizeof(struct sockaddr_storage)]; last_sync = tmv_to_Timestamp(clock_ingress_time(p->clock)); pid = dad->pds.parentPortIdentity.clockIdentity; paddr = (struct PortAddress *)buf; if (best && !cid_eq(&cid, &pid)) { /* Extract the parent's protocol address. */ paddr->networkProtocol = transport_type(best->trp); paddr->addressLength = transport_protocol_addr(best->trp, paddr->address); if (best->best) { tmp = TAILQ_FIRST(&best->best->messages); extract_address(tmp, paddr); } } else { /* We are our own parent. */ paddr->networkProtocol = transport_type(p->trp); paddr->addressLength = transport_protocol_addr(p->trp, paddr->address); } tlv_len = sizeof(*head) + sizeof(*extra->foot) + paddr->addressLength; extra = msg_tlv_append(m, tlv_len); if (!extra) { return -1; } head = (struct nsm_resp_tlv_head *) extra->tlv; head->type = TLV_PTPMON_RESP; head->length = tlv_len - sizeof(head->type) - sizeof(head->length); head->port_state = p->state == PS_GRAND_MASTER ? PS_MASTER : p->state; head->parent_addr.networkProtocol = paddr->networkProtocol; head->parent_addr.addressLength = paddr->addressLength; memcpy(head->parent_addr.address, paddr->address, paddr->addressLength); ptr = (unsigned char *) head; ptr += sizeof(*head) + paddr->addressLength; extra->foot = (struct nsm_resp_tlv_foot *) ptr; memcpy(&extra->foot->parent, &dad->pds, sizeof(extra->foot->parent)); memcpy(&extra->foot->current, cds, sizeof(extra->foot->current)); memcpy(&extra->foot->timeprop, tp, sizeof(extra->foot->timeprop)); memcpy(&extra->foot->lastsync, &last_sync, sizeof(extra->foot->lastsync)); return 0; } static struct follow_up_info_tlv *follow_up_info_extract(struct ptp_message *m) { struct follow_up_info_tlv *f; struct tlv_extra *extra; TAILQ_FOREACH(extra, &m->tlv_list, list) { f = (struct follow_up_info_tlv *) extra->tlv; if (f->type == TLV_ORGANIZATION_EXTENSION && f->length == sizeof(*f) - sizeof(f->type) - sizeof(f->length) && // memcmp(f->id, ieee8021_id, sizeof(ieee8021_id)) && !f->subtype[0] && !f->subtype[1] && f->subtype[2] == 1) { return f; } } return NULL; } static void free_foreign_masters(struct port *p) { struct foreign_clock *fc; while ((fc = LIST_FIRST(&p->foreign_masters)) != NULL) { LIST_REMOVE(fc, list); fc_clear(fc); free(fc); } } static int fup_sync_ok(struct ptp_message *fup, struct ptp_message *sync) { /* * NB - If the sk_check_fupsync option is not enabled, then * both of these time stamps will be zero. */ if (tmv_cmp(fup->hwts.sw, sync->hwts.sw) < 0) { return 0; } return 1; } static int incapable_ignore(struct port *p, struct ptp_message *m) { if (port_capable(p)) { return 0; } if (msg_type(m) == ANNOUNCE || msg_type(m) == SYNC) { return 1; } return 0; } static int path_trace_append(struct port *p, struct ptp_message *m, struct parent_ds *dad) { int length = 1 + dad->path_length, ptt_len, tlv_len; struct path_trace_tlv *ptt; struct tlv_extra *extra; if (length > PATH_TRACE_MAX) { return -1; } ptt_len = length * sizeof(struct ClockIdentity); tlv_len = ptt_len + sizeof(ptt->type) + sizeof(ptt->length); extra = msg_tlv_append(m, tlv_len); if (!extra) { return -1; } ptt = (struct path_trace_tlv *) extra->tlv; ptt->type = TLV_PATH_TRACE; ptt->length = ptt_len; memcpy(ptt->cid, dad->ptl, ptt->length); ptt->cid[length - 1] = clock_identity(p->clock); return 0; } static int path_trace_ignore(struct port *p, struct ptp_message *m) { struct path_trace_tlv *ptt; struct ClockIdentity cid; struct tlv_extra *extra; int i, cnt; if (!p->path_trace_enabled) { return 0; } if (msg_type(m) != ANNOUNCE) { return 0; } TAILQ_FOREACH(extra, &m->tlv_list, list) { ptt = (struct path_trace_tlv *) extra->tlv; if (ptt->type != TLV_PATH_TRACE) { continue; } cnt = path_length(ptt); cid = clock_identity(p->clock); for (i = 0; i < cnt; i++) { if (cid_eq(&ptt->cid[i], &cid)) { return 1; } } } return 0; } static int peer_prepare_and_send(struct port *p, struct ptp_message *msg, enum transport_event event) { int cnt; if (msg_pre_send(msg)) { return -1; } if (msg_unicast(msg)) { cnt = transport_sendto(p->trp, &p->fda, event, msg); } else { cnt = transport_peer(p->trp, &p->fda, event, msg); } if (cnt <= 0) { return -1; } if (msg_sots_valid(msg)) { ts_add(&msg->hwts.ts, p->tx_timestamp_offset); } return 0; } static int port_capable(struct port *p) { if (!port_is_ieee8021as(p)) { /* Normal 1588 ports are always capable. */ goto capable; } if (tmv_to_nanoseconds(p->peer_delay) > p->neighborPropDelayThresh) { if (p->asCapable) pr_debug("port %hu: peer_delay (%" PRId64 ") > neighborPropDelayThresh " "(%" PRId32 "), resetting asCapable", portnum(p), tmv_to_nanoseconds(p->peer_delay), p->neighborPropDelayThresh); goto not_capable; } if (tmv_to_nanoseconds(p->peer_delay) < p->min_neighbor_prop_delay) { if (p->asCapable) pr_debug("port %hu: peer_delay (%" PRId64 ") < min_neighbor_prop_delay " "(%" PRId32 "), resetting asCapable", portnum(p), tmv_to_nanoseconds(p->peer_delay), p->min_neighbor_prop_delay); goto not_capable; } if (p->pdr_missing > ALLOWED_LOST_RESPONSES) { if (p->asCapable) pr_debug("port %hu: missed %d peer delay resp, " "resetting asCapable", portnum(p), p->pdr_missing); goto not_capable; } if (p->multiple_seq_pdr_count) { if (p->asCapable) pr_debug("port %hu: multiple sequential peer delay resp, " "resetting asCapable", portnum(p)); goto not_capable; } if (!p->peer_portid_valid) { if (p->asCapable) pr_debug("port %hu: invalid peer port id, " "resetting asCapable", portnum(p)); goto not_capable; } if (!p->nrate.ratio_valid) { if (p->asCapable) pr_debug("port %hu: invalid nrate, " "resetting asCapable", portnum(p)); goto not_capable; } capable: if (!p->asCapable) pr_debug("port %hu: setting asCapable", portnum(p)); p->asCapable = 1; return 1; not_capable: if (p->asCapable) port_nrate_initialize(p); p->asCapable = 0; return 0; } int port_clr_tmo(int fd) { struct itimerspec tmo = { {0, 0}, {0, 0} }; return timerfd_settime(fd, 0, &tmo, NULL); } static int port_ignore(struct port *p, struct ptp_message *m) { struct ClockIdentity c1, c2; if (incapable_ignore(p, m)) { return 1; } if (path_trace_ignore(p, m)) { return 1; } if (p->match_transport_specific && msg_transport_specific(m) != p->transportSpecific) { return 1; } if (pid_eq(&m->header.sourcePortIdentity, &p->portIdentity)) { return 1; } if (m->header.domainNumber != clock_domain_number(p->clock)) { return 1; } c1 = clock_identity(p->clock); c2 = m->header.sourcePortIdentity.clockIdentity; if (cid_eq(&c1, &c2)) { return 1; } return 0; } static int port_nsm_reply(struct port *p, struct ptp_message *m) { struct tlv_extra *extra; if (!p->net_sync_monitor) { return 0; } if (!p->hybrid_e2e) { return 0; } if (!msg_unicast(m)) { return 0; } TAILQ_FOREACH(extra, &m->tlv_list, list) { if (extra->tlv->type == TLV_PTPMON_REQ) { return 1; } } return 0; } /* * Test whether a 802.1AS port may transmit a sync message. */ static int port_sync_incapable(struct port *p) { struct ClockIdentity cid; struct PortIdentity pid; if (!port_is_ieee8021as(p)) { return 0; } if (clock_gm_capable(p->clock)) { return 0; } cid = clock_identity(p->clock); pid = clock_parent_identity(p->clock); if (cid_eq(&cid, &pid.clockIdentity)) { /* * We are the GM, but without gmCapable set. */ return 1; } return 0; } static int port_is_ieee8021as(struct port *p) { return p->follow_up_info ? 1 : 0; } static void port_management_send_error(struct port *p, struct port *ingress, struct ptp_message *msg, int error_id) { if (port_management_error(p->portIdentity, ingress, msg, error_id)) pr_err("port %hu: management error failed", portnum(p)); } static const Octet profile_id_drr[] = {0x00, 0x1B, 0x19, 0x00, 0x01, 0x00}; static const Octet profile_id_p2p[] = {0x00, 0x1B, 0x19, 0x00, 0x02, 0x00}; static int port_management_fill_response(struct port *target, struct ptp_message *rsp, int id) { struct mgmt_clock_description *cd; struct management_tlv_datum *mtd; struct clock_description *desc; struct port_properties_np *ppn; struct management_tlv *tlv; struct port_ds_np *pdsnp; struct tlv_extra *extra; struct portDS *pds; uint16_t u16; uint8_t *buf; int datalen; extra = tlv_extra_alloc(); if (!extra) { pr_err("failed to allocate TLV descriptor"); return 0; } extra->tlv = (struct TLV *) rsp->management.suffix; tlv = (struct management_tlv *) rsp->management.suffix; tlv->type = TLV_MANAGEMENT; tlv->id = id; switch (id) { case TLV_NULL_MANAGEMENT: datalen = 0; break; case TLV_CLOCK_DESCRIPTION: cd = &extra->cd; buf = tlv->data; cd->clockType = (UInteger16 *) buf; buf += sizeof(*cd->clockType); *cd->clockType = clock_type(target->clock); cd->physicalLayerProtocol = (struct PTPText *) buf; switch(transport_type(target->trp)) { case TRANS_UDP_IPV4: case TRANS_UDP_IPV6: case TRANS_IEEE_802_3: ptp_text_set(cd->physicalLayerProtocol, "IEEE 802.3"); break; default: ptp_text_set(cd->physicalLayerProtocol, NULL); break; } buf += sizeof(struct PTPText) + cd->physicalLayerProtocol->length; cd->physicalAddress = (struct PhysicalAddress *) buf; u16 = transport_physical_addr(target->trp, cd->physicalAddress->address); memcpy(&cd->physicalAddress->length, &u16, 2); buf += sizeof(struct PhysicalAddress) + u16; cd->protocolAddress = (struct PortAddress *) buf; u16 = transport_type(target->trp); memcpy(&cd->protocolAddress->networkProtocol, &u16, 2); u16 = transport_protocol_addr(target->trp, cd->protocolAddress->address); memcpy(&cd->protocolAddress->addressLength, &u16, 2); buf += sizeof(struct PortAddress) + u16; desc = clock_description(target->clock); cd->manufacturerIdentity = buf; memcpy(cd->manufacturerIdentity, desc->manufacturerIdentity, OUI_LEN); buf += OUI_LEN; *(buf++) = 0; /* reserved */ cd->productDescription = (struct PTPText *) buf; ptp_text_copy(cd->productDescription, &desc->productDescription); buf += sizeof(struct PTPText) + cd->productDescription->length; cd->revisionData = (struct PTPText *) buf; ptp_text_copy(cd->revisionData, &desc->revisionData); buf += sizeof(struct PTPText) + cd->revisionData->length; cd->userDescription = (struct PTPText *) buf; ptp_text_copy(cd->userDescription, &desc->userDescription); buf += sizeof(struct PTPText) + cd->userDescription->length; if (target->delayMechanism == DM_P2P) { memcpy(buf, profile_id_p2p, PROFILE_ID_LEN); } else { memcpy(buf, profile_id_drr, PROFILE_ID_LEN); } buf += PROFILE_ID_LEN; datalen = buf - tlv->data; break; case TLV_PORT_DATA_SET: pds = (struct portDS *) tlv->data; pds->portIdentity = target->portIdentity; if (target->state == PS_GRAND_MASTER) { pds->portState = PS_MASTER; } else { pds->portState = target->state; } pds->logMinDelayReqInterval = target->logMinDelayReqInterval; pds->peerMeanPathDelay = target->peerMeanPathDelay; pds->logAnnounceInterval = target->logAnnounceInterval; pds->announceReceiptTimeout = target->announceReceiptTimeout; pds->logSyncInterval = target->logSyncInterval; if (target->delayMechanism) { pds->delayMechanism = target->delayMechanism; } else { pds->delayMechanism = DM_E2E; } pds->logMinPdelayReqInterval = target->logMinPdelayReqInterval; pds->versionNumber = target->versionNumber; datalen = sizeof(*pds); break; case TLV_LOG_ANNOUNCE_INTERVAL: mtd = (struct management_tlv_datum *) tlv->data; mtd->val = target->logAnnounceInterval; datalen = sizeof(*mtd); break; case TLV_ANNOUNCE_RECEIPT_TIMEOUT: mtd = (struct management_tlv_datum *) tlv->data; mtd->val = target->announceReceiptTimeout; datalen = sizeof(*mtd); break; case TLV_LOG_SYNC_INTERVAL: mtd = (struct management_tlv_datum *) tlv->data; mtd->val = target->logSyncInterval; datalen = sizeof(*mtd); break; case TLV_VERSION_NUMBER: mtd = (struct management_tlv_datum *) tlv->data; mtd->val = target->versionNumber; datalen = sizeof(*mtd); break; case TLV_DELAY_MECHANISM: mtd = (struct management_tlv_datum *) tlv->data; if (target->delayMechanism) mtd->val = target->delayMechanism; else mtd->val = DM_E2E; datalen = sizeof(*mtd); break; case TLV_LOG_MIN_PDELAY_REQ_INTERVAL: mtd = (struct management_tlv_datum *) tlv->data; mtd->val = target->logMinPdelayReqInterval; datalen = sizeof(*mtd); break; case TLV_PORT_DATA_SET_NP: pdsnp = (struct port_ds_np *) tlv->data; pdsnp->neighborPropDelayThresh = target->neighborPropDelayThresh; pdsnp->asCapable = target->asCapable; datalen = sizeof(*pdsnp); break; case TLV_PORT_PROPERTIES_NP: ppn = (struct port_properties_np *)tlv->data; ppn->portIdentity = target->portIdentity; if (target->state == PS_GRAND_MASTER) ppn->port_state = PS_MASTER; else ppn->port_state = target->state; ppn->timestamping = target->timestamping; ptp_text_set(&ppn->interface, target->iface->ts_label); datalen = sizeof(*ppn) + ppn->interface.length; break; default: /* The caller should *not* respond to this message. */ tlv_extra_recycle(extra); return 0; } if (datalen % 2) { tlv->data[datalen] = 0; datalen++; } tlv->length = sizeof(tlv->id) + datalen; rsp->header.messageLength += sizeof(*tlv) + datalen; msg_tlv_attach(rsp, extra); /* The caller can respond to this message. */ return 1; } static int port_management_get_response(struct port *target, struct port *ingress, int id, struct ptp_message *req) { struct PortIdentity pid = port_identity(target); struct ptp_message *rsp; int respond; rsp = port_management_reply(pid, ingress, req); if (!rsp) { return 0; } respond = port_management_fill_response(target, rsp, id); if (respond) port_prepare_and_send(ingress, rsp, TRANS_GENERAL); msg_put(rsp); return respond; } static int port_management_set(struct port *target, struct port *ingress, int id, struct ptp_message *req) { int respond = 0; struct management_tlv *tlv; struct port_ds_np *pdsnp; tlv = (struct management_tlv *) req->management.suffix; switch (id) { case TLV_PORT_DATA_SET_NP: pdsnp = (struct port_ds_np *) tlv->data; target->neighborPropDelayThresh = pdsnp->neighborPropDelayThresh; respond = 1; break; } if (respond && !port_management_get_response(target, ingress, id, req)) pr_err("port %hu: failed to send management set response", portnum(target)); return respond ? 1 : 0; } static void port_nrate_calculate(struct port *p, tmv_t origin, tmv_t ingress) { struct nrate_estimator *n = &p->nrate; /* * We experienced a successful exchanges of peer delay request * and response, reset pdr_missing for this port. */ p->pdr_missing = 0; if (tmv_is_zero(n->ingress1)) { n->ingress1 = ingress; n->origin1 = origin; return; } n->count++; if (n->count < n->max_count) { return; } if (tmv_cmp(ingress, n->ingress1) == 0) { pr_warning("bad timestamps in nrate calculation"); return; } n->ratio = tmv_dbl(tmv_sub(origin, n->origin1)) / tmv_dbl(tmv_sub(ingress, n->ingress1)); n->ingress1 = ingress; n->origin1 = origin; n->count = 0; n->ratio_valid = 1; } static void port_nrate_initialize(struct port *p) { int shift = p->freq_est_interval - p->logMinPdelayReqInterval; if (shift < 0) shift = 0; else if (shift >= sizeof(int) * 8) { shift = sizeof(int) * 8 - 1; pr_warning("freq_est_interval is too long"); } /* We start in the 'incapable' state. */ p->pdr_missing = ALLOWED_LOST_RESPONSES + 1; p->asCapable = 0; p->peer_portid_valid = 0; p->nrate.origin1 = tmv_zero(); p->nrate.ingress1 = tmv_zero(); p->nrate.max_count = (1 << shift); p->nrate.count = 0; p->nrate.ratio = 1.0; p->nrate.ratio_valid = 0; } int port_set_announce_tmo(struct port *p) { return set_tmo_random(p->fda.fd[FD_ANNOUNCE_TIMER], p->announceReceiptTimeout, p->announce_span, p->logAnnounceInterval); } int port_set_delay_tmo(struct port *p) { if (p->delayMechanism == DM_P2P) { return set_tmo_log(p->fda.fd[FD_DELAY_TIMER], 1, p->logMinPdelayReqInterval); } else { return set_tmo_random(p->fda.fd[FD_DELAY_TIMER], 0, 2, p->logMinDelayReqInterval); } } static int port_set_manno_tmo(struct port *p) { return set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, p->logAnnounceInterval); } int port_set_qualification_tmo(struct port *p) { return set_tmo_log(p->fda.fd[FD_QUALIFICATION_TIMER], 1+clock_steps_removed(p->clock), p->logAnnounceInterval); } static int port_set_sync_rx_tmo(struct port *p) { return set_tmo_log(p->fda.fd[FD_SYNC_RX_TIMER], p->syncReceiptTimeout, p->logSyncInterval); } static int port_set_sync_tx_tmo(struct port *p) { return set_tmo_log(p->fda.fd[FD_SYNC_TX_TIMER], 1, p->logSyncInterval); } void port_show_transition(struct port *p, enum port_state next, enum fsm_event event) { if (event == EV_FAULT_DETECTED) { pr_notice("port %hu: %s to %s on %s (%s)", portnum(p), ps_str[p->state], ps_str[next], ev_str[event], ft_str(last_fault_type(p))); } else { pr_notice("port %hu: %s to %s on %s", portnum(p), ps_str[p->state], ps_str[next], ev_str[event]); } } static void port_slave_priority_warning(struct port *p) { UInteger16 n = portnum(p); pr_warning("port %hu: master state recommended in slave only mode", n); pr_warning("port %hu: defaultDS.priority1 probably misconfigured", n); } static void port_synchronize(struct port *p, tmv_t ingress_ts, struct timestamp origin_ts, Integer64 correction1, Integer64 correction2) { enum servo_state state; tmv_t t1, t1c, t2, c1, c2; port_set_sync_rx_tmo(p); t1 = timestamp_to_tmv(origin_ts); t2 = ingress_ts; c1 = correction_to_tmv(correction1); c2 = correction_to_tmv(correction2); t1c = tmv_add(t1, tmv_add(c1, c2)); state = clock_synchronize(p->clock, t2, t1c); switch (state) { case SERVO_UNLOCKED: port_dispatch(p, EV_SYNCHRONIZATION_FAULT, 0); break; case SERVO_JUMP: port_dispatch(p, EV_SYNCHRONIZATION_FAULT, 0); flush_delay_req(p); if (p->peer_delay_req) { msg_put(p->peer_delay_req); p->peer_delay_req = NULL; } break; case SERVO_LOCKED: port_dispatch(p, EV_MASTER_CLOCK_SELECTED, 0); break; } } /* * Handle out of order packets. The network stack might * provide the follow up _before_ the sync message. After all, * they can arrive on two different ports. In addition, time * stamping in PHY devices might delay the event packets. */ static void port_syfufsm(struct port *p, enum syfu_event event, struct ptp_message *m) { struct ptp_message *syn, *fup; switch (p->syfu) { case SF_EMPTY: switch (event) { case SYNC_MISMATCH: msg_get(m); p->last_syncfup = m; p->syfu = SF_HAVE_SYNC; break; case FUP_MISMATCH: msg_get(m); p->last_syncfup = m; p->syfu = SF_HAVE_FUP; break; case SYNC_MATCH: break; case FUP_MATCH: break; } break; case SF_HAVE_SYNC: switch (event) { case SYNC_MISMATCH: msg_put(p->last_syncfup); msg_get(m); p->last_syncfup = m; break; case SYNC_MATCH: break; case FUP_MISMATCH: msg_put(p->last_syncfup); msg_get(m); p->last_syncfup = m; p->syfu = SF_HAVE_FUP; break; case FUP_MATCH: syn = p->last_syncfup; port_synchronize(p, syn->hwts.ts, m->ts.pdu, syn->header.correction, m->header.correction); msg_put(p->last_syncfup); p->syfu = SF_EMPTY; break; } break; case SF_HAVE_FUP: switch (event) { case SYNC_MISMATCH: msg_put(p->last_syncfup); msg_get(m); p->last_syncfup = m; p->syfu = SF_HAVE_SYNC; break; case SYNC_MATCH: fup = p->last_syncfup; port_synchronize(p, m->hwts.ts, fup->ts.pdu, m->header.correction, fup->header.correction); msg_put(p->last_syncfup); p->syfu = SF_EMPTY; break; case FUP_MISMATCH: msg_put(p->last_syncfup); msg_get(m); p->last_syncfup = m; break; case FUP_MATCH: break; } break; } } static int port_pdelay_request(struct port *p) { struct ptp_message *msg; int err; /* If multiple pdelay resp were not detected the counter can be reset */ if (!p->multiple_pdr_detected) { p->multiple_seq_pdr_count = 0; } p->multiple_pdr_detected = 0; msg = msg_allocate(); if (!msg) { return -1; } msg->hwts.type = p->timestamping; msg->header.tsmt = PDELAY_REQ | p->transportSpecific; msg->header.ver = PTP_VERSION; msg->header.messageLength = sizeof(struct pdelay_req_msg); msg->header.domainNumber = clock_domain_number(p->clock); msg->header.correction = -p->asymmetry; msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = p->seqnum.delayreq++; msg->header.control = CTL_OTHER; msg->header.logMessageInterval = port_is_ieee8021as(p) ? p->logMinPdelayReqInterval : 0x7f; if (unicast_client_enabled(p) && p->unicast_master_table->peer_name) { msg->address = p->unicast_master_table->peer_addr.address; msg->header.flagField[0] |= UNICAST; } err = peer_prepare_and_send(p, msg, TRANS_EVENT); if (err) { pr_err("port %hu: send peer delay request failed", portnum(p)); goto out; } if (msg_sots_missing(msg)) { pr_err("missing timestamp on transmitted peer delay request"); goto out; } if (p->peer_delay_req) { if (port_capable(p)) { p->pdr_missing++; } msg_put(p->peer_delay_req); } p->peer_delay_req = msg; return 0; out: msg_put(msg); return -1; } int port_delay_request(struct port *p) { struct ptp_message *msg; /* Time to send a new request, forget current pdelay resp and fup */ if (p->peer_delay_resp) { msg_put(p->peer_delay_resp); p->peer_delay_resp = NULL; } if (p->peer_delay_fup) { msg_put(p->peer_delay_fup); p->peer_delay_fup = NULL; } if (p->delayMechanism == DM_P2P) { return port_pdelay_request(p); } msg = msg_allocate(); if (!msg) { return -1; } msg->hwts.type = p->timestamping; msg->header.tsmt = DELAY_REQ | p->transportSpecific; msg->header.ver = PTP_VERSION; msg->header.messageLength = sizeof(struct delay_req_msg); msg->header.domainNumber = clock_domain_number(p->clock); msg->header.correction = -p->asymmetry; msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = p->seqnum.delayreq++; msg->header.control = CTL_DELAY_REQ; msg->header.logMessageInterval = 0x7f; if (p->hybrid_e2e) { struct ptp_message *dst = TAILQ_FIRST(&p->best->messages); msg->address = dst->address; msg->header.flagField[0] |= UNICAST; } if (port_prepare_and_send(p, msg, TRANS_EVENT)) { pr_err("port %hu: send delay request failed", portnum(p)); goto out; } if (msg_sots_missing(msg)) { pr_err("missing timestamp on transmitted delay request"); goto out; } TAILQ_INSERT_HEAD(&p->delay_req, msg, list); return 0; out: msg_put(msg); return -1; } int port_tx_announce(struct port *p, struct address *dst) { struct timePropertiesDS *tp = clock_time_properties(p->clock); struct parent_ds *dad = clock_parent_ds(p->clock); struct ptp_message *msg; int err; if (p->inhibit_multicast_service && !dst) { return 0; } if (!port_capable(p)) { return 0; } msg = msg_allocate(); if (!msg) { return -1; } msg->hwts.type = p->timestamping; msg->header.tsmt = ANNOUNCE | p->transportSpecific; msg->header.ver = PTP_VERSION; msg->header.messageLength = sizeof(struct announce_msg); msg->header.domainNumber = clock_domain_number(p->clock); msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = p->seqnum.announce++; msg->header.control = CTL_OTHER; msg->header.logMessageInterval = p->logAnnounceInterval; msg->header.flagField[1] = tp->flags; if (dst) { msg->address = *dst; msg->header.flagField[0] |= UNICAST; } msg->announce.currentUtcOffset = tp->currentUtcOffset; msg->announce.grandmasterPriority1 = dad->pds.grandmasterPriority1; msg->announce.grandmasterClockQuality = dad->pds.grandmasterClockQuality; msg->announce.grandmasterPriority2 = dad->pds.grandmasterPriority2; msg->announce.grandmasterIdentity = dad->pds.grandmasterIdentity; msg->announce.stepsRemoved = clock_steps_removed(p->clock); msg->announce.timeSource = tp->timeSource; if (p->path_trace_enabled && path_trace_append(p, msg, dad)) { pr_err("port %hu: append path trace failed", portnum(p)); } err = port_prepare_and_send(p, msg, TRANS_GENERAL); if (err) { pr_err("port %hu: send announce failed", portnum(p)); } msg_put(msg); return err; } int port_tx_sync(struct port *p, struct address *dst) { struct ptp_message *msg, *fup; int err, event; switch (p->timestamping) { case TS_SOFTWARE: case TS_LEGACY_HW: case TS_HARDWARE: event = TRANS_EVENT; break; case TS_ONESTEP: event = TRANS_ONESTEP; break; case TS_P2P1STEP: event = TRANS_P2P1STEP; break; default: return -1; } if (p->inhibit_multicast_service && !dst) { return 0; } if (!port_capable(p)) { return 0; } if (port_sync_incapable(p)) { return 0; } msg = msg_allocate(); if (!msg) { return -1; } fup = msg_allocate(); if (!fup) { msg_put(msg); return -1; } msg->hwts.type = p->timestamping; msg->header.tsmt = SYNC | p->transportSpecific; msg->header.ver = PTP_VERSION; msg->header.messageLength = sizeof(struct sync_msg); msg->header.domainNumber = clock_domain_number(p->clock); msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = p->seqnum.sync++; msg->header.control = CTL_SYNC; msg->header.logMessageInterval = p->logSyncInterval; if (p->timestamping != TS_ONESTEP && p->timestamping != TS_P2P1STEP) { msg->header.flagField[0] |= TWO_STEP; } if (dst) { msg->address = *dst; msg->header.flagField[0] |= UNICAST; msg->header.logMessageInterval = 0x7f; } err = port_prepare_and_send(p, msg, event); if (err) { pr_err("port %hu: send sync failed", portnum(p)); goto out; } if (p->timestamping == TS_ONESTEP || p->timestamping == TS_P2P1STEP) { goto out; } else if (msg_sots_missing(msg)) { pr_err("missing timestamp on transmitted sync"); err = -1; goto out; } /* * Send the follow up message right away. */ fup->hwts.type = p->timestamping; fup->header.tsmt = FOLLOW_UP | p->transportSpecific; fup->header.ver = PTP_VERSION; fup->header.messageLength = sizeof(struct follow_up_msg); fup->header.domainNumber = clock_domain_number(p->clock); fup->header.sourcePortIdentity = p->portIdentity; fup->header.sequenceId = p->seqnum.sync - 1; fup->header.control = CTL_FOLLOW_UP; fup->header.logMessageInterval = p->logSyncInterval; fup->follow_up.preciseOriginTimestamp = tmv_to_Timestamp(msg->hwts.ts); if (dst) { fup->address = *dst; fup->header.flagField[0] |= UNICAST; } if (p->follow_up_info && follow_up_info_append(fup)) { pr_err("port %hu: append fup info failed", portnum(p)); err = -1; goto out; } err = port_prepare_and_send(p, fup, TRANS_GENERAL); if (err) { pr_err("port %hu: send follow up failed", portnum(p)); } out: msg_put(msg); msg_put(fup); return err; } /* * port initialize and disable */ int port_is_enabled(struct port *p) { switch (p->state) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: return 0; case PS_LISTENING: case PS_PRE_MASTER: case PS_MASTER: case PS_GRAND_MASTER: case PS_PASSIVE: case PS_UNCALIBRATED: case PS_SLAVE: break; } return 1; } void flush_last_sync(struct port *p) { if (p->syfu != SF_EMPTY) { msg_put(p->last_syncfup); p->syfu = SF_EMPTY; } } void flush_delay_req(struct port *p) { struct ptp_message *m; while ((m = TAILQ_FIRST(&p->delay_req)) != NULL) { TAILQ_REMOVE(&p->delay_req, m, list); msg_put(m); } } static void flush_peer_delay(struct port *p) { if (p->peer_delay_req) { msg_put(p->peer_delay_req); p->peer_delay_req = NULL; } if (p->peer_delay_resp) { msg_put(p->peer_delay_resp); p->peer_delay_resp = NULL; } if (p->peer_delay_fup) { msg_put(p->peer_delay_fup); p->peer_delay_fup = NULL; } } static void port_clear_fda(struct port *p, int count) { int i; for (i = 0; i < count; i++) p->fda.fd[i] = -1; } void port_disable(struct port *p) { int i; tc_flush(p); flush_last_sync(p); flush_delay_req(p); flush_peer_delay(p); p->best = NULL; free_foreign_masters(p); transport_close(p->trp, &p->fda); for (i = 0; i < N_TIMER_FDS; i++) { close(p->fda.fd[FD_FIRST_TIMER + i]); } /* Keep rtnl socket to get link status info. */ port_clear_fda(p, FD_RTNL); clock_fda_changed(p->clock); } int port_initialize(struct port *p) { struct config *cfg = clock_config(p->clock); int fd[N_TIMER_FDS], i; p->multiple_seq_pdr_count = 0; p->multiple_pdr_detected = 0; p->last_fault_type = FT_UNSPECIFIED; p->logMinDelayReqInterval = config_get_int(cfg, p->name, "logMinDelayReqInterval"); p->peerMeanPathDelay = 0; p->logAnnounceInterval = config_get_int(cfg, p->name, "logAnnounceInterval"); p->announceReceiptTimeout = config_get_int(cfg, p->name, "announceReceiptTimeout"); p->syncReceiptTimeout = config_get_int(cfg, p->name, "syncReceiptTimeout"); p->transportSpecific = config_get_int(cfg, p->name, "transportSpecific"); p->transportSpecific <<= 4; p->match_transport_specific = !config_get_int(cfg, p->name, "ignore_transport_specific"); p->master_only = config_get_int(cfg, p->name, "masterOnly"); p->localPriority = config_get_int(cfg, p->name, "G.8275.portDS.localPriority"); p->logSyncInterval = config_get_int(cfg, p->name, "logSyncInterval"); p->logMinPdelayReqInterval = config_get_int(cfg, p->name, "logMinPdelayReqInterval"); p->neighborPropDelayThresh = config_get_int(cfg, p->name, "neighborPropDelayThresh"); p->min_neighbor_prop_delay = config_get_int(cfg, p->name, "min_neighbor_prop_delay"); for (i = 0; i < N_TIMER_FDS; i++) { fd[i] = -1; } for (i = 0; i < N_TIMER_FDS; i++) { fd[i] = timerfd_create(CLOCK_MONOTONIC, 0); if (fd[i] < 0) { pr_err("timerfd_create: %s", strerror(errno)); goto no_timers; } } if (transport_open(p->trp, p->iface, &p->fda, p->timestamping)) goto no_tropen; for (i = 0; i < N_TIMER_FDS; i++) { p->fda.fd[FD_FIRST_TIMER + i] = fd[i]; } if (port_set_announce_tmo(p)) { goto no_tmo; } if (unicast_client_enabled(p) && unicast_client_set_tmo(p)) { goto no_tmo; } /* No need to open rtnl socket on UDS port. */ if (transport_type(p->trp) != TRANS_UDS) { if (p->fda.fd[FD_RTNL] == -1) p->fda.fd[FD_RTNL] = rtnl_open(); if (p->fda.fd[FD_RTNL] >= 0) rtnl_link_query(p->fda.fd[FD_RTNL], p->iface->name); } port_nrate_initialize(p); clock_fda_changed(p->clock); return 0; no_tmo: transport_close(p->trp, &p->fda); no_tropen: no_timers: for (i = 0; i < N_TIMER_FDS; i++) { if (fd[i] >= 0) close(fd[i]); } return -1; } static int port_renew_transport(struct port *p) { int res; if (!port_is_enabled(p)) { return 0; } transport_close(p->trp, &p->fda); port_clear_fda(p, FD_FIRST_TIMER); res = transport_open(p->trp, p->iface, &p->fda, p->timestamping); /* Need to call clock_fda_changed even if transport_open failed in * order to update clock to the now closed descriptors. */ clock_fda_changed(p->clock); return res; } /* * Returns non-zero if the announce message is different than last. */ static int update_current_master(struct port *p, struct ptp_message *m) { struct foreign_clock *fc = p->best; struct ptp_message *tmp; struct parent_ds *dad; struct path_trace_tlv *ptt; struct timePropertiesDS tds; if (!msg_source_equal(m, fc)) return add_foreign_master(p, m); if (p->state != PS_PASSIVE) { tds.currentUtcOffset = m->announce.currentUtcOffset; tds.flags = m->header.flagField[1]; tds.timeSource = m->announce.timeSource; clock_update_time_properties(p->clock, tds); } if (p->path_trace_enabled) { ptt = (struct path_trace_tlv *) m->announce.suffix; dad = clock_parent_ds(p->clock); memcpy(dad->ptl, ptt->cid, ptt->length); dad->path_length = path_length(ptt); } port_set_announce_tmo(p); fc_prune(fc); msg_get(m); fc->n_messages++; TAILQ_INSERT_HEAD(&fc->messages, m, list); if (fc->n_messages > 1) { tmp = TAILQ_NEXT(m, list); return announce_compare(m, tmp); } return 0; } struct dataset *port_best_foreign(struct port *port) { return port->best ? &port->best->dataset : NULL; } /* message processing routines */ /* * Returns non-zero if the announce message is both qualified and different. */ int process_announce(struct port *p, struct ptp_message *m) { int result = 0; /* Do not qualify announce messages with stepsRemoved >= 255, see * IEEE1588-2008 section 9.3.2.5 (d) */ if (m->announce.stepsRemoved >= 255) { return result; } switch (p->state) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: break; case PS_LISTENING: case PS_PRE_MASTER: case PS_MASTER: case PS_GRAND_MASTER: result = add_foreign_master(p, m); break; case PS_PASSIVE: case PS_UNCALIBRATED: case PS_SLAVE: result = update_current_master(p, m); break; } return result; } static int process_delay_req(struct port *p, struct ptp_message *m) { int err, nsm, saved_seqnum_sync; struct ptp_message *msg; nsm = port_nsm_reply(p, m); if (!nsm && p->state != PS_MASTER && p->state != PS_GRAND_MASTER) { return 0; } if (p->delayMechanism == DM_P2P) { pr_warning("port %hu: delay request on P2P port", portnum(p)); return 0; } msg = msg_allocate(); if (!msg) { return -1; } msg->hwts.type = p->timestamping; msg->header.tsmt = DELAY_RESP | p->transportSpecific; msg->header.ver = PTP_VERSION; msg->header.messageLength = sizeof(struct delay_resp_msg); msg->header.domainNumber = m->header.domainNumber; msg->header.correction = m->header.correction; msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = m->header.sequenceId; msg->header.control = CTL_DELAY_RESP; msg->header.logMessageInterval = p->logMinDelayReqInterval; msg->delay_resp.receiveTimestamp = tmv_to_Timestamp(m->hwts.ts); msg->delay_resp.requestingPortIdentity = m->header.sourcePortIdentity; if (p->hybrid_e2e && msg_unicast(m)) { msg->address = m->address; msg->header.flagField[0] |= UNICAST; msg->header.logMessageInterval = 0x7f; } if (nsm && net_sync_resp_append(p, msg)) { pr_err("port %hu: append NSM failed", portnum(p)); err = -1; goto out; } err = port_prepare_and_send(p, msg, TRANS_GENERAL); if (err) { pr_err("port %hu: send delay response failed", portnum(p)); goto out; } if (nsm) { saved_seqnum_sync = p->seqnum.sync; p->seqnum.sync = m->header.sequenceId; err = port_tx_sync(p, &m->address); p->seqnum.sync = saved_seqnum_sync; } out: msg_put(msg); return err; } void process_delay_resp(struct port *p, struct ptp_message *m) { struct delay_resp_msg *rsp = &m->delay_resp; struct PortIdentity master; struct ptp_message *req; tmv_t c3, t3, t4, t4c; master = clock_parent_identity(p->clock); if (p->state != PS_UNCALIBRATED && p->state != PS_SLAVE) { return; } if (!pid_eq(&rsp->requestingPortIdentity, &p->portIdentity)) { return; } if (!pid_eq(&master, &m->header.sourcePortIdentity)) { return; } TAILQ_FOREACH(req, &p->delay_req, list) { if (rsp->hdr.sequenceId == ntohs(req->delay_req.hdr.sequenceId)) { break; } } if (!req) { return; } c3 = correction_to_tmv(m->header.correction); t3 = req->hwts.ts; t4 = timestamp_to_tmv(m->ts.pdu); t4c = tmv_sub(t4, c3); clock_path_delay(p->clock, t3, t4c); TAILQ_REMOVE(&p->delay_req, req, list); msg_put(req); if (p->logMinDelayReqInterval == rsp->hdr.logMessageInterval) { return; } if (msg_unicast(m)) { /* Unicast responses have logMinDelayReqInterval set to 0x7F. */ return; } if (rsp->hdr.logMessageInterval < -10 || rsp->hdr.logMessageInterval > 22) { pl_info(300, "port %hu: ignore bogus delay request interval 2^%d", portnum(p), rsp->hdr.logMessageInterval); return; } p->logMinDelayReqInterval = rsp->hdr.logMessageInterval; pr_notice("port %hu: minimum delay request interval 2^%d", portnum(p), p->logMinDelayReqInterval); port_set_delay_tmo(p); } void process_follow_up(struct port *p, struct ptp_message *m) { enum syfu_event event; struct PortIdentity master; switch (p->state) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: case PS_LISTENING: case PS_PRE_MASTER: case PS_MASTER: case PS_GRAND_MASTER: case PS_PASSIVE: return; case PS_UNCALIBRATED: case PS_SLAVE: break; } master = clock_parent_identity(p->clock); if (!pid_eq(&master, &m->header.sourcePortIdentity)) { return; } if (p->follow_up_info) { struct follow_up_info_tlv *fui = follow_up_info_extract(m); if (!fui) return; clock_follow_up_info(p->clock, fui); } if (p->syfu == SF_HAVE_SYNC && p->last_syncfup->header.sequenceId == m->header.sequenceId) { event = FUP_MATCH; } else { event = FUP_MISMATCH; } port_syfufsm(p, event, m); } int process_pdelay_req(struct port *p, struct ptp_message *m) { struct ptp_message *rsp, *fup; enum transport_event event; int err; switch (p->timestamping) { case TS_SOFTWARE: case TS_LEGACY_HW: case TS_HARDWARE: case TS_ONESTEP: event = TRANS_EVENT; break; case TS_P2P1STEP: event = TRANS_P2P1STEP; break; default: return -1; } if (p->delayMechanism == DM_E2E) { pr_warning("port %hu: pdelay_req on E2E port", portnum(p)); return 0; } if (p->delayMechanism == DM_AUTO) { pr_info("port %hu: peer detected, switch to P2P", portnum(p)); p->delayMechanism = DM_P2P; port_set_delay_tmo(p); } if (p->peer_portid_valid) { if (!pid_eq(&p->peer_portid, &m->header.sourcePortIdentity)) { pr_err("port %hu: received pdelay_req msg with " "unexpected peer port id %s", portnum(p), pid2str(&m->header.sourcePortIdentity)); p->peer_portid_valid = 0; port_capable(p); } } else { p->peer_portid_valid = 1; p->peer_portid = m->header.sourcePortIdentity; pr_debug("port %hu: peer port id set to %s", portnum(p), pid2str(&p->peer_portid)); } rsp = msg_allocate(); if (!rsp) { return -1; } fup = msg_allocate(); if (!fup) { msg_put(rsp); return -1; } rsp->hwts.type = p->timestamping; rsp->header.tsmt = PDELAY_RESP | p->transportSpecific; rsp->header.ver = PTP_VERSION; rsp->header.messageLength = sizeof(struct pdelay_resp_msg); rsp->header.domainNumber = m->header.domainNumber; rsp->header.sourcePortIdentity = p->portIdentity; rsp->header.sequenceId = m->header.sequenceId; rsp->header.control = CTL_OTHER; rsp->header.logMessageInterval = 0x7f; /* * NB - We do not have any fraction nanoseconds for the correction * fields, neither in the response or the follow up. */ if (p->timestamping == TS_P2P1STEP) { rsp->header.correction = m->header.correction; rsp->header.correction += p->tx_timestamp_offset; rsp->header.correction += p->rx_timestamp_offset; } else { rsp->header.flagField[0] |= TWO_STEP; rsp->pdelay_resp.requestReceiptTimestamp = tmv_to_Timestamp(m->hwts.ts); } rsp->pdelay_resp.requestingPortIdentity = m->header.sourcePortIdentity; if (msg_unicast(m)) { rsp->address = m->address; rsp->header.flagField[0] |= UNICAST; } err = peer_prepare_and_send(p, rsp, event); if (err) { pr_err("port %hu: send peer delay response failed", portnum(p)); goto out; } if (p->timestamping == TS_P2P1STEP) { goto out; } else if (msg_sots_missing(rsp)) { pr_err("missing timestamp on transmitted peer delay response"); err = -1; goto out; } /* * Send the follow up message right away. */ fup->hwts.type = p->timestamping; fup->header.tsmt = PDELAY_RESP_FOLLOW_UP | p->transportSpecific; fup->header.ver = PTP_VERSION; fup->header.messageLength = sizeof(struct pdelay_resp_fup_msg); fup->header.domainNumber = m->header.domainNumber; fup->header.correction = m->header.correction; fup->header.sourcePortIdentity = p->portIdentity; fup->header.sequenceId = m->header.sequenceId; fup->header.control = CTL_OTHER; fup->header.logMessageInterval = 0x7f; fup->pdelay_resp_fup.requestingPortIdentity = m->header.sourcePortIdentity; fup->pdelay_resp_fup.responseOriginTimestamp = tmv_to_Timestamp(rsp->hwts.ts); if (msg_unicast(m)) { fup->address = m->address; fup->header.flagField[0] |= UNICAST; } err = peer_prepare_and_send(p, fup, TRANS_GENERAL); if (err) { pr_err("port %hu: send pdelay_resp_fup failed", portnum(p)); } out: msg_put(rsp); msg_put(fup); return err; } static void port_peer_delay(struct port *p) { tmv_t c1, c2, t1, t2, t3, t3c, t4; struct ptp_message *req = p->peer_delay_req; struct ptp_message *rsp = p->peer_delay_resp; struct ptp_message *fup = p->peer_delay_fup; /* Check for response, validate port and sequence number. */ if (!rsp) return; if (!pid_eq(&rsp->pdelay_resp.requestingPortIdentity, &p->portIdentity)) return; if (rsp->header.sequenceId != ntohs(req->header.sequenceId)) return; t1 = req->hwts.ts; t4 = rsp->hwts.ts; c1 = correction_to_tmv(rsp->header.correction + p->asymmetry); /* Process one-step response immediately. */ if (one_step(rsp)) { t2 = tmv_zero(); t3 = tmv_zero(); c2 = tmv_zero(); goto calc; } /* Check for follow up, validate port and sequence number. */ if (!fup) return; if (!pid_eq(&fup->pdelay_resp_fup.requestingPortIdentity, &p->portIdentity)) return; if (fup->header.sequenceId != rsp->header.sequenceId) return; if (!source_pid_eq(fup, rsp)) return; /* Process follow up response. */ t2 = timestamp_to_tmv(rsp->ts.pdu); t3 = timestamp_to_tmv(fup->ts.pdu); c2 = correction_to_tmv(fup->header.correction); calc: t3c = tmv_add(t3, tmv_add(c1, c2)); if (p->follow_up_info) port_nrate_calculate(p, t3c, t4); tsproc_set_clock_rate_ratio(p->tsproc, p->nrate.ratio * clock_rate_ratio(p->clock)); tsproc_up_ts(p->tsproc, t1, t2); tsproc_down_ts(p->tsproc, t3c, t4); if (tsproc_update_delay(p->tsproc, &p->peer_delay)) return; p->peerMeanPathDelay = tmv_to_TimeInterval(p->peer_delay); if (p->state == PS_UNCALIBRATED || p->state == PS_SLAVE) { clock_peer_delay(p->clock, p->peer_delay, t1, t2, p->nrate.ratio); } msg_put(p->peer_delay_req); p->peer_delay_req = NULL; } int process_pdelay_resp(struct port *p, struct ptp_message *m) { if (p->peer_delay_resp) { if (!source_pid_eq(p->peer_delay_resp, m)) { pr_err("port %hu: multiple peer responses", portnum(p)); if (!p->multiple_pdr_detected) { p->multiple_pdr_detected = 1; p->multiple_seq_pdr_count++; } if (p->multiple_seq_pdr_count >= 3) { p->last_fault_type = FT_BAD_PEER_NETWORK; return -1; } } } if (!p->peer_delay_req) { pr_err("port %hu: rogue peer delay response", portnum(p)); return -1; } if (p->peer_portid_valid) { if (!pid_eq(&p->peer_portid, &m->header.sourcePortIdentity)) { pr_err("port %hu: received pdelay_resp msg with " "unexpected peer port id %s", portnum(p), pid2str(&m->header.sourcePortIdentity)); p->peer_portid_valid = 0; port_capable(p); } } else { p->peer_portid_valid = 1; p->peer_portid = m->header.sourcePortIdentity; pr_debug("port %hu: peer port id set to %s", portnum(p), pid2str(&p->peer_portid)); } if (p->peer_delay_resp) { msg_put(p->peer_delay_resp); } msg_get(m); p->peer_delay_resp = m; port_peer_delay(p); return 0; } void process_pdelay_resp_fup(struct port *p, struct ptp_message *m) { if (!p->peer_delay_req) { return; } if (p->peer_delay_fup) { msg_put(p->peer_delay_fup); } msg_get(m); p->peer_delay_fup = m; port_peer_delay(p); } void process_sync(struct port *p, struct ptp_message *m) { enum syfu_event event; struct PortIdentity master; switch (p->state) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: case PS_LISTENING: case PS_PRE_MASTER: case PS_MASTER: case PS_GRAND_MASTER: case PS_PASSIVE: return; case PS_UNCALIBRATED: case PS_SLAVE: break; } master = clock_parent_identity(p->clock); if (!pid_eq(&master, &m->header.sourcePortIdentity)) { return; } if (!msg_unicast(m) && m->header.logMessageInterval != p->log_sync_interval) { p->log_sync_interval = m->header.logMessageInterval; clock_sync_interval(p->clock, p->log_sync_interval); } m->header.correction += p->asymmetry; if (one_step(m)) { port_synchronize(p, m->hwts.ts, m->ts.pdu, m->header.correction, 0); flush_last_sync(p); return; } if (p->syfu == SF_HAVE_FUP && fup_sync_ok(p->last_syncfup, m) && p->last_syncfup->header.sequenceId == m->header.sequenceId) { event = SYNC_MATCH; } else { event = SYNC_MISMATCH; } port_syfufsm(p, event, m); } /* public methods */ void port_close(struct port *p) { if (port_is_enabled(p)) { port_disable(p); } if (p->fda.fd[FD_RTNL] >= 0) { rtnl_close(p->fda.fd[FD_RTNL]); } unicast_service_cleanup(p); transport_destroy(p->trp); tsproc_destroy(p->tsproc); if (p->fault_fd >= 0) { close(p->fault_fd); } free(p); } struct foreign_clock *port_compute_best(struct port *p) { int (*dscmp)(struct dataset *a, struct dataset *b); struct foreign_clock *fc; struct ptp_message *tmp; dscmp = clock_dscmp(p->clock); p->best = NULL; if (p->master_only) return p->best; LIST_FOREACH(fc, &p->foreign_masters, list) { tmp = TAILQ_FIRST(&fc->messages); if (!tmp) continue; announce_to_dataset(tmp, p, &fc->dataset); fc_prune(fc); if (fc->n_messages < FOREIGN_MASTER_THRESHOLD) continue; if (!p->best) p->best = fc; else if (dscmp(&fc->dataset, &p->best->dataset) > 0) p->best = fc; else fc_clear(fc); } return p->best; } static void port_e2e_transition(struct port *p, enum port_state next) { port_clr_tmo(p->fda.fd[FD_ANNOUNCE_TIMER]); port_clr_tmo(p->fda.fd[FD_SYNC_RX_TIMER]); port_clr_tmo(p->fda.fd[FD_DELAY_TIMER]); port_clr_tmo(p->fda.fd[FD_QUALIFICATION_TIMER]); port_clr_tmo(p->fda.fd[FD_MANNO_TIMER]); port_clr_tmo(p->fda.fd[FD_SYNC_TX_TIMER]); /* Leave FD_UNICAST_REQ_TIMER running. */ switch (next) { case PS_INITIALIZING: break; case PS_FAULTY: case PS_DISABLED: port_disable(p); break; case PS_LISTENING: port_set_announce_tmo(p); break; case PS_PRE_MASTER: port_set_qualification_tmo(p); break; case PS_MASTER: case PS_GRAND_MASTER: set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, -10); /*~1ms*/ port_set_sync_tx_tmo(p); break; case PS_PASSIVE: port_set_announce_tmo(p); break; case PS_UNCALIBRATED: flush_last_sync(p); flush_delay_req(p); /* fall through */ case PS_SLAVE: port_set_announce_tmo(p); port_set_delay_tmo(p); break; }; } static void port_p2p_transition(struct port *p, enum port_state next) { port_clr_tmo(p->fda.fd[FD_ANNOUNCE_TIMER]); port_clr_tmo(p->fda.fd[FD_SYNC_RX_TIMER]); /* Leave FD_DELAY_TIMER running. */ port_clr_tmo(p->fda.fd[FD_QUALIFICATION_TIMER]); port_clr_tmo(p->fda.fd[FD_MANNO_TIMER]); port_clr_tmo(p->fda.fd[FD_SYNC_TX_TIMER]); /* Leave FD_UNICAST_REQ_TIMER running. */ switch (next) { case PS_INITIALIZING: break; case PS_FAULTY: case PS_DISABLED: port_disable(p); break; case PS_LISTENING: port_set_announce_tmo(p); port_set_delay_tmo(p); break; case PS_PRE_MASTER: port_set_qualification_tmo(p); break; case PS_MASTER: case PS_GRAND_MASTER: set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, -10); /*~1ms*/ port_set_sync_tx_tmo(p); break; case PS_PASSIVE: port_set_announce_tmo(p); break; case PS_UNCALIBRATED: flush_last_sync(p); flush_peer_delay(p); /* fall through */ case PS_SLAVE: port_set_announce_tmo(p); break; }; } void port_dispatch(struct port *p, enum fsm_event event, int mdiff) { p->dispatch(p, event, mdiff); } static void bc_dispatch(struct port *p, enum fsm_event event, int mdiff) { if (clock_slave_only(p->clock)) { if (event == EV_RS_MASTER || event == EV_RS_GRAND_MASTER) { port_slave_priority_warning(p); } } if (!port_state_update(p, event, mdiff)) { return; } if (p->delayMechanism == DM_P2P) { port_p2p_transition(p, p->state); } else { port_e2e_transition(p, p->state); } if (p->jbod && p->state == PS_UNCALIBRATED) { if (clock_switch_phc(p->clock, p->phc_index)) { p->last_fault_type = FT_SWITCH_PHC; port_dispatch(p, EV_FAULT_DETECTED, 0); return; } clock_sync_interval(p->clock, p->log_sync_interval); } } void port_link_status(void *ctx, int linkup, int ts_index) { struct port *p = ctx; int link_state; char ts_label[MAX_IFNAME_SIZE + 1] = {0}; int required_modes; link_state = linkup ? LINK_UP : LINK_DOWN; if (p->link_status & link_state) { p->link_status = link_state; } else { p->link_status = link_state | LINK_STATE_CHANGED; pr_notice("port %hu: link %s", portnum(p), linkup ? "up" : "down"); } /* ts_label changed */ if (if_indextoname(ts_index, ts_label) && strcmp(p->iface->ts_label, ts_label)) { strncpy(p->iface->ts_label, ts_label, MAX_IFNAME_SIZE); p->link_status |= TS_LABEL_CHANGED; pr_notice("port %hu: ts label changed to %s", portnum(p), ts_label); } /* Both link down/up and change ts_label may change phc index. */ if (p->link_status & LINK_UP && (p->link_status & LINK_STATE_CHANGED || p->link_status & TS_LABEL_CHANGED)) { sk_get_ts_info(p->iface->ts_label, &p->iface->ts_info); /* Only switch phc with HW time stamping mode */ if (p->phc_index >= 0 && p->iface->ts_info.valid) { required_modes = clock_required_modes(p->clock); if ((p->iface->ts_info.so_timestamping & required_modes) != required_modes) { pr_err("interface '%s' does not support requested " "timestamping mode, set link status down by force.", p->iface->ts_label); p->link_status = LINK_DOWN | LINK_STATE_CHANGED; } else if (p->phc_index != p->iface->ts_info.phc_index) { p->phc_index = p->iface->ts_info.phc_index; if (clock_switch_phc(p->clock, p->phc_index)) { p->last_fault_type = FT_SWITCH_PHC; port_dispatch(p, EV_FAULT_DETECTED, 0); return; } clock_sync_interval(p->clock, p->log_sync_interval); } } } /* * A port going down can affect the BMCA result. * Force a state decision event. */ if (p->link_status & LINK_DOWN) clock_set_sde(p->clock, 1); } enum fsm_event port_event(struct port *p, int fd_index) { return p->event(p, fd_index); } static enum fsm_event bc_event(struct port *p, int fd_index) { enum fsm_event event = EV_NONE; struct ptp_message *msg; int cnt, fd = p->fda.fd[fd_index], err; switch (fd_index) { case FD_ANNOUNCE_TIMER: case FD_SYNC_RX_TIMER: pr_debug("port %hu: %s timeout", portnum(p), fd_index == FD_SYNC_RX_TIMER ? "rx sync" : "announce"); if (p->best) fc_clear(p->best); port_set_announce_tmo(p); delay_req_prune(p); if (clock_slave_only(p->clock) && p->delayMechanism != DM_P2P && port_renew_transport(p)) { return EV_FAULT_DETECTED; } return EV_ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES; case FD_DELAY_TIMER: pr_debug("port %hu: delay timeout", portnum(p)); port_set_delay_tmo(p); delay_req_prune(p); return port_delay_request(p) ? EV_FAULT_DETECTED : EV_NONE; case FD_QUALIFICATION_TIMER: pr_debug("port %hu: qualification timeout", portnum(p)); return EV_QUALIFICATION_TIMEOUT_EXPIRES; case FD_MANNO_TIMER: pr_debug("port %hu: master tx announce timeout", portnum(p)); port_set_manno_tmo(p); return port_tx_announce(p, NULL) ? EV_FAULT_DETECTED : EV_NONE; case FD_SYNC_TX_TIMER: pr_debug("port %hu: master sync timeout", portnum(p)); port_set_sync_tx_tmo(p); return port_tx_sync(p, NULL) ? EV_FAULT_DETECTED : EV_NONE; case FD_UNICAST_SRV_TIMER: pr_debug("port %hu: unicast service timeout", portnum(p)); return unicast_service_timer(p) ? EV_FAULT_DETECTED : EV_NONE; case FD_UNICAST_REQ_TIMER: pr_debug("port %hu: unicast request timeout", portnum(p)); return unicast_client_timer(p) ? EV_FAULT_DETECTED : EV_NONE; case FD_RTNL: pr_debug("port %hu: received link status notification", portnum(p)); rtnl_link_status(fd, p->name, port_link_status, p); if (p->link_status == (LINK_UP | LINK_STATE_CHANGED)) return EV_FAULT_CLEARED; else if ((p->link_status == (LINK_DOWN | LINK_STATE_CHANGED)) || (p->link_status & TS_LABEL_CHANGED)) return EV_FAULT_DETECTED; else return EV_NONE; } msg = msg_allocate(); if (!msg) return EV_FAULT_DETECTED; msg->hwts.type = p->timestamping; cnt = transport_recv(p->trp, fd, msg); if (cnt <= 0) { pr_err("port %hu: recv message failed", portnum(p)); msg_put(msg); return EV_FAULT_DETECTED; } err = msg_post_recv(msg, cnt); if (err) { switch (err) { case -EBADMSG: pr_err("port %hu: bad message", portnum(p)); break; case -EPROTO: pr_debug("port %hu: ignoring message", portnum(p)); break; } msg_put(msg); return EV_NONE; } if (port_ignore(p, msg)) { msg_put(msg); return EV_NONE; } if (msg_sots_missing(msg) && !(p->timestamping == TS_P2P1STEP && msg_type(msg) == PDELAY_REQ)) { pr_err("port %hu: received %s without timestamp", portnum(p), msg_type_string(msg_type(msg))); msg_put(msg); return EV_NONE; } if (msg_sots_valid(msg)) { ts_add(&msg->hwts.ts, -p->rx_timestamp_offset); clock_check_ts(p->clock, tmv_to_nanoseconds(msg->hwts.ts)); } switch (msg_type(msg)) { case SYNC: process_sync(p, msg); break; case DELAY_REQ: if (process_delay_req(p, msg)) event = EV_FAULT_DETECTED; break; case PDELAY_REQ: if (process_pdelay_req(p, msg)) event = EV_FAULT_DETECTED; break; case PDELAY_RESP: if (process_pdelay_resp(p, msg)) event = EV_FAULT_DETECTED; break; case FOLLOW_UP: process_follow_up(p, msg); break; case DELAY_RESP: process_delay_resp(p, msg); break; case PDELAY_RESP_FOLLOW_UP: process_pdelay_resp_fup(p, msg); break; case ANNOUNCE: if (process_announce(p, msg)) event = EV_STATE_DECISION_EVENT; break; case SIGNALING: if (process_signaling(p, msg)) { event = EV_FAULT_DETECTED; } break; case MANAGEMENT: if (clock_manage(p->clock, p, msg)) event = EV_STATE_DECISION_EVENT; break; } msg_put(msg); return event; } int port_forward(struct port *p, struct ptp_message *msg) { int cnt; cnt = transport_send(p->trp, &p->fda, TRANS_GENERAL, msg); return cnt <= 0 ? -1 : 0; } int port_forward_to(struct port *p, struct ptp_message *msg) { int cnt; cnt = transport_sendto(p->trp, &p->fda, TRANS_GENERAL, msg); return cnt <= 0 ? -1 : 0; } int port_prepare_and_send(struct port *p, struct ptp_message *msg, enum transport_event event) { int cnt; if (msg_pre_send(msg)) { return -1; } if (msg_unicast(msg)) { cnt = transport_sendto(p->trp, &p->fda, event, msg); } else { cnt = transport_send(p->trp, &p->fda, event, msg); } if (cnt <= 0) { return -1; } if (msg_sots_valid(msg)) { ts_add(&msg->hwts.ts, p->tx_timestamp_offset); } return 0; } struct PortIdentity port_identity(struct port *p) { return p->portIdentity; } int port_number(struct port *p) { return portnum(p); } int port_link_status_get(struct port *p) { return !!(p->link_status & LINK_UP); } int port_manage(struct port *p, struct port *ingress, struct ptp_message *msg) { struct management_tlv *mgt; UInteger16 target = msg->management.targetPortIdentity.portNumber; if (target != portnum(p) && target != 0xffff) { return 0; } mgt = (struct management_tlv *) msg->management.suffix; switch (management_action(msg)) { case GET: if (port_management_get_response(p, ingress, mgt->id, msg)) return 1; break; case SET: if (port_management_set(p, ingress, mgt->id, msg)) return 1; break; case COMMAND: break; default: return -1; } switch (mgt->id) { case TLV_NULL_MANAGEMENT: case TLV_CLOCK_DESCRIPTION: case TLV_PORT_DATA_SET: case TLV_LOG_ANNOUNCE_INTERVAL: case TLV_ANNOUNCE_RECEIPT_TIMEOUT: case TLV_LOG_SYNC_INTERVAL: case TLV_VERSION_NUMBER: case TLV_ENABLE_PORT: case TLV_DISABLE_PORT: case TLV_UNICAST_NEGOTIATION_ENABLE: case TLV_UNICAST_MASTER_TABLE: case TLV_UNICAST_MASTER_MAX_TABLE_SIZE: case TLV_ACCEPTABLE_MASTER_TABLE_ENABLED: case TLV_ALTERNATE_MASTER: case TLV_TRANSPARENT_CLOCK_PORT_DATA_SET: case TLV_DELAY_MECHANISM: case TLV_LOG_MIN_PDELAY_REQ_INTERVAL: port_management_send_error(p, ingress, msg, TLV_NOT_SUPPORTED); break; default: port_management_send_error(p, ingress, msg, TLV_NO_SUCH_ID); return -1; } return 1; } int port_management_error(struct PortIdentity pid, struct port *ingress, struct ptp_message *req, Enumeration16 error_id) { struct management_error_status *mes; struct management_tlv *mgt; struct ptp_message *msg; struct tlv_extra *extra; int err = 0; mgt = (struct management_tlv *) req->management.suffix; msg = port_management_reply(pid, ingress, req); if (!msg) { return -1; } extra = msg_tlv_append(msg, sizeof(*mes)); if (!extra) { msg_put(msg); return -ENOMEM; } mes = (struct management_error_status *) extra->tlv; mes->type = TLV_MANAGEMENT_ERROR_STATUS; mes->length = 8; mes->error = error_id; mes->id = mgt->id; err = port_prepare_and_send(ingress, msg, TRANS_GENERAL); msg_put(msg); return err; } static struct ptp_message * port_management_construct(struct PortIdentity pid, struct port *ingress, UInteger16 sequenceId, struct PortIdentity *targetPortIdentity, UInteger8 boundaryHops, uint8_t action) { struct ptp_message *msg; msg = msg_allocate(); if (!msg) return NULL; msg->hwts.type = ingress->timestamping; msg->header.tsmt = MANAGEMENT | ingress->transportSpecific; msg->header.ver = PTP_VERSION; msg->header.messageLength = sizeof(struct management_msg); msg->header.domainNumber = clock_domain_number(ingress->clock); msg->header.sourcePortIdentity = pid; msg->header.sequenceId = sequenceId; msg->header.control = CTL_MANAGEMENT; msg->header.logMessageInterval = 0x7f; if (targetPortIdentity) msg->management.targetPortIdentity = *targetPortIdentity; msg->management.startingBoundaryHops = boundaryHops; msg->management.boundaryHops = boundaryHops; switch (action) { case GET: case SET: msg->management.flags = RESPONSE; break; case COMMAND: msg->management.flags = ACKNOWLEDGE; break; } return msg; } struct ptp_message *port_management_reply(struct PortIdentity pid, struct port *ingress, struct ptp_message *req) { UInteger8 boundaryHops; boundaryHops = req->management.startingBoundaryHops - req->management.boundaryHops; return port_management_construct(pid, ingress, req->header.sequenceId, &req->header.sourcePortIdentity, boundaryHops, management_action(req)); } struct ptp_message *port_management_notify(struct PortIdentity pid, struct port *port) { return port_management_construct(pid, port, 0, NULL, 1, GET); } void port_notify_event(struct port *p, enum notification event) { struct PortIdentity pid = port_identity(p); struct ptp_message *msg; int id; switch (event) { case NOTIFY_PORT_STATE: id = TLV_PORT_DATA_SET; break; default: return; } /* targetPortIdentity and sequenceId will be filled by * clock_send_notification */ msg = port_management_notify(pid, p); if (!msg) return; if (!port_management_fill_response(p, msg, id)) goto err; if (msg_pre_send(msg)) goto err; clock_send_notification(p->clock, msg, event); err: msg_put(msg); } struct port *port_open(int phc_index, enum timestamp_type timestamping, int number, struct interface *interface, struct clock *clock) { enum clock_type type = clock_type(clock); struct config *cfg = clock_config(clock); struct port *p = malloc(sizeof(*p)); enum transport_type transport; int i; if (!p) { return NULL; } memset(p, 0, sizeof(*p)); TAILQ_INIT(&p->tc_transmitted); switch (type) { case CLOCK_TYPE_ORDINARY: case CLOCK_TYPE_BOUNDARY: p->dispatch = bc_dispatch; p->event = bc_event; break; case CLOCK_TYPE_P2P: p->dispatch = p2p_dispatch; p->event = p2p_event; break; case CLOCK_TYPE_E2E: p->dispatch = e2e_dispatch; p->event = e2e_event; break; case CLOCK_TYPE_MANAGEMENT: goto err_port; } p->state_machine = clock_slave_only(clock) ? ptp_slave_fsm : ptp_fsm; p->phc_index = phc_index; p->jbod = config_get_int(cfg, interface->name, "boundary_clock_jbod"); transport = config_get_int(cfg, interface->name, "network_transport"); if (transport == TRANS_UDS) { ; /* UDS cannot have a PHC. */ } else if (!interface->ts_info.valid) { pr_warning("port %d: get_ts_info not supported", number); } else if (phc_index >= 0 && phc_index != interface->ts_info.phc_index) { if (p->jbod) { pr_warning("port %d: just a bunch of devices", number); p->phc_index = interface->ts_info.phc_index; } else { pr_err("port %d: PHC device mismatch", number); pr_err("port %d: /dev/ptp%d requested, ptp%d attached", number, phc_index, interface->ts_info.phc_index); goto err_port; } } p->name = interface->name; p->iface = interface; p->asymmetry = config_get_int(cfg, p->name, "delayAsymmetry"); p->asymmetry <<= 16; p->announce_span = transport == TRANS_UDS ? 0 : ANNOUNCE_SPAN; p->follow_up_info = config_get_int(cfg, p->name, "follow_up_info"); p->freq_est_interval = config_get_int(cfg, p->name, "freq_est_interval"); p->net_sync_monitor = config_get_int(cfg, p->name, "net_sync_monitor"); p->path_trace_enabled = config_get_int(cfg, p->name, "path_trace_enabled"); p->tc_spanning_tree = config_get_int(cfg, p->name, "tc_spanning_tree"); p->rx_timestamp_offset = config_get_int(cfg, p->name, "ingressLatency"); p->rx_timestamp_offset <<= 16; p->tx_timestamp_offset = config_get_int(cfg, p->name, "egressLatency"); p->tx_timestamp_offset <<= 16; p->link_status = LINK_UP; p->clock = clock; p->trp = transport_create(cfg, transport); if (!p->trp) { goto err_port; } p->timestamping = timestamping; p->portIdentity.clockIdentity = clock_identity(clock); p->portIdentity.portNumber = number; p->state = PS_INITIALIZING; p->delayMechanism = config_get_int(cfg, p->name, "delay_mechanism"); p->versionNumber = PTP_VERSION; if (number && unicast_client_claim_table(p)) { goto err_port; } if (unicast_client_enabled(p) && config_set_section_int(cfg, p->name, "hybrid_e2e", 1)) { goto err_port; } if (number && unicast_service_initialize(p)) { goto err_port; } p->hybrid_e2e = config_get_int(cfg, p->name, "hybrid_e2e"); if (number && type == CLOCK_TYPE_P2P && p->delayMechanism != DM_P2P) { pr_err("port %d: P2P TC needs P2P ports", number); goto err_port; } if (number && type == CLOCK_TYPE_E2E && p->delayMechanism != DM_E2E) { pr_err("port %d: E2E TC needs E2E ports", number); goto err_port; } if (p->hybrid_e2e && p->delayMechanism != DM_E2E) { pr_warning("port %d: hybrid_e2e only works with E2E", number); } if (p->net_sync_monitor && !p->hybrid_e2e) { pr_warning("port %d: net_sync_monitor needs hybrid_e2e", number); } /* Set fault timeouts to a default value */ for (i = 0; i < FT_CNT; i++) { p->flt_interval_pertype[i].type = FTMO_LOG2_SECONDS; p->flt_interval_pertype[i].val = 4; } p->flt_interval_pertype[FT_BAD_PEER_NETWORK].type = FTMO_LINEAR_SECONDS; p->flt_interval_pertype[FT_BAD_PEER_NETWORK].val = config_get_int(cfg, p->name, "fault_badpeernet_interval"); p->flt_interval_pertype[FT_UNSPECIFIED].val = config_get_int(cfg, p->name, "fault_reset_interval"); p->tsproc = tsproc_create(config_get_int(cfg, p->name, "tsproc_mode"), config_get_int(cfg, p->name, "delay_filter"), config_get_int(cfg, p->name, "delay_filter_length")); if (!p->tsproc) { pr_err("Failed to create time stamp processor"); goto err_transport; } p->nrate.ratio = 1.0; port_clear_fda(p, N_POLLFD); p->fault_fd = -1; if (number) { p->fault_fd = timerfd_create(CLOCK_MONOTONIC, 0); if (p->fault_fd < 0) { pr_err("timerfd_create failed: %m"); goto err_tsproc; } } return p; err_tsproc: tsproc_destroy(p->tsproc); err_transport: transport_destroy(p->trp); err_port: free(p); return NULL; } enum port_state port_state(struct port *port) { return port->state; } int port_state_update(struct port *p, enum fsm_event event, int mdiff) { enum port_state next = p->state_machine(p->state, event, mdiff); if (PS_FAULTY == next) { struct fault_interval i; fault_interval(p, last_fault_type(p), &i); if (clear_fault_asap(&i)) { pr_notice("port %hu: clearing fault immediately", portnum(p)); next = p->state_machine(next, EV_FAULT_CLEARED, 0); } } if (PS_INITIALIZING == next) { /* * This is a special case. Since we initialize the * port immediately, we can skip right to listening * state if all goes well. */ if (port_is_enabled(p)) { port_disable(p); } if (port_initialize(p)) { event = EV_FAULT_DETECTED; } else { event = EV_INIT_COMPLETE; } next = p->state_machine(next, event, 0); } if (next != p->state) { port_show_transition(p, next, event); p->state = next; port_notify_event(p, NOTIFY_PORT_STATE); unicast_client_state_changed(p); return 1; } return 0; }