/** * @file resolve.c * @author Michal Vasko * @brief libyang resolve functions * * Copyright (c) 2015 - 2018 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #define _GNU_SOURCE #include #include #include #include #include #include "libyang.h" #include "resolve.h" #include "common.h" #include "xpath.h" #include "parser.h" #include "parser_yang.h" #include "xml_internal.h" #include "hash_table.h" #include "tree_internal.h" #include "extensions.h" #include "validation.h" /* internal parsed predicate structure */ struct parsed_pred { const struct lys_node *schema; int len; struct { const char *mod_name; int mod_name_len; const char *name; int nam_len; const char *value; int val_len; } *pred; }; int parse_range_dec64(const char **str_num, uint8_t dig, int64_t *num) { const char *ptr; int minus = 0; int64_t ret = 0, prev_ret; int8_t str_exp, str_dig = -1, trailing_zeros = 0; ptr = *str_num; if (ptr[0] == '-') { minus = 1; ++ptr; } else if (ptr[0] == '+') { ++ptr; } if (!isdigit(ptr[0])) { /* there must be at least one */ return 1; } for (str_exp = 0; isdigit(ptr[0]) || ((ptr[0] == '.') && (str_dig < 0)); ++ptr) { if (str_exp > 18) { return 1; } if (ptr[0] == '.') { if (ptr[1] == '.') { /* it's the next interval */ break; } ++str_dig; } else { prev_ret = ret; if (minus) { ret = ret * 10 - (ptr[0] - '0'); if (ret > prev_ret) { return 1; } } else { ret = ret * 10 + (ptr[0] - '0'); if (ret < prev_ret) { return 1; } } if (str_dig > -1) { ++str_dig; if (ptr[0] == '0') { /* possibly trailing zero */ trailing_zeros++; } else { trailing_zeros = 0; } } ++str_exp; } } if (str_dig == 0) { /* no digits after '.' */ return 1; } else if (str_dig == -1) { /* there are 0 numbers after the floating point */ str_dig = 0; } /* remove trailing zeros */ if (trailing_zeros) { str_dig -= trailing_zeros; str_exp -= trailing_zeros; ret = ret / dec_pow(trailing_zeros); } /* it's parsed, now adjust the number based on fraction-digits, if needed */ if (str_dig < dig) { if ((str_exp - 1) + (dig - str_dig) > 18) { return 1; } prev_ret = ret; ret *= dec_pow(dig - str_dig); if ((minus && (ret > prev_ret)) || (!minus && (ret < prev_ret))) { return 1; } } if (str_dig > dig) { return 1; } *str_num = ptr; *num = ret; return 0; } /** * @brief Parse an identifier. * * ;; An identifier MUST NOT start with (('X'|'x') ('M'|'m') ('L'|'l')) * identifier = (ALPHA / "_") * *(ALPHA / DIGIT / "_" / "-" / ".") * * @param[in] id Identifier to use. * * @return Number of characters successfully parsed. */ unsigned int parse_identifier(const char *id) { unsigned int parsed = 0; assert(id); if (!isalpha(id[0]) && (id[0] != '_')) { return -parsed; } ++parsed; ++id; while (isalnum(id[0]) || (id[0] == '_') || (id[0] == '-') || (id[0] == '.')) { ++parsed; ++id; } return parsed; } /** * @brief Parse a node-identifier. * * node-identifier = [module-name ":"] identifier * * @param[in] id Identifier to use. * @param[out] mod_name Points to the module name, NULL if there is not any. * @param[out] mod_name_len Length of the module name, 0 if there is not any. * @param[out] name Points to the node name. * @param[out] nam_len Length of the node name. * @param[out] all_desc Whether the path starts with '/', only supported in extended paths. * @param[in] extended Whether to accept an extended path (support for [prefix:]*, /[prefix:]*, /[prefix:]., prefix:#identifier). * * @return Number of characters successfully parsed, * positive on success, negative on failure. */ static int parse_node_identifier(const char *id, const char **mod_name, int *mod_name_len, const char **name, int *nam_len, int *all_desc, int extended) { int parsed = 0, ret, all_desc_local = 0; assert(id); assert((mod_name && mod_name_len) || (!mod_name && !mod_name_len)); assert((name && nam_len) || (!name && !nam_len)); if (mod_name) { *mod_name = NULL; *mod_name_len = 0; } if (name) { *name = NULL; *nam_len = 0; } if (extended) { /* try to parse only the extended expressions */ if (id[parsed] == '/') { if (all_desc) { *all_desc = 1; } all_desc_local = 1; } else { if (all_desc) { *all_desc = 0; } } /* is there a prefix? */ ret = parse_identifier(id + all_desc_local); if (ret > 0) { if (id[all_desc_local + ret] != ':') { /* this is not a prefix, so not an extended id */ goto standard_id; } if (mod_name) { *mod_name = id + all_desc_local; *mod_name_len = ret; } /* "/" and ":" */ ret += all_desc_local + 1; } else { ret = all_desc_local; } /* parse either "*" or "." */ if (*(id + ret) == '*') { if (name) { *name = id + ret; *nam_len = 1; } ++ret; return ret; } else if (*(id + ret) == '.') { if (!all_desc_local) { /* /. is redundant expression, we do not accept it */ return -ret; } if (name) { *name = id + ret; *nam_len = 1; } ++ret; return ret; } else if (*(id + ret) == '#') { if (all_desc_local || !ret) { /* no prefix */ return 0; } parsed = ret + 1; if ((ret = parse_identifier(id + parsed)) < 1) { return -parsed + ret; } *name = id + parsed - 1; *nam_len = ret + 1; return parsed + ret; } /* else a standard id, parse it all again */ } standard_id: if ((ret = parse_identifier(id)) < 1) { return ret; } if (mod_name) { *mod_name = id; *mod_name_len = ret; } parsed += ret; id += ret; /* there is prefix */ if (id[0] == ':') { ++parsed; ++id; /* there isn't */ } else { if (name && mod_name) { *name = *mod_name; } if (mod_name) { *mod_name = NULL; } if (nam_len && mod_name_len) { *nam_len = *mod_name_len; } if (mod_name_len) { *mod_name_len = 0; } return parsed; } /* identifier (node name) */ if ((ret = parse_identifier(id)) < 1) { return -parsed+ret; } if (name) { *name = id; *nam_len = ret; } return parsed+ret; } /** * @brief Parse a path-predicate (leafref). * * path-predicate = "[" *WSP path-equality-expr *WSP "]" * path-equality-expr = node-identifier *WSP "=" *WSP path-key-expr * * @param[in] id Identifier to use. * @param[out] prefix Points to the prefix, NULL if there is not any. * @param[out] pref_len Length of the prefix, 0 if there is not any. * @param[out] name Points to the node name. * @param[out] nam_len Length of the node name. * @param[out] path_key_expr Points to the path-key-expr. * @param[out] pke_len Length of the path-key-expr. * @param[out] has_predicate Flag to mark whether there is another predicate following. * * @return Number of characters successfully parsed, * positive on success, negative on failure. */ static int parse_path_predicate(const char *id, const char **prefix, int *pref_len, const char **name, int *nam_len, const char **path_key_expr, int *pke_len, int *has_predicate) { const char *ptr; int parsed = 0, ret; assert(id); if (prefix) { *prefix = NULL; } if (pref_len) { *pref_len = 0; } if (name) { *name = NULL; } if (nam_len) { *nam_len = 0; } if (path_key_expr) { *path_key_expr = NULL; } if (pke_len) { *pke_len = 0; } if (has_predicate) { *has_predicate = 0; } if (id[0] != '[') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } if ((ret = parse_node_identifier(id, prefix, pref_len, name, nam_len, NULL, 0)) < 1) { return -parsed+ret; } parsed += ret; id += ret; while (isspace(id[0])) { ++parsed; ++id; } if (id[0] != '=') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } if ((ptr = strchr(id, ']')) == NULL) { return -parsed; } --ptr; while (isspace(ptr[0])) { --ptr; } ++ptr; ret = ptr-id; if (path_key_expr) { *path_key_expr = id; } if (pke_len) { *pke_len = ret; } parsed += ret; id += ret; while (isspace(id[0])) { ++parsed; ++id; } assert(id[0] == ']'); if (id[1] == '[') { *has_predicate = 1; } return parsed+1; } /** * @brief Parse a path-key-expr (leafref). First call parses "current()", all * the ".." and the first node-identifier, other calls parse a single * node-identifier each. * * path-key-expr = current-function-invocation *WSP "/" *WSP * rel-path-keyexpr * rel-path-keyexpr = 1*(".." *WSP "/" *WSP) * *(node-identifier *WSP "/" *WSP) * node-identifier * * @param[in] id Identifier to use. * @param[out] prefix Points to the prefix, NULL if there is not any. * @param[out] pref_len Length of the prefix, 0 if there is not any. * @param[out] name Points to the node name. * @param[out] nam_len Length of the node name. * @param[out] parent_times Number of ".." in the path. Must be 0 on the first call, * must not be changed between consecutive calls. * @return Number of characters successfully parsed, * positive on success, negative on failure. */ static int parse_path_key_expr(const char *id, const char **prefix, int *pref_len, const char **name, int *nam_len, int *parent_times) { int parsed = 0, ret, par_times = 0; assert(id); assert(parent_times); if (prefix) { *prefix = NULL; } if (pref_len) { *pref_len = 0; } if (name) { *name = NULL; } if (nam_len) { *nam_len = 0; } if (!*parent_times) { /* current-function-invocation *WSP "/" *WSP rel-path-keyexpr */ if (strncmp(id, "current()", 9)) { return -parsed; } parsed += 9; id += 9; while (isspace(id[0])) { ++parsed; ++id; } if (id[0] != '/') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } /* rel-path-keyexpr */ if (strncmp(id, "..", 2)) { return -parsed; } ++par_times; parsed += 2; id += 2; while (isspace(id[0])) { ++parsed; ++id; } } /* 1*(".." *WSP "/" *WSP) *(node-identifier *WSP "/" *WSP) node-identifier * * first parent reference with whitespaces already parsed */ if (id[0] != '/') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } while (!strncmp(id, "..", 2) && !*parent_times) { ++par_times; parsed += 2; id += 2; while (isspace(id[0])) { ++parsed; ++id; } if (id[0] != '/') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } } if (!*parent_times) { *parent_times = par_times; } /* all parent references must be parsed at this point */ if ((ret = parse_node_identifier(id, prefix, pref_len, name, nam_len, NULL, 0)) < 1) { return -parsed + ret; } parsed += ret; id += ret; return parsed; } /** * @brief Parse path-arg (leafref). * * path-arg = absolute-path / relative-path * absolute-path = 1*("/" (node-identifier *path-predicate)) * relative-path = 1*(".." "/") descendant-path * * @param[in] mod Module of the context node to get correct prefix in case it is not explicitly specified * @param[in] id Identifier to use. * @param[out] prefix Points to the prefix, NULL if there is not any. * @param[out] pref_len Length of the prefix, 0 if there is not any. * @param[out] name Points to the node name. * @param[out] nam_len Length of the node name. * @param[out] parent_times Number of ".." in the path. Must be 0 on the first call, * must not be changed between consecutive calls. -1 if the * path is relative. * @param[out] has_predicate Flag to mark whether there is a predicate specified. * * @return Number of characters successfully parsed, * positive on success, negative on failure. */ static int parse_path_arg(const struct lys_module *mod, const char *id, const char **prefix, int *pref_len, const char **name, int *nam_len, int *parent_times, int *has_predicate) { int parsed = 0, ret, par_times = 0; assert(id); assert(parent_times); if (prefix) { *prefix = NULL; } if (pref_len) { *pref_len = 0; } if (name) { *name = NULL; } if (nam_len) { *nam_len = 0; } if (has_predicate) { *has_predicate = 0; } if (!*parent_times && !strncmp(id, "..", 2)) { ++par_times; parsed += 2; id += 2; while (!strncmp(id, "/..", 3)) { ++par_times; parsed += 3; id += 3; } } if (!*parent_times) { if (par_times) { *parent_times = par_times; } else { *parent_times = -1; } } if (id[0] != '/') { return -parsed; } /* skip '/' */ ++parsed; ++id; /* node-identifier ([prefix:]identifier) */ if ((ret = parse_node_identifier(id, prefix, pref_len, name, nam_len, NULL, 0)) < 1) { return -parsed - ret; } if (prefix && !(*prefix)) { /* actually we always need prefix even it is not specified */ *prefix = lys_main_module(mod)->name; *pref_len = strlen(*prefix); } parsed += ret; id += ret; /* there is no predicate */ if ((id[0] == '/') || !id[0]) { return parsed; } else if (id[0] != '[') { return -parsed; } if (has_predicate) { *has_predicate = 1; } return parsed; } /** * @brief Parse instance-identifier in JSON data format. That means that prefixes * are actually model names. * * instance-identifier = 1*("/" (node-identifier *predicate)) * * @param[in] id Identifier to use. * @param[out] model Points to the model name. * @param[out] mod_len Length of the model name. * @param[out] name Points to the node name. * @param[out] nam_len Length of the node name. * @param[out] has_predicate Flag to mark whether there is a predicate specified. * * @return Number of characters successfully parsed, * positive on success, negative on failure. */ static int parse_instance_identifier(const char *id, const char **model, int *mod_len, const char **name, int *nam_len, int *has_predicate) { int parsed = 0, ret; assert(id && model && mod_len && name && nam_len); if (has_predicate) { *has_predicate = 0; } if (id[0] != '/') { return -parsed; } ++parsed; ++id; if ((ret = parse_identifier(id)) < 1) { return ret; } *name = id; *nam_len = ret; parsed += ret; id += ret; if (id[0] == ':') { /* we have prefix */ *model = *name; *mod_len = *nam_len; ++parsed; ++id; if ((ret = parse_identifier(id)) < 1) { return ret; } *name = id; *nam_len = ret; parsed += ret; id += ret; } if (id[0] == '[' && has_predicate) { *has_predicate = 1; } return parsed; } /** * @brief Parse predicate (instance-identifier) in JSON data format. That means that prefixes * (which are mandatory) are actually model names. * * predicate = "[" *WSP (predicate-expr / pos) *WSP "]" * predicate-expr = (node-identifier / ".") *WSP "=" *WSP * ((DQUOTE string DQUOTE) / * (SQUOTE string SQUOTE)) * pos = non-negative-integer-value * * @param[in] id Identifier to use. * @param[out] model Points to the model name. * @param[out] mod_len Length of the model name. * @param[out] name Points to the node name. Can be identifier (from node-identifier), "." or pos. * @param[out] nam_len Length of the node name. * @param[out] value Value the node-identifier must have (string from the grammar), * NULL if there is not any. * @param[out] val_len Length of the value, 0 if there is not any. * @param[out] has_predicate Flag to mark whether there is a predicate specified. * * @return Number of characters successfully parsed, * positive on success, negative on failure. */ static int parse_predicate(const char *id, const char **model, int *mod_len, const char **name, int *nam_len, const char **value, int *val_len, int *has_predicate) { const char *ptr; int parsed = 0, ret; char quote; assert(id); if (model) { assert(mod_len); *model = NULL; *mod_len = 0; } if (name) { assert(nam_len); *name = NULL; *nam_len = 0; } if (value) { assert(val_len); *value = NULL; *val_len = 0; } if (has_predicate) { *has_predicate = 0; } if (id[0] != '[') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } /* pos */ if (isdigit(id[0])) { if (name) { *name = id; } if (id[0] == '0') { return -parsed; } while (isdigit(id[0])) { ++parsed; ++id; } if (nam_len) { *nam_len = id-(*name); } /* "." or node-identifier */ } else { if (id[0] == '.') { if (name) { *name = id; } if (nam_len) { *nam_len = 1; } ++parsed; ++id; } else { if ((ret = parse_node_identifier(id, model, mod_len, name, nam_len, NULL, 0)) < 1) { return -parsed + ret; } parsed += ret; id += ret; } while (isspace(id[0])) { ++parsed; ++id; } if (id[0] != '=') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } /* ((DQUOTE string DQUOTE) / (SQUOTE string SQUOTE)) */ if ((id[0] == '\"') || (id[0] == '\'')) { quote = id[0]; ++parsed; ++id; if ((ptr = strchr(id, quote)) == NULL) { return -parsed; } ret = ptr - id; if (value) { *value = id; } if (val_len) { *val_len = ret; } parsed += ret + 1; id += ret + 1; } else { return -parsed; } } while (isspace(id[0])) { ++parsed; ++id; } if (id[0] != ']') { return -parsed; } ++parsed; ++id; if ((id[0] == '[') && has_predicate) { *has_predicate = 1; } return parsed; } /** * @brief Parse schema-nodeid. * * schema-nodeid = absolute-schema-nodeid / * descendant-schema-nodeid * absolute-schema-nodeid = 1*("/" node-identifier) * descendant-schema-nodeid = ["." "/"] * node-identifier * absolute-schema-nodeid * * @param[in] id Identifier to use. * @param[out] mod_name Points to the module name, NULL if there is not any. * @param[out] mod_name_len Length of the module name, 0 if there is not any. * @param[out] name Points to the node name. * @param[out] nam_len Length of the node name. * @param[out] is_relative Flag to mark whether the nodeid is absolute or descendant. Must be -1 * on the first call, must not be changed between consecutive calls. * @param[out] has_predicate Flag to mark whether there is a predicate specified. It cannot be * based on the grammar, in those cases use NULL. * @param[in] extended Whether to accept an extended path (support for /[prefix:]*, //[prefix:]*, //[prefix:].). * * @return Number of characters successfully parsed, * positive on success, negative on failure. */ int parse_schema_nodeid(const char *id, const char **mod_name, int *mod_name_len, const char **name, int *nam_len, int *is_relative, int *has_predicate, int *all_desc, int extended) { int parsed = 0, ret; assert(id); assert(is_relative); if (has_predicate) { *has_predicate = 0; } if (id[0] != '/') { if (*is_relative != -1) { return -parsed; } else { *is_relative = 1; } if (!strncmp(id, "./", 2)) { parsed += 2; id += 2; } } else { if (*is_relative == -1) { *is_relative = 0; } ++parsed; ++id; } if ((ret = parse_node_identifier(id, mod_name, mod_name_len, name, nam_len, all_desc, extended)) < 1) { return -parsed + ret; } parsed += ret; id += ret; if ((id[0] == '[') && has_predicate) { *has_predicate = 1; } return parsed; } /** * @brief Parse schema predicate (special format internally used). * * predicate = "[" *WSP predicate-expr *WSP "]" * predicate-expr = "." / [prefix:]identifier / positive-integer / key-with-value * key-with-value = identifier *WSP "=" *WSP * ((DQUOTE string DQUOTE) / * (SQUOTE string SQUOTE)) * * @param[in] id Identifier to use. * @param[out] mod_name Points to the list key module name. * @param[out] mod_name_len Length of \p mod_name. * @param[out] name Points to the list key name. * @param[out] nam_len Length of \p name. * @param[out] value Points to the key value. If specified, key-with-value is expected. * @param[out] val_len Length of \p value. * @param[out] has_predicate Flag to mark whether there is another predicate specified. */ int parse_schema_json_predicate(const char *id, const char **mod_name, int *mod_name_len, const char **name, int *nam_len, const char **value, int *val_len, int *has_predicate) { const char *ptr; int parsed = 0, ret; char quote; assert(id); if (mod_name) { *mod_name = NULL; } if (mod_name_len) { *mod_name_len = 0; } if (name) { *name = NULL; } if (nam_len) { *nam_len = 0; } if (value) { *value = NULL; } if (val_len) { *val_len = 0; } if (has_predicate) { *has_predicate = 0; } if (id[0] != '[') { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } /* identifier */ if (id[0] == '.') { ret = 1; if (name) { *name = id; } if (nam_len) { *nam_len = ret; } } else if (isdigit(id[0])) { if (id[0] == '0') { return -parsed; } ret = 1; while (isdigit(id[ret])) { ++ret; } if (name) { *name = id; } if (nam_len) { *nam_len = ret; } } else if ((ret = parse_node_identifier(id, mod_name, mod_name_len, name, nam_len, NULL, 0)) < 1) { return -parsed + ret; } parsed += ret; id += ret; while (isspace(id[0])) { ++parsed; ++id; } /* there is value as well */ if (id[0] == '=') { if (name && isdigit(**name)) { return -parsed; } ++parsed; ++id; while (isspace(id[0])) { ++parsed; ++id; } /* ((DQUOTE string DQUOTE) / (SQUOTE string SQUOTE)) */ if ((id[0] == '\"') || (id[0] == '\'')) { quote = id[0]; ++parsed; ++id; if ((ptr = strchr(id, quote)) == NULL) { return -parsed; } ret = ptr - id; if (value) { *value = id; } if (val_len) { *val_len = ret; } parsed += ret + 1; id += ret + 1; } else { return -parsed; } while (isspace(id[0])) { ++parsed; ++id; } } if (id[0] != ']') { return -parsed; } ++parsed; ++id; if ((id[0] == '[') && has_predicate) { *has_predicate = 1; } return parsed; } #ifdef LY_ENABLED_CACHE static int resolve_hash_table_find_equal(void *val1_p, void *val2_p, int mod, void *UNUSED(cb_data)) { struct lyd_node *val2, *elem2; struct parsed_pred pp; const char *str; int i; assert(!mod); (void)mod; pp = *((struct parsed_pred *)val1_p); val2 = *((struct lyd_node **)val2_p); if (val2->schema != pp.schema) { return 0; } switch (val2->schema->nodetype) { case LYS_CONTAINER: case LYS_LEAF: case LYS_ANYXML: case LYS_ANYDATA: return 1; case LYS_LEAFLIST: str = ((struct lyd_node_leaf_list *)val2)->value_str; if (!strncmp(str, pp.pred[0].value, pp.pred[0].val_len) && !str[pp.pred[0].val_len]) { return 1; } return 0; case LYS_LIST: assert(((struct lys_node_list *)val2->schema)->keys_size); assert(((struct lys_node_list *)val2->schema)->keys_size == pp.len); /* lists with keys, their equivalence is based on their keys */ elem2 = val2->child; /* the exact data order is guaranteed */ for (i = 0; elem2 && (i < pp.len); ++i) { /* module check */ if (pp.pred[i].mod_name) { if (strncmp(lyd_node_module(elem2)->name, pp.pred[i].mod_name, pp.pred[i].mod_name_len) || lyd_node_module(elem2)->name[pp.pred[i].mod_name_len]) { break; } } else { if (lyd_node_module(elem2) != lys_node_module(pp.schema)) { break; } } /* name check */ if (strncmp(elem2->schema->name, pp.pred[i].name, pp.pred[i].nam_len) || elem2->schema->name[pp.pred[i].nam_len]) { break; } /* value check */ str = ((struct lyd_node_leaf_list *)elem2)->value_str; if (strncmp(str, pp.pred[i].value, pp.pred[i].val_len) || str[pp.pred[i].val_len]) { break; } /* next key */ elem2 = elem2->next; } if (i == pp.len) { return 1; } return 0; default: break; } LOGINT(val2->schema->module->ctx); return 0; } static struct lyd_node * resolve_json_data_node_hash(struct lyd_node *parent, struct parsed_pred pp) { values_equal_cb prev_cb; struct lyd_node **ret = NULL; uint32_t hash; int i; assert(parent && parent->hash); /* set our value equivalence callback that does not require data nodes */ prev_cb = lyht_set_cb(parent->ht, resolve_hash_table_find_equal); /* get the hash of the searched node */ hash = dict_hash_multi(0, lys_node_module(pp.schema)->name, strlen(lys_node_module(pp.schema)->name)); hash = dict_hash_multi(hash, pp.schema->name, strlen(pp.schema->name)); if (pp.schema->nodetype == LYS_LEAFLIST) { assert((pp.len == 1) && (pp.pred[0].name[0] == '.') && (pp.pred[0].nam_len == 1)); /* leaf-list value in predicate */ hash = dict_hash_multi(hash, pp.pred[0].value, pp.pred[0].val_len); } else if (pp.schema->nodetype == LYS_LIST) { /* list keys in predicates */ for (i = 0; i < pp.len; ++i) { hash = dict_hash_multi(hash, pp.pred[i].value, pp.pred[i].val_len); } } hash = dict_hash_multi(hash, NULL, 0); /* try to find the node */ i = lyht_find(parent->ht, &pp, hash, (void **)&ret); assert(i || *ret); /* restore the original callback */ lyht_set_cb(parent->ht, prev_cb); return (i ? NULL : *ret); } #endif /** * @brief Resolve (find) a feature definition. Logs directly. * * @param[in] feat_name Feature name to resolve. * @param[in] len Length of \p feat_name. * @param[in] node Node with the if-feature expression. * @param[out] feature Pointer to be set to point to the feature definition, if feature not found * (return code 1), the pointer is untouched. * * @return 0 on success, 1 on forward reference, -1 on error. */ static int resolve_feature(const char *feat_name, uint16_t len, const struct lys_node *node, struct lys_feature **feature) { char *str; const char *mod_name, *name; int mod_name_len, nam_len, i, j; const struct lys_module *module; assert(feature); /* check prefix */ if ((i = parse_node_identifier(feat_name, &mod_name, &mod_name_len, &name, &nam_len, NULL, 0)) < 1) { LOGVAL(node->module->ctx, LYE_INCHAR, LY_VLOG_NONE, NULL, feat_name[-i], &feat_name[-i]); return -1; } module = lyp_get_module(lys_node_module(node), NULL, 0, mod_name, mod_name_len, 0); if (!module) { /* identity refers unknown data model */ LOGVAL(node->module->ctx, LYE_INMOD_LEN, LY_VLOG_NONE, NULL, mod_name_len, mod_name); return -1; } if (module != node->module && module == lys_node_module(node)) { /* first, try to search directly in submodule where the feature was mentioned */ for (j = 0; j < node->module->features_size; j++) { if (!strncmp(name, node->module->features[j].name, nam_len) && !node->module->features[j].name[nam_len]) { /* check status */ if (lyp_check_status(node->flags, lys_node_module(node), node->name, node->module->features[j].flags, node->module->features[j].module, node->module->features[j].name, NULL)) { return -1; } *feature = &node->module->features[j]; return 0; } } } /* search in the identified module ... */ for (j = 0; j < module->features_size; j++) { if (!strncmp(name, module->features[j].name, nam_len) && !module->features[j].name[nam_len]) { /* check status */ if (lyp_check_status(node->flags, lys_node_module(node), node->name, module->features[j].flags, module->features[j].module, module->features[j].name, NULL)) { return -1; } *feature = &module->features[j]; return 0; } } /* ... and all its submodules */ for (i = 0; i < module->inc_size && module->inc[i].submodule; i++) { for (j = 0; j < module->inc[i].submodule->features_size; j++) { if (!strncmp(name, module->inc[i].submodule->features[j].name, nam_len) && !module->inc[i].submodule->features[j].name[nam_len]) { /* check status */ if (lyp_check_status(node->flags, lys_node_module(node), node->name, module->inc[i].submodule->features[j].flags, module->inc[i].submodule->features[j].module, module->inc[i].submodule->features[j].name, NULL)) { return -1; } *feature = &module->inc[i].submodule->features[j]; return 0; } } } /* not found */ str = strndup(feat_name, len); LOGVAL(node->module->ctx, LYE_INRESOLV, LY_VLOG_NONE, NULL, "feature", str); free(str); return 1; } /* * @return * - 1 if enabled * - 0 if disabled */ static int resolve_feature_value(const struct lys_feature *feat) { int i; for (i = 0; i < feat->iffeature_size; i++) { if (!resolve_iffeature(&feat->iffeature[i])) { return 0; } } return feat->flags & LYS_FENABLED ? 1 : 0; } static int resolve_iffeature_recursive(struct lys_iffeature *expr, int *index_e, int *index_f) { uint8_t op; int a, b; op = iff_getop(expr->expr, *index_e); (*index_e)++; switch (op) { case LYS_IFF_F: /* resolve feature */ return resolve_feature_value(expr->features[(*index_f)++]); case LYS_IFF_NOT: /* invert result */ return resolve_iffeature_recursive(expr, index_e, index_f) ? 0 : 1; case LYS_IFF_AND: case LYS_IFF_OR: a = resolve_iffeature_recursive(expr, index_e, index_f); b = resolve_iffeature_recursive(expr, index_e, index_f); if (op == LYS_IFF_AND) { return a && b; } else { /* LYS_IFF_OR */ return a || b; } } return 0; } int resolve_iffeature(struct lys_iffeature *expr) { int index_e = 0, index_f = 0; if (expr->expr) { return resolve_iffeature_recursive(expr, &index_e, &index_f); } return 0; } struct iff_stack { int size; int index; /* first empty item */ uint8_t *stack; }; static int iff_stack_push(struct iff_stack *stack, uint8_t value) { if (stack->index == stack->size) { stack->size += 4; stack->stack = ly_realloc(stack->stack, stack->size * sizeof *stack->stack); LY_CHECK_ERR_RETURN(!stack->stack, LOGMEM(NULL); stack->size = 0, EXIT_FAILURE); } stack->stack[stack->index++] = value; return EXIT_SUCCESS; } static uint8_t iff_stack_pop(struct iff_stack *stack) { stack->index--; return stack->stack[stack->index]; } static void iff_stack_clean(struct iff_stack *stack) { stack->size = 0; free(stack->stack); } static void iff_setop(uint8_t *list, uint8_t op, int pos) { uint8_t *item; uint8_t mask = 3; assert(pos >= 0); assert(op <= 3); /* max 2 bits */ item = &list[pos / 4]; mask = mask << 2 * (pos % 4); *item = (*item) & ~mask; *item = (*item) | (op << 2 * (pos % 4)); } uint8_t iff_getop(uint8_t *list, int pos) { uint8_t *item; uint8_t mask = 3, result; assert(pos >= 0); item = &list[pos / 4]; result = (*item) & (mask << 2 * (pos % 4)); return result >> 2 * (pos % 4); } #define LYS_IFF_LP 0x04 /* ( */ #define LYS_IFF_RP 0x08 /* ) */ /* internal structure for passing data for UNRES_IFFEAT */ struct unres_iffeat_data { struct lys_node *node; const char *fname; int infeature; }; void resolve_iffeature_getsizes(struct lys_iffeature *iffeat, unsigned int *expr_size, unsigned int *feat_size) { unsigned int e = 0, f = 0, r = 0; uint8_t op; assert(iffeat); if (!iffeat->expr) { goto result; } do { op = iff_getop(iffeat->expr, e++); switch (op) { case LYS_IFF_NOT: if (!r) { r += 1; } break; case LYS_IFF_AND: case LYS_IFF_OR: if (!r) { r += 2; } else { r += 1; } break; case LYS_IFF_F: f++; if (r) { r--; } break; } } while(r); result: if (expr_size) { *expr_size = e; } if (feat_size) { *feat_size = f; } } int resolve_iffeature_compile(struct lys_iffeature *iffeat_expr, const char *value, struct lys_node *node, int infeature, struct unres_schema *unres) { const char *c = value; int r, rc = EXIT_FAILURE; int i, j, last_not, checkversion = 0; unsigned int f_size = 0, expr_size = 0, f_exp = 1; uint8_t op; struct iff_stack stack = {0, 0, NULL}; struct unres_iffeat_data *iff_data; struct ly_ctx *ctx = node->module->ctx; assert(c); if (isspace(c[0])) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_NONE, NULL, c[0], c); return EXIT_FAILURE; } /* pre-parse the expression to get sizes for arrays, also do some syntax checks of the expression */ for (i = j = last_not = 0; c[i]; i++) { if (c[i] == '(') { checkversion = 1; j++; continue; } else if (c[i] == ')') { j--; continue; } else if (isspace(c[i])) { continue; } if (!strncmp(&c[i], "not", r = 3) || !strncmp(&c[i], "and", r = 3) || !strncmp(&c[i], "or", r = 2)) { if (c[i + r] == '\0') { LOGVAL(ctx, LYE_INARG, LY_VLOG_NONE, NULL, value, "if-feature"); return EXIT_FAILURE; } else if (!isspace(c[i + r])) { /* feature name starting with the not/and/or */ last_not = 0; f_size++; } else if (c[i] == 'n') { /* not operation */ if (last_not) { /* double not */ expr_size = expr_size - 2; last_not = 0; } else { last_not = 1; } } else { /* and, or */ f_exp++; /* not a not operation */ last_not = 0; } i += r; } else { f_size++; last_not = 0; } expr_size++; while (!isspace(c[i])) { if (!c[i] || c[i] == ')') { i--; break; } i++; } } if (j || f_exp != f_size) { /* not matching count of ( and ) */ LOGVAL(ctx, LYE_INARG, LY_VLOG_NONE, NULL, value, "if-feature"); return EXIT_FAILURE; } if (checkversion || expr_size > 1) { /* check that we have 1.1 module */ if (node->module->version != LYS_VERSION_1_1) { LOGVAL(ctx, LYE_INARG, LY_VLOG_NONE, NULL, value, "if-feature"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "YANG 1.1 if-feature expression found in 1.0 module."); return EXIT_FAILURE; } } /* allocate the memory */ iffeat_expr->expr = calloc((j = (expr_size / 4) + ((expr_size % 4) ? 1 : 0)), sizeof *iffeat_expr->expr); iffeat_expr->features = calloc(f_size, sizeof *iffeat_expr->features); stack.stack = malloc(expr_size * sizeof *stack.stack); LY_CHECK_ERR_GOTO(!stack.stack || !iffeat_expr->expr || !iffeat_expr->features, LOGMEM(ctx), error); stack.size = expr_size; f_size--; expr_size--; /* used as indexes from now */ for (i--; i >= 0; i--) { if (c[i] == ')') { /* push it on stack */ iff_stack_push(&stack, LYS_IFF_RP); continue; } else if (c[i] == '(') { /* pop from the stack into result all operators until ) */ while((op = iff_stack_pop(&stack)) != LYS_IFF_RP) { iff_setop(iffeat_expr->expr, op, expr_size--); } continue; } else if (isspace(c[i])) { continue; } /* end operator or operand -> find beginning and get what is it */ j = i + 1; while (i >= 0 && !isspace(c[i]) && c[i] != '(') { i--; } i++; /* get back by one step */ if (!strncmp(&c[i], "not", 3) && isspace(c[i + 3])) { if (stack.index && stack.stack[stack.index - 1] == LYS_IFF_NOT) { /* double not */ iff_stack_pop(&stack); } else { /* not has the highest priority, so do not pop from the stack * as in case of AND and OR */ iff_stack_push(&stack, LYS_IFF_NOT); } } else if (!strncmp(&c[i], "and", 3) && isspace(c[i + 3])) { /* as for OR - pop from the stack all operators with the same or higher * priority and store them to the result, then push the AND to the stack */ while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_AND) { op = iff_stack_pop(&stack); iff_setop(iffeat_expr->expr, op, expr_size--); } iff_stack_push(&stack, LYS_IFF_AND); } else if (!strncmp(&c[i], "or", 2) && isspace(c[i + 2])) { while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_OR) { op = iff_stack_pop(&stack); iff_setop(iffeat_expr->expr, op, expr_size--); } iff_stack_push(&stack, LYS_IFF_OR); } else { /* feature name, length is j - i */ /* add it to the result */ iff_setop(iffeat_expr->expr, LYS_IFF_F, expr_size--); /* now get the link to the feature definition. Since it can be * forward referenced, we have to keep the feature name in auxiliary * structure passed into unres */ iff_data = malloc(sizeof *iff_data); LY_CHECK_ERR_GOTO(!iff_data, LOGMEM(ctx), error); iff_data->node = node; iff_data->fname = lydict_insert(node->module->ctx, &c[i], j - i); iff_data->infeature = infeature; r = unres_schema_add_node(node->module, unres, &iffeat_expr->features[f_size], UNRES_IFFEAT, (struct lys_node *)iff_data); f_size--; if (r == -1) { lydict_remove(node->module->ctx, iff_data->fname); free(iff_data); goto error; } } } while (stack.index) { op = iff_stack_pop(&stack); iff_setop(iffeat_expr->expr, op, expr_size--); } if (++expr_size || ++f_size) { /* not all expected operators and operands found */ LOGVAL(ctx, LYE_INARG, LY_VLOG_NONE, NULL, value, "if-feature"); rc = EXIT_FAILURE; } else { rc = EXIT_SUCCESS; } error: /* cleanup */ iff_stack_clean(&stack); return rc; } /** * @brief Resolve (find) a data node based on a schema-nodeid. * * Used for resolving unique statements - so id is expected to be relative and local (without reference to a different * module). * */ struct lyd_node * resolve_data_descendant_schema_nodeid(const char *nodeid, struct lyd_node *start) { char *str, *token, *p; struct lyd_node *result = NULL, *iter; const struct lys_node *schema = NULL; assert(nodeid && start); if (nodeid[0] == '/') { return NULL; } str = p = strdup(nodeid); LY_CHECK_ERR_RETURN(!str, LOGMEM(start->schema->module->ctx), NULL); while (p) { token = p; p = strchr(p, '/'); if (p) { *p = '\0'; p++; } if (p) { /* inner node */ if (resolve_descendant_schema_nodeid(token, schema ? schema->child : start->schema, LYS_CONTAINER | LYS_CHOICE | LYS_CASE | LYS_LEAF, 0, &schema) || !schema) { result = NULL; break; } if (schema->nodetype & (LYS_CHOICE | LYS_CASE)) { continue; } } else { /* final node */ if (resolve_descendant_schema_nodeid(token, schema ? schema->child : start->schema, LYS_LEAF, 0, &schema) || !schema) { result = NULL; break; } } LY_TREE_FOR(result ? result->child : start, iter) { if (iter->schema == schema) { /* move in data tree according to returned schema */ result = iter; break; } } if (!iter) { /* instance not found */ result = NULL; break; } } free(str); return result; } int schema_nodeid_siblingcheck(const struct lys_node *sibling, const struct lys_module *cur_module, const char *mod_name, int mod_name_len, const char *name, int nam_len) { const struct lys_module *prefix_mod; /* handle special names */ if (name[0] == '*') { return 2; } else if (name[0] == '.') { return 3; } /* name check */ if (strncmp(name, sibling->name, nam_len) || sibling->name[nam_len]) { return 1; } /* module check */ if (mod_name) { prefix_mod = lyp_get_module(cur_module, NULL, 0, mod_name, mod_name_len, 0); if (!prefix_mod) { return -1; } } else { prefix_mod = cur_module; } if (prefix_mod != lys_node_module(sibling)) { return 1; } /* match */ return 0; } /* keys do not have to be ordered and do not have to be all of them */ static int resolve_extended_schema_nodeid_predicate(const char *nodeid, const struct lys_node *node, const struct lys_module *cur_module, int *nodeid_end) { int mod_len, nam_len, has_predicate, r, i; const char *model, *name; struct lys_node_list *list; if (!(node->nodetype & (LYS_LIST | LYS_LEAFLIST))) { return 1; } list = (struct lys_node_list *)node; do { r = parse_schema_json_predicate(nodeid, &model, &mod_len, &name, &nam_len, NULL, NULL, &has_predicate); if (r < 1) { LOGVAL(cur_module->ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, nodeid[r], &nodeid[r]); return -1; } nodeid += r; if (node->nodetype == LYS_LEAFLIST) { /* just check syntax */ if (model || !name || (name[0] != '.') || has_predicate) { return 1; } break; } else { /* check the key */ for (i = 0; i < list->keys_size; ++i) { if (strncmp(list->keys[i]->name, name, nam_len) || list->keys[i]->name[nam_len]) { continue; } if (model) { if (strncmp(lys_node_module((struct lys_node *)list->keys[i])->name, model, mod_len) || lys_node_module((struct lys_node *)list->keys[i])->name[mod_len]) { continue; } } else { if (lys_node_module((struct lys_node *)list->keys[i]) != cur_module) { continue; } } /* match */ break; } if (i == list->keys_size) { return 1; } } } while (has_predicate); if (!nodeid[0]) { *nodeid_end = 1; } return 0; } /* start_parent - relative, module - absolute, -1 error (logged), EXIT_SUCCESS ok */ int resolve_schema_nodeid(const char *nodeid, const struct lys_node *start_parent, const struct lys_module *cur_module, struct ly_set **ret, int extended, int no_node_error) { const char *name, *mod_name, *id, *backup_mod_name = NULL, *yang_data_name = NULL; const struct lys_node *sibling, *next, *elem; struct lys_node_augment *last_aug; int r, nam_len, mod_name_len = 0, is_relative = -1, all_desc, has_predicate, nodeid_end = 0; int yang_data_name_len, backup_mod_name_len = 0; /* resolved import module from the start module, it must match the next node-name-match sibling */ const struct lys_module *start_mod, *aux_mod = NULL; char *str; struct ly_ctx *ctx; assert(nodeid && (start_parent || cur_module) && ret); *ret = NULL; if (!cur_module) { cur_module = lys_node_module(start_parent); } ctx = cur_module->ctx; id = nodeid; r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL, NULL, 1); if (r < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[r], &id[r]); return -1; } if (name[0] == '#') { if (is_relative) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, '#', name); return -1; } yang_data_name = name + 1; yang_data_name_len = nam_len - 1; backup_mod_name = mod_name; backup_mod_name_len = mod_name_len; id += r; } else { is_relative = -1; } r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, &has_predicate, (extended ? &all_desc : NULL), extended); if (r < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[r], &id[r]); return -1; } id += r; if (backup_mod_name) { mod_name = backup_mod_name; mod_name_len = backup_mod_name_len; } if (is_relative && !start_parent) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_STR, nodeid, "Starting node must be provided for relative paths."); return -1; } /* descendant-schema-nodeid */ if (is_relative) { cur_module = start_mod = lys_node_module(start_parent); /* absolute-schema-nodeid */ } else { start_mod = lyp_get_module(cur_module, NULL, 0, mod_name, mod_name_len, 0); if (!start_mod) { str = strndup(mod_name, mod_name_len); LOGVAL(ctx, LYE_PATH_INMOD, LY_VLOG_STR, str); free(str); return -1; } start_parent = NULL; if (yang_data_name) { start_parent = lyp_get_yang_data_template(start_mod, yang_data_name, yang_data_name_len); if (!start_parent) { str = strndup(nodeid, (yang_data_name + yang_data_name_len) - nodeid); LOGVAL(ctx, LYE_PATH_INNODE, LY_VLOG_STR, str); free(str); return -1; } } } while (1) { sibling = NULL; last_aug = NULL; if (start_parent) { if (mod_name && (strncmp(mod_name, cur_module->name, mod_name_len) || (mod_name_len != (signed)strlen(cur_module->name)))) { /* we are getting into another module (augment) */ aux_mod = lyp_get_module(cur_module, NULL, 0, mod_name, mod_name_len, 0); if (!aux_mod) { str = strndup(mod_name, mod_name_len); LOGVAL(ctx, LYE_PATH_INMOD, LY_VLOG_STR, str); free(str); return -1; } } else { /* there is no mod_name, so why are we checking augments again? * because this module may be not implemented and it augments something in another module and * there is another augment augmenting that previous one */ aux_mod = cur_module; } /* look into augments */ if (!extended) { get_next_augment: last_aug = lys_getnext_target_aug(last_aug, aux_mod, start_parent); } } while ((sibling = lys_getnext(sibling, (last_aug ? (struct lys_node *)last_aug : start_parent), start_mod, LYS_GETNEXT_WITHCHOICE | LYS_GETNEXT_WITHCASE | LYS_GETNEXT_WITHINOUT | LYS_GETNEXT_PARENTUSES | LYS_GETNEXT_NOSTATECHECK))) { r = schema_nodeid_siblingcheck(sibling, cur_module, mod_name, mod_name_len, name, nam_len); /* resolve predicate */ if (extended && ((r == 0) || (r == 2) || (r == 3)) && has_predicate) { r = resolve_extended_schema_nodeid_predicate(id, sibling, cur_module, &nodeid_end); if (r == 1) { continue; } else if (r == -1) { return -1; } } else if (!id[0]) { nodeid_end = 1; } if (r == 0) { /* one matching result */ if (nodeid_end) { *ret = ly_set_new(); LY_CHECK_ERR_RETURN(!*ret, LOGMEM(ctx), -1); ly_set_add(*ret, (void *)sibling, LY_SET_OPT_USEASLIST); } else { if (sibling->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { return -1; } start_parent = sibling; } break; } else if (r == 1) { continue; } else if (r == 2) { /* "*" */ if (!*ret) { *ret = ly_set_new(); LY_CHECK_ERR_RETURN(!*ret, LOGMEM(ctx), -1); } ly_set_add(*ret, (void *)sibling, LY_SET_OPT_USEASLIST); if (all_desc) { LY_TREE_DFS_BEGIN(sibling, next, elem) { if (elem != sibling) { ly_set_add(*ret, (void *)elem, LY_SET_OPT_USEASLIST); } LY_TREE_DFS_END(sibling, next, elem); } } } else if (r == 3) { /* "." */ if (!*ret) { *ret = ly_set_new(); LY_CHECK_ERR_RETURN(!*ret, LOGMEM(ctx), -1); ly_set_add(*ret, (void *)start_parent, LY_SET_OPT_USEASLIST); } ly_set_add(*ret, (void *)sibling, LY_SET_OPT_USEASLIST); if (all_desc) { LY_TREE_DFS_BEGIN(sibling, next, elem) { if (elem != sibling) { ly_set_add(*ret, (void *)elem, LY_SET_OPT_USEASLIST); } LY_TREE_DFS_END(sibling, next, elem); } } } else { LOGINT(ctx); return -1; } } /* skip predicate */ if (extended && has_predicate) { while (id[0] == '[') { id = strchr(id, ']'); if (!id) { LOGINT(ctx); return -1; } ++id; } } if (nodeid_end && ((r == 0) || (r == 2) || (r == 3))) { return EXIT_SUCCESS; } /* no match */ if (!sibling) { if (last_aug) { /* it still could be in another augment */ goto get_next_augment; } if (no_node_error) { str = strndup(nodeid, (name - nodeid) + nam_len); LOGVAL(ctx, LYE_PATH_INNODE, LY_VLOG_STR, str); free(str); return -1; } *ret = NULL; return EXIT_SUCCESS; } r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, &has_predicate, (extended ? &all_desc : NULL), extended); if (r < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[r], &id[r]); return -1; } id += r; } /* cannot get here */ LOGINT(ctx); return -1; } /* unique, refine, * >0 - unexpected char on position (ret - 1), * 0 - ok (but ret can still be NULL), * -1 - error, * -2 - violated no_innerlist */ int resolve_descendant_schema_nodeid(const char *nodeid, const struct lys_node *start, int ret_nodetype, int no_innerlist, const struct lys_node **ret) { const char *name, *mod_name, *id; const struct lys_node *sibling, *start_parent; int r, nam_len, mod_name_len, is_relative = -1; /* resolved import module from the start module, it must match the next node-name-match sibling */ const struct lys_module *module; assert(nodeid && ret); assert(!(ret_nodetype & (LYS_USES | LYS_AUGMENT | LYS_GROUPING))); if (!start) { /* leaf not found */ return 0; } id = nodeid; module = lys_node_module(start); if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL, NULL, 0)) < 1) { return ((id - nodeid) - r) + 1; } id += r; if (!is_relative) { return -1; } start_parent = lys_parent(start); while ((start_parent->nodetype == LYS_USES) && lys_parent(start_parent)) { start_parent = lys_parent(start_parent); } while (1) { sibling = NULL; while ((sibling = lys_getnext(sibling, start_parent, module, LYS_GETNEXT_WITHCHOICE | LYS_GETNEXT_WITHCASE | LYS_GETNEXT_PARENTUSES | LYS_GETNEXT_NOSTATECHECK))) { r = schema_nodeid_siblingcheck(sibling, module, mod_name, mod_name_len, name, nam_len); if (r == 0) { if (!id[0]) { if (!(sibling->nodetype & ret_nodetype)) { /* wrong node type, too bad */ continue; } *ret = sibling; return EXIT_SUCCESS; } start_parent = sibling; break; } else if (r == 1) { continue; } else { return -1; } } /* no match */ if (!sibling) { *ret = NULL; return EXIT_SUCCESS; } else if (no_innerlist && sibling->nodetype == LYS_LIST) { *ret = NULL; return -2; } if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL, NULL, 0)) < 1) { return ((id - nodeid) - r) + 1; } id += r; } /* cannot get here */ LOGINT(module->ctx); return -1; } /* choice default */ int resolve_choice_default_schema_nodeid(const char *nodeid, const struct lys_node *start, const struct lys_node **ret) { /* cannot actually be a path */ if (strchr(nodeid, '/')) { return -1; } return resolve_descendant_schema_nodeid(nodeid, start, LYS_NO_RPC_NOTIF_NODE, 0, ret); } /* uses, -1 error, EXIT_SUCCESS ok (but ret can still be NULL), >0 unexpected char on ret - 1 */ static int resolve_uses_schema_nodeid(const char *nodeid, const struct lys_node *start, const struct lys_node_grp **ret) { const struct lys_module *module; const char *mod_prefix, *name; int i, mod_prefix_len, nam_len; /* parse the identifier, it must be parsed on one call */ if (((i = parse_node_identifier(nodeid, &mod_prefix, &mod_prefix_len, &name, &nam_len, NULL, 0)) < 1) || nodeid[i]) { return -i + 1; } module = lyp_get_module(start->module, mod_prefix, mod_prefix_len, NULL, 0, 0); if (!module) { return -1; } if (module != lys_main_module(start->module)) { start = module->data; } *ret = lys_find_grouping_up(name, (struct lys_node *)start); return EXIT_SUCCESS; } int resolve_absolute_schema_nodeid(const char *nodeid, const struct lys_module *module, int ret_nodetype, const struct lys_node **ret) { const char *name, *mod_name, *id; const struct lys_node *sibling, *start_parent; int r, nam_len, mod_name_len, is_relative = -1; const struct lys_module *abs_start_mod; assert(nodeid && module && ret); assert(!(ret_nodetype & (LYS_USES | LYS_AUGMENT)) && ((ret_nodetype == LYS_GROUPING) || !(ret_nodetype & LYS_GROUPING))); id = nodeid; start_parent = NULL; if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL, NULL, 0)) < 1) { return ((id - nodeid) - r) + 1; } id += r; if (is_relative) { return -1; } abs_start_mod = lyp_get_module(module, NULL, 0, mod_name, mod_name_len, 0); if (!abs_start_mod) { return -1; } while (1) { sibling = NULL; while ((sibling = lys_getnext(sibling, start_parent, abs_start_mod, LYS_GETNEXT_WITHCHOICE | LYS_GETNEXT_WITHCASE | LYS_GETNEXT_WITHINOUT | LYS_GETNEXT_WITHGROUPING | LYS_GETNEXT_NOSTATECHECK))) { r = schema_nodeid_siblingcheck(sibling, module, mod_name, mod_name_len, name, nam_len); if (r == 0) { if (!id[0]) { if (!(sibling->nodetype & ret_nodetype)) { /* wrong node type, too bad */ continue; } *ret = sibling; return EXIT_SUCCESS; } start_parent = sibling; break; } else if (r == 1) { continue; } else { return -1; } } /* no match */ if (!sibling) { *ret = NULL; return EXIT_SUCCESS; } if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL, NULL, 0)) < 1) { return ((id - nodeid) - r) + 1; } id += r; } /* cannot get here */ LOGINT(module->ctx); return -1; } static int resolve_json_schema_list_predicate(const char *predicate, const struct lys_node_list *list, int *parsed) { const char *mod_name, *name; int mod_name_len, nam_len, has_predicate, i; struct lys_node *key; if (((i = parse_schema_json_predicate(predicate, &mod_name, &mod_name_len, &name, &nam_len, NULL, NULL, &has_predicate)) < 1) || !strncmp(name, ".", nam_len)) { LOGVAL(list->module->ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, predicate[-i], &predicate[-i]); return -1; } predicate += i; *parsed += i; if (!isdigit(name[0])) { for (i = 0; i < list->keys_size; ++i) { key = (struct lys_node *)list->keys[i]; if (!strncmp(key->name, name, nam_len) && !key->name[nam_len]) { break; } } if (i == list->keys_size) { LOGVAL(list->module->ctx, LYE_PATH_INKEY, LY_VLOG_NONE, NULL, name); return -1; } } /* more predicates? */ if (has_predicate) { return resolve_json_schema_list_predicate(predicate, list, parsed); } return 0; } /* cannot return LYS_GROUPING, LYS_AUGMENT, LYS_USES, logs directly */ const struct lys_node * resolve_json_nodeid(const char *nodeid, struct ly_ctx *ctx, const struct lys_node *start, int output) { char *str; const char *name, *mod_name, *id, *backup_mod_name = NULL, *yang_data_name = NULL; const struct lys_node *sibling, *start_parent, *parent; int r, nam_len, mod_name_len, is_relative = -1, has_predicate; int yang_data_name_len, backup_mod_name_len; /* resolved import module from the start module, it must match the next node-name-match sibling */ const struct lys_module *prefix_mod, *module, *prev_mod; assert(nodeid && (ctx || start)); if (!ctx) { ctx = start->module->ctx; } id = nodeid; if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL, NULL, 1)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[-r], &id[-r]); return NULL; } if (name[0] == '#') { if (is_relative) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, '#', name); return NULL; } yang_data_name = name + 1; yang_data_name_len = nam_len - 1; backup_mod_name = mod_name; backup_mod_name_len = mod_name_len; id += r; } else { is_relative = -1; } if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, &has_predicate, NULL, 0)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[-r], &id[-r]); return NULL; } id += r; if (backup_mod_name) { mod_name = backup_mod_name; mod_name_len = backup_mod_name_len; } if (is_relative) { assert(start); start_parent = start; while (start_parent && (start_parent->nodetype == LYS_USES)) { start_parent = lys_parent(start_parent); } module = start->module; } else { if (!mod_name) { str = strndup(nodeid, (name + nam_len) - nodeid); LOGVAL(ctx, LYE_PATH_MISSMOD, LY_VLOG_STR, nodeid); free(str); return NULL; } str = strndup(mod_name, mod_name_len); module = ly_ctx_get_module(ctx, str, NULL, 1); free(str); if (!module) { str = strndup(nodeid, (mod_name + mod_name_len) - nodeid); LOGVAL(ctx, LYE_PATH_INMOD, LY_VLOG_STR, str); free(str); return NULL; } start_parent = NULL; if (yang_data_name) { start_parent = lyp_get_yang_data_template(module, yang_data_name, yang_data_name_len); if (!start_parent) { str = strndup(nodeid, (yang_data_name + yang_data_name_len) - nodeid); LOGVAL(ctx, LYE_PATH_INNODE, LY_VLOG_STR, str); free(str); return NULL; } } /* now it's as if there was no module name */ mod_name = NULL; mod_name_len = 0; } prev_mod = module; while (1) { sibling = NULL; while ((sibling = lys_getnext(sibling, start_parent, module, 0))) { /* name match */ if (sibling->name && !strncmp(name, sibling->name, nam_len) && !sibling->name[nam_len]) { /* output check */ for (parent = lys_parent(sibling); parent && !(parent->nodetype & (LYS_INPUT | LYS_OUTPUT)); parent = lys_parent(parent)); if (parent) { if (output && (parent->nodetype == LYS_INPUT)) { continue; } else if (!output && (parent->nodetype == LYS_OUTPUT)) { continue; } } /* module check */ if (mod_name) { /* will also find an augment module */ prefix_mod = ly_ctx_nget_module(ctx, mod_name, mod_name_len, NULL, 1); if (!prefix_mod) { str = strndup(nodeid, (mod_name + mod_name_len) - nodeid); LOGVAL(ctx, LYE_PATH_INMOD, LY_VLOG_STR, str); free(str); return NULL; } } else { prefix_mod = prev_mod; } if (prefix_mod != lys_node_module(sibling)) { continue; } /* do we have some predicates on it? */ if (has_predicate) { r = 0; if (sibling->nodetype & (LYS_LEAF | LYS_LEAFLIST)) { if ((r = parse_schema_json_predicate(id, NULL, NULL, NULL, NULL, NULL, NULL, &has_predicate)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[-r], &id[-r]); return NULL; } } else if (sibling->nodetype == LYS_LIST) { if (resolve_json_schema_list_predicate(id, (const struct lys_node_list *)sibling, &r)) { return NULL; } } else { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[0], id); return NULL; } id += r; } /* the result node? */ if (!id[0]) { return sibling; } /* move down the tree, if possible */ if (sibling->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[0], id); return NULL; } start_parent = sibling; /* update prev mod */ prev_mod = (start_parent->child ? lys_node_module(start_parent->child) : module); break; } } /* no match */ if (!sibling) { str = strndup(nodeid, (name + nam_len) - nodeid); LOGVAL(ctx, LYE_PATH_INNODE, LY_VLOG_STR, str); free(str); return NULL; } if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, &has_predicate, NULL, 0)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[-r], &id[-r]); return NULL; } id += r; } /* cannot get here */ LOGINT(ctx); return NULL; } static int resolve_partial_json_data_list_predicate(struct parsed_pred pp, struct lyd_node *node, int position) { uint16_t i; struct lyd_node_leaf_list *key; struct lys_node_list *slist; struct ly_ctx *ctx; assert(node); assert(node->schema->nodetype == LYS_LIST); assert(pp.len); ctx = node->schema->module->ctx; slist = (struct lys_node_list *)node->schema; /* is the predicate a number? */ if (isdigit(pp.pred[0].name[0])) { if (position == atoi(pp.pred[0].name)) { /* match */ return 0; } else { /* not a match */ return 1; } } key = (struct lyd_node_leaf_list *)node->child; if (!key) { /* it is not a position, so we need a key for it to be a match */ return 1; } /* go through all the keys */ for (i = 0; i < slist->keys_size; ++i) { if (strncmp(key->schema->name, pp.pred[i].name, pp.pred[i].nam_len) || key->schema->name[pp.pred[i].nam_len]) { LOGVAL(ctx, LYE_PATH_INKEY, LY_VLOG_NONE, NULL, pp.pred[i].name); return -1; } if (pp.pred[i].mod_name) { /* specific module, check that the found key is from that module */ if (strncmp(lyd_node_module((struct lyd_node *)key)->name, pp.pred[i].mod_name, pp.pred[i].mod_name_len) || lyd_node_module((struct lyd_node *)key)->name[pp.pred[i].mod_name_len]) { LOGVAL(ctx, LYE_PATH_INKEY, LY_VLOG_NONE, NULL, pp.pred[i].name); return -1; } /* but if the module is the same as the parent, it should have been omitted */ if (lyd_node_module((struct lyd_node *)key) == lyd_node_module(node)) { LOGVAL(ctx, LYE_PATH_INKEY, LY_VLOG_NONE, NULL, pp.pred[i].name); return -1; } } else { /* no module, so it must be the same as the list (parent) */ if (lyd_node_module((struct lyd_node *)key) != lyd_node_module(node)) { LOGVAL(ctx, LYE_PATH_INKEY, LY_VLOG_NONE, NULL, pp.pred[i].name); return -1; } } /* value does not match */ if (strncmp(key->value_str, pp.pred[i].value, pp.pred[i].val_len) || key->value_str[pp.pred[i].val_len]) { return 1; } key = (struct lyd_node_leaf_list *)key->next; } return 0; } /** * @brief get the closest parent of the node (or the node itself) identified by the nodeid (path) * * @param[in] nodeid Node data path to find * @param[in] llist_value If the \p nodeid identifies leaf-list, this is expected value of the leaf-list instance. * @param[in] options Bitmask of options flags, see @ref pathoptions. * @param[out] parsed Number of characters processed in \p id * @return The closes parent (or the node itself) from the path */ struct lyd_node * resolve_partial_json_data_nodeid(const char *nodeid, const char *llist_value, struct lyd_node *start, int options, int *parsed) { const char *id, *mod_name, *name, *data_val, *llval; int r, ret, mod_name_len, nam_len, is_relative = -1, list_instance_position; int has_predicate, last_parsed = 0, llval_len; struct lyd_node *sibling, *last_match = NULL; struct lyd_node_leaf_list *llist; const struct lys_module *prev_mod; struct ly_ctx *ctx; const struct lys_node *ssibling, *sparent; struct lys_node_list *slist; struct parsed_pred pp; assert(nodeid && start && parsed); memset(&pp, 0, sizeof pp); ctx = start->schema->module->ctx; id = nodeid; /* parse first nodeid in case it is yang-data extension */ if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL, NULL, 1)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[-r], &id[-r]); goto error; } if (name[0] == '#') { if (is_relative) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, '#', name); goto error; } id += r; last_parsed = r; } else { is_relative = -1; } /* parse first nodeid */ if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, &has_predicate, NULL, 0)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[-r], &id[-r]); goto error; } id += r; /* add it to parsed only after the data node was actually found */ last_parsed += r; if (is_relative) { prev_mod = lyd_node_module(start); start = start->child; } else { for (; start->parent; start = start->parent); prev_mod = lyd_node_module(start); } /* do not duplicate code, use predicate parsing from the loop */ goto parse_predicates; while (1) { /* find the correct schema node first */ ssibling = NULL; sparent = (start && start->parent) ? start->parent->schema : NULL; while ((ssibling = lys_getnext(ssibling, sparent, prev_mod, 0))) { /* skip invalid input/output nodes */ if (sparent && (sparent->nodetype & (LYS_RPC | LYS_ACTION))) { if (options & LYD_PATH_OPT_OUTPUT) { if (lys_parent(ssibling)->nodetype == LYS_INPUT) { continue; } } else { if (lys_parent(ssibling)->nodetype == LYS_OUTPUT) { continue; } } } if (!schema_nodeid_siblingcheck(ssibling, prev_mod, mod_name, mod_name_len, name, nam_len)) { break; } } if (!ssibling) { /* there is not even such a schema node */ free(pp.pred); return last_match; } pp.schema = ssibling; /* unify leaf-list value - it is possible to specify last-node value as both a predicate or parameter if * is a leaf-list, unify both cases and the value will in both cases be in the predicate structure */ if (!id[0] && !pp.len && (ssibling->nodetype == LYS_LEAFLIST)) { pp.len = 1; pp.pred = calloc(1, sizeof *pp.pred); LY_CHECK_ERR_GOTO(!pp.pred, LOGMEM(ctx), error); pp.pred[0].name = "."; pp.pred[0].nam_len = 1; pp.pred[0].value = (llist_value ? llist_value : ""); pp.pred[0].val_len = strlen(pp.pred[0].value); } if (ssibling->nodetype & (LYS_LEAFLIST | LYS_LEAF)) { /* check leaf/leaf-list predicate */ if (pp.len > 1) { LOGVAL(ctx, LYE_PATH_PREDTOOMANY, LY_VLOG_NONE, NULL); goto error; } else if (pp.len) { if ((pp.pred[0].name[0] != '.') || (pp.pred[0].nam_len != 1)) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, pp.pred[0].name[0], pp.pred[0].name); goto error; } if ((((struct lys_node_leaf *)ssibling)->type.base == LY_TYPE_IDENT) && !strnchr(pp.pred[0].value, ':', pp.pred[0].val_len)) { LOGVAL(ctx, LYE_PATH_INIDENTREF, LY_VLOG_LYS, ssibling, pp.pred[0].val_len, pp.pred[0].value); goto error; } } } else if (ssibling->nodetype == LYS_LIST) { /* list should have predicates for all the keys or position */ slist = (struct lys_node_list *)ssibling; if (!pp.len) { /* none match */ return last_match; } else if (!isdigit(pp.pred[0].name[0])) { /* list predicate is not a position, so there must be all the keys */ if (pp.len > slist->keys_size) { LOGVAL(ctx, LYE_PATH_PREDTOOMANY, LY_VLOG_NONE, NULL); goto error; } else if (pp.len < slist->keys_size) { LOGVAL(ctx, LYE_PATH_MISSKEY, LY_VLOG_NONE, NULL, slist->keys[pp.len]->name); goto error; } /* check that all identityrefs have module name, otherwise the hash of the list instance will never match!! */ for (r = 0; r < pp.len; ++r) { if ((slist->keys[r]->type.base == LY_TYPE_IDENT) && !strnchr(pp.pred[r].value, ':', pp.pred[r].val_len)) { LOGVAL(ctx, LYE_PATH_INIDENTREF, LY_VLOG_LYS, slist->keys[r], pp.pred[r].val_len, pp.pred[r].value); goto error; } } } } else if (pp.pred) { /* no other nodes allow predicates */ LOGVAL(ctx, LYE_PATH_PREDTOOMANY, LY_VLOG_NONE, NULL); goto error; } #ifdef LY_ENABLED_CACHE /* we will not be matching keyless lists or state leaf-lists this way */ if (start->parent && start->parent->ht && ((pp.schema->nodetype != LYS_LIST) || ((struct lys_node_list *)pp.schema)->keys_size) && ((pp.schema->nodetype != LYS_LEAFLIST) || (pp.schema->flags & LYS_CONFIG_W))) { sibling = resolve_json_data_node_hash(start->parent, pp); } else #endif { list_instance_position = 0; LY_TREE_FOR(start, sibling) { /* RPC/action data check, return simply invalid argument, because the data tree is invalid */ if (lys_parent(sibling->schema)) { if (options & LYD_PATH_OPT_OUTPUT) { if (lys_parent(sibling->schema)->nodetype == LYS_INPUT) { LOGERR(ctx, LY_EINVAL, "Provided data tree includes some RPC input nodes (%s).", sibling->schema->name); goto error; } } else { if (lys_parent(sibling->schema)->nodetype == LYS_OUTPUT) { LOGERR(ctx, LY_EINVAL, "Provided data tree includes some RPC output nodes (%s).", sibling->schema->name); goto error; } } } if (sibling->schema != ssibling) { /* wrong schema node */ continue; } /* leaf-list, did we find it with the correct value or not? */ if (ssibling->nodetype == LYS_LEAFLIST) { if (ssibling->flags & LYS_CONFIG_R) { /* state leaf-lists will never match */ continue; } llist = (struct lyd_node_leaf_list *)sibling; /* get the expected leaf-list value */ llval = NULL; llval_len = 0; if (pp.pred) { /* it was already checked that it is correct */ llval = pp.pred[0].value; llval_len = pp.pred[0].val_len; } /* make value canonical (remove module name prefix) unless it was specified with it */ if (llval && !strchr(llval, ':') && (llist->value_type & LY_TYPE_IDENT) && !strncmp(llist->value_str, lyd_node_module(sibling)->name, strlen(lyd_node_module(sibling)->name)) && (llist->value_str[strlen(lyd_node_module(sibling)->name)] == ':')) { data_val = llist->value_str + strlen(lyd_node_module(sibling)->name) + 1; } else { data_val = llist->value_str; } if ((!llval && data_val && data_val[0]) || (llval && (strncmp(llval, data_val, llval_len) || data_val[llval_len]))) { continue; } } else if (ssibling->nodetype == LYS_LIST) { /* list, we likely need predicates'n'stuff then, but if without a predicate, we are always creating it */ ++list_instance_position; ret = resolve_partial_json_data_list_predicate(pp, sibling, list_instance_position); if (ret == -1) { goto error; } else if (ret == 1) { /* this list instance does not match */ continue; } } break; } } /* no match, return last match */ if (!sibling) { free(pp.pred); return last_match; } /* we found a next matching node */ *parsed += last_parsed; last_match = sibling; prev_mod = lyd_node_module(sibling); /* the result node? */ if (!id[0]) { free(pp.pred); return last_match; } /* move down the tree, if possible, and continue */ if (ssibling->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { /* there can be no children even through expected, error */ LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[0], id); goto error; } else if (!sibling->child) { /* there could be some children, but are not, return what we found so far */ free(pp.pred); return last_match; } start = sibling->child; /* parse nodeid */ if ((r = parse_schema_nodeid(id, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, &has_predicate, NULL, 0)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[-r], &id[-r]); goto error; } id += r; last_parsed = r; parse_predicates: /* parse all the predicates */ free(pp.pred); pp.schema = NULL; pp.len = 0; pp.pred = NULL; while (has_predicate) { ++pp.len; pp.pred = ly_realloc(pp.pred, pp.len * sizeof *pp.pred); LY_CHECK_ERR_GOTO(!pp.pred, LOGMEM(ctx), error); if ((r = parse_schema_json_predicate(id, &pp.pred[pp.len - 1].mod_name, &pp.pred[pp.len - 1].mod_name_len, &pp.pred[pp.len - 1].name, &pp.pred[pp.len - 1].nam_len, &pp.pred[pp.len - 1].value, &pp.pred[pp.len - 1].val_len, &has_predicate)) < 1) { LOGVAL(ctx, LYE_PATH_INCHAR, LY_VLOG_NONE, NULL, id[0], id); goto error; } id += r; last_parsed += r; } } error: *parsed = -1; free(pp.pred); return NULL; } /** * @brief Resolves length or range intervals. Does not log. * Syntax is assumed to be correct, *ret MUST be NULL. * * @param[in] ctx Context for errors. * @param[in] str_restr Restriction as a string. * @param[in] type Type of the restriction. * @param[out] ret Final interval structure that starts with * the interval of the initial type, continues with intervals * of any superior types derived from the initial one, and * finishes with intervals from our \p type. * * @return EXIT_SUCCESS on succes, -1 on error. */ int resolve_len_ran_interval(struct ly_ctx *ctx, const char *str_restr, struct lys_type *type, struct len_ran_intv **ret) { /* 0 - unsigned, 1 - signed, 2 - floating point */ int kind; int64_t local_smin = 0, local_smax = 0, local_fmin, local_fmax; uint64_t local_umin, local_umax = 0; uint8_t local_fdig = 0; const char *seg_ptr, *ptr; struct len_ran_intv *local_intv = NULL, *tmp_local_intv = NULL, *tmp_intv, *intv = NULL; switch (type->base) { case LY_TYPE_BINARY: kind = 0; local_umin = 0; local_umax = 18446744073709551615UL; if (!str_restr && type->info.binary.length) { str_restr = type->info.binary.length->expr; } break; case LY_TYPE_DEC64: kind = 2; local_fmin = __INT64_C(-9223372036854775807) - __INT64_C(1); local_fmax = __INT64_C(9223372036854775807); local_fdig = type->info.dec64.dig; if (!str_restr && type->info.dec64.range) { str_restr = type->info.dec64.range->expr; } break; case LY_TYPE_INT8: kind = 1; local_smin = __INT64_C(-128); local_smax = __INT64_C(127); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_INT16: kind = 1; local_smin = __INT64_C(-32768); local_smax = __INT64_C(32767); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_INT32: kind = 1; local_smin = __INT64_C(-2147483648); local_smax = __INT64_C(2147483647); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_INT64: kind = 1; local_smin = __INT64_C(-9223372036854775807) - __INT64_C(1); local_smax = __INT64_C(9223372036854775807); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_UINT8: kind = 0; local_umin = __UINT64_C(0); local_umax = __UINT64_C(255); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_UINT16: kind = 0; local_umin = __UINT64_C(0); local_umax = __UINT64_C(65535); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_UINT32: kind = 0; local_umin = __UINT64_C(0); local_umax = __UINT64_C(4294967295); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_UINT64: kind = 0; local_umin = __UINT64_C(0); local_umax = __UINT64_C(18446744073709551615); if (!str_restr && type->info.num.range) { str_restr = type->info.num.range->expr; } break; case LY_TYPE_STRING: kind = 0; local_umin = __UINT64_C(0); local_umax = __UINT64_C(18446744073709551615); if (!str_restr && type->info.str.length) { str_restr = type->info.str.length->expr; } break; default: return -1; } /* process superior types */ if (type->der) { if (resolve_len_ran_interval(ctx, NULL, &type->der->type, &intv)) { return -1; } assert(!intv || (intv->kind == kind)); } if (!str_restr) { /* we do not have any restriction, return superior ones */ *ret = intv; return EXIT_SUCCESS; } /* adjust local min and max */ if (intv) { tmp_intv = intv; if (kind == 0) { local_umin = tmp_intv->value.uval.min; } else if (kind == 1) { local_smin = tmp_intv->value.sval.min; } else if (kind == 2) { local_fmin = tmp_intv->value.fval.min; } while (tmp_intv->next) { tmp_intv = tmp_intv->next; } if (kind == 0) { local_umax = tmp_intv->value.uval.max; } else if (kind == 1) { local_smax = tmp_intv->value.sval.max; } else if (kind == 2) { local_fmax = tmp_intv->value.fval.max; } } /* finally parse our restriction */ seg_ptr = str_restr; tmp_intv = NULL; while (1) { if (!tmp_local_intv) { assert(!local_intv); local_intv = malloc(sizeof *local_intv); tmp_local_intv = local_intv; } else { tmp_local_intv->next = malloc(sizeof *tmp_local_intv); tmp_local_intv = tmp_local_intv->next; } LY_CHECK_ERR_GOTO(!tmp_local_intv, LOGMEM(ctx), error); tmp_local_intv->kind = kind; tmp_local_intv->type = type; tmp_local_intv->next = NULL; /* min */ ptr = seg_ptr; while (isspace(ptr[0])) { ++ptr; } if (isdigit(ptr[0]) || (ptr[0] == '+') || (ptr[0] == '-')) { if (kind == 0) { tmp_local_intv->value.uval.min = strtoll(ptr, (char **)&ptr, 10); } else if (kind == 1) { tmp_local_intv->value.sval.min = strtoll(ptr, (char **)&ptr, 10); } else if (kind == 2) { if (parse_range_dec64(&ptr, local_fdig, &tmp_local_intv->value.fval.min)) { LOGVAL(ctx, LYE_INARG, LY_VLOG_NONE, NULL, ptr, "range"); goto error; } } } else if (!strncmp(ptr, "min", 3)) { if (kind == 0) { tmp_local_intv->value.uval.min = local_umin; } else if (kind == 1) { tmp_local_intv->value.sval.min = local_smin; } else if (kind == 2) { tmp_local_intv->value.fval.min = local_fmin; } ptr += 3; } else if (!strncmp(ptr, "max", 3)) { if (kind == 0) { tmp_local_intv->value.uval.min = local_umax; } else if (kind == 1) { tmp_local_intv->value.sval.min = local_smax; } else if (kind == 2) { tmp_local_intv->value.fval.min = local_fmax; } ptr += 3; } else { goto error; } while (isspace(ptr[0])) { ptr++; } /* no interval or interval */ if ((ptr[0] == '|') || !ptr[0]) { if (kind == 0) { tmp_local_intv->value.uval.max = tmp_local_intv->value.uval.min; } else if (kind == 1) { tmp_local_intv->value.sval.max = tmp_local_intv->value.sval.min; } else if (kind == 2) { tmp_local_intv->value.fval.max = tmp_local_intv->value.fval.min; } } else if (!strncmp(ptr, "..", 2)) { /* skip ".." */ ptr += 2; while (isspace(ptr[0])) { ++ptr; } /* max */ if (isdigit(ptr[0]) || (ptr[0] == '+') || (ptr[0] == '-')) { if (kind == 0) { tmp_local_intv->value.uval.max = strtoll(ptr, (char **)&ptr, 10); } else if (kind == 1) { tmp_local_intv->value.sval.max = strtoll(ptr, (char **)&ptr, 10); } else if (kind == 2) { if (parse_range_dec64(&ptr, local_fdig, &tmp_local_intv->value.fval.max)) { LOGVAL(ctx, LYE_INARG, LY_VLOG_NONE, NULL, ptr, "range"); goto error; } } } else if (!strncmp(ptr, "max", 3)) { if (kind == 0) { tmp_local_intv->value.uval.max = local_umax; } else if (kind == 1) { tmp_local_intv->value.sval.max = local_smax; } else if (kind == 2) { tmp_local_intv->value.fval.max = local_fmax; } } else { goto error; } } else { goto error; } /* check min and max in correct order*/ if (kind == 0) { /* current segment */ if (tmp_local_intv->value.uval.min > tmp_local_intv->value.uval.max) { goto error; } if (tmp_local_intv->value.uval.min < local_umin || tmp_local_intv->value.uval.max > local_umax) { goto error; } /* segments sholud be ascending order */ if (tmp_intv && (tmp_intv->value.uval.max >= tmp_local_intv->value.uval.min)) { goto error; } } else if (kind == 1) { if (tmp_local_intv->value.sval.min > tmp_local_intv->value.sval.max) { goto error; } if (tmp_local_intv->value.sval.min < local_smin || tmp_local_intv->value.sval.max > local_smax) { goto error; } if (tmp_intv && (tmp_intv->value.sval.max >= tmp_local_intv->value.sval.min)) { goto error; } } else if (kind == 2) { if (tmp_local_intv->value.fval.min > tmp_local_intv->value.fval.max) { goto error; } if (tmp_local_intv->value.fval.min < local_fmin || tmp_local_intv->value.fval.max > local_fmax) { goto error; } if (tmp_intv && (tmp_intv->value.fval.max >= tmp_local_intv->value.fval.min)) { /* fraction-digits value is always the same (it cannot be changed in derived types) */ goto error; } } /* next segment (next OR) */ seg_ptr = strchr(seg_ptr, '|'); if (!seg_ptr) { break; } seg_ptr++; tmp_intv = tmp_local_intv; } /* check local restrictions against superior ones */ if (intv) { tmp_intv = intv; tmp_local_intv = local_intv; while (tmp_local_intv && tmp_intv) { /* reuse local variables */ if (kind == 0) { local_umin = tmp_local_intv->value.uval.min; local_umax = tmp_local_intv->value.uval.max; /* it must be in this interval */ if ((local_umin >= tmp_intv->value.uval.min) && (local_umin <= tmp_intv->value.uval.max)) { /* this interval is covered, next one */ if (local_umax <= tmp_intv->value.uval.max) { tmp_local_intv = tmp_local_intv->next; continue; /* ascending order of restrictions -> fail */ } else { goto error; } } } else if (kind == 1) { local_smin = tmp_local_intv->value.sval.min; local_smax = tmp_local_intv->value.sval.max; if ((local_smin >= tmp_intv->value.sval.min) && (local_smin <= tmp_intv->value.sval.max)) { if (local_smax <= tmp_intv->value.sval.max) { tmp_local_intv = tmp_local_intv->next; continue; } else { goto error; } } } else if (kind == 2) { local_fmin = tmp_local_intv->value.fval.min; local_fmax = tmp_local_intv->value.fval.max; if ((dec64cmp(local_fmin, local_fdig, tmp_intv->value.fval.min, local_fdig) > -1) && (dec64cmp(local_fmin, local_fdig, tmp_intv->value.fval.max, local_fdig) < 1)) { if (dec64cmp(local_fmax, local_fdig, tmp_intv->value.fval.max, local_fdig) < 1) { tmp_local_intv = tmp_local_intv->next; continue; } else { goto error; } } } tmp_intv = tmp_intv->next; } /* some interval left uncovered -> fail */ if (tmp_local_intv) { goto error; } } /* append the local intervals to all the intervals of the superior types, return it all */ if (intv) { for (tmp_intv = intv; tmp_intv->next; tmp_intv = tmp_intv->next); tmp_intv->next = local_intv; } else { intv = local_intv; } *ret = intv; return EXIT_SUCCESS; error: while (intv) { tmp_intv = intv->next; free(intv); intv = tmp_intv; } while (local_intv) { tmp_local_intv = local_intv->next; free(local_intv); local_intv = tmp_local_intv; } return -1; } /** * @brief Resolve a typedef, return only resolved typedefs if derived. If leafref, it must be * resolved for this function to return it. Does not log. * * @param[in] name Typedef name. * @param[in] mod_name Typedef name module name. * @param[in] module Main module. * @param[in] parent Parent of the resolved type definition. * @param[out] ret Pointer to the resolved typedef. Can be NULL. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ int resolve_superior_type(const char *name, const char *mod_name, const struct lys_module *module, const struct lys_node *parent, struct lys_tpdf **ret) { int i, j; struct lys_tpdf *tpdf, *match; int tpdf_size; if (!mod_name) { /* no prefix, try built-in types */ for (i = 1; i < LY_DATA_TYPE_COUNT; i++) { if (!strcmp(ly_types[i]->name, name)) { if (ret) { *ret = ly_types[i]; } return EXIT_SUCCESS; } } } else { if (!strcmp(mod_name, module->name)) { /* prefix refers to the current module, ignore it */ mod_name = NULL; } } if (!mod_name && parent) { /* search in local typedefs */ while (parent) { switch (parent->nodetype) { case LYS_CONTAINER: tpdf_size = ((struct lys_node_container *)parent)->tpdf_size; tpdf = ((struct lys_node_container *)parent)->tpdf; break; case LYS_LIST: tpdf_size = ((struct lys_node_list *)parent)->tpdf_size; tpdf = ((struct lys_node_list *)parent)->tpdf; break; case LYS_GROUPING: tpdf_size = ((struct lys_node_grp *)parent)->tpdf_size; tpdf = ((struct lys_node_grp *)parent)->tpdf; break; case LYS_RPC: case LYS_ACTION: tpdf_size = ((struct lys_node_rpc_action *)parent)->tpdf_size; tpdf = ((struct lys_node_rpc_action *)parent)->tpdf; break; case LYS_NOTIF: tpdf_size = ((struct lys_node_notif *)parent)->tpdf_size; tpdf = ((struct lys_node_notif *)parent)->tpdf; break; case LYS_INPUT: case LYS_OUTPUT: tpdf_size = ((struct lys_node_inout *)parent)->tpdf_size; tpdf = ((struct lys_node_inout *)parent)->tpdf; break; default: parent = lys_parent(parent); continue; } for (i = 0; i < tpdf_size; i++) { if (!strcmp(tpdf[i].name, name) && tpdf[i].type.base > 0) { match = &tpdf[i]; goto check_leafref; } } parent = lys_parent(parent); } } else { /* get module where to search */ module = lyp_get_module(module, NULL, 0, mod_name, 0, 0); if (!module) { return -1; } } /* search in top level typedefs */ for (i = 0; i < module->tpdf_size; i++) { if (!strcmp(module->tpdf[i].name, name) && module->tpdf[i].type.base > 0) { match = &module->tpdf[i]; goto check_leafref; } } /* search in submodules */ for (i = 0; i < module->inc_size && module->inc[i].submodule; i++) { for (j = 0; j < module->inc[i].submodule->tpdf_size; j++) { if (!strcmp(module->inc[i].submodule->tpdf[j].name, name) && module->inc[i].submodule->tpdf[j].type.base > 0) { match = &module->inc[i].submodule->tpdf[j]; goto check_leafref; } } } return EXIT_FAILURE; check_leafref: if (ret) { *ret = match; } if (match->type.base == LY_TYPE_LEAFREF) { while (!match->type.info.lref.path) { match = match->type.der; assert(match); } } return EXIT_SUCCESS; } /** * @brief Check the default \p value of the \p type. Logs directly. * * @param[in] type Type definition to use. * @param[in] value Default value to check. * @param[in] module Type module. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int check_default(struct lys_type *type, const char **value, struct lys_module *module, int tpdf) { struct lys_tpdf *base_tpdf = NULL; struct lyd_node_leaf_list node; const char *dflt = NULL; char *s; int ret = EXIT_SUCCESS, r; struct ly_ctx *ctx = module->ctx; assert(value); memset(&node, 0, sizeof node); if (type->base <= LY_TYPE_DER) { /* the type was not resolved yet, nothing to do for now */ ret = EXIT_FAILURE; goto cleanup; } else if (!tpdf && !module->implemented) { /* do not check defaults in not implemented module's data */ goto cleanup; } else if (tpdf && !module->implemented && type->base == LY_TYPE_IDENT) { /* identityrefs are checked when instantiated in data instead of typedef, * but in typedef the value has to be modified to include the prefix */ if (*value) { if (strchr(*value, ':')) { dflt = transform_schema2json(module, *value); } else { /* default prefix of the module where the typedef is defined */ if (asprintf(&s, "%s:%s", lys_main_module(module)->name, *value) == -1) { LOGMEM(ctx); ret = -1; goto cleanup; } dflt = lydict_insert_zc(ctx, s); } lydict_remove(ctx, *value); *value = dflt; dflt = NULL; } goto cleanup; } else if (type->base == LY_TYPE_LEAFREF && tpdf) { /* leafref in typedef cannot be checked */ goto cleanup; } dflt = lydict_insert(ctx, *value, 0); if (!dflt) { /* we do not have a new default value, so is there any to check even, in some base type? */ for (base_tpdf = type->der; base_tpdf->type.der; base_tpdf = base_tpdf->type.der) { if (base_tpdf->dflt) { dflt = lydict_insert(ctx, base_tpdf->dflt, 0); break; } } if (!dflt) { /* no default value, nothing to check, all is well */ goto cleanup; } /* so there is a default value in a base type, but can the default value be no longer valid (did we define some new restrictions)? */ switch (type->base) { case LY_TYPE_IDENT: if (lys_main_module(base_tpdf->type.parent->module)->implemented) { goto cleanup; } else { /* check the default value from typedef, but use also the typedef's module * due to possible searching in imported modules which is expected in * typedef's module instead of module where the typedef is used */ module = base_tpdf->module; } break; case LY_TYPE_INST: case LY_TYPE_LEAFREF: case LY_TYPE_BOOL: case LY_TYPE_EMPTY: /* these have no restrictions, so we would do the exact same work as the unres in the base typedef */ goto cleanup; case LY_TYPE_BITS: /* the default value must match the restricted list of values, if the type was restricted */ if (type->info.bits.count) { break; } goto cleanup; case LY_TYPE_ENUM: /* the default value must match the restricted list of values, if the type was restricted */ if (type->info.enums.count) { break; } goto cleanup; case LY_TYPE_DEC64: if (type->info.dec64.range) { break; } goto cleanup; case LY_TYPE_BINARY: if (type->info.binary.length) { break; } goto cleanup; case LY_TYPE_INT8: case LY_TYPE_INT16: case LY_TYPE_INT32: case LY_TYPE_INT64: case LY_TYPE_UINT8: case LY_TYPE_UINT16: case LY_TYPE_UINT32: case LY_TYPE_UINT64: if (type->info.num.range) { break; } goto cleanup; case LY_TYPE_STRING: if (type->info.str.length || type->info.str.patterns) { break; } goto cleanup; case LY_TYPE_UNION: /* way too much trouble learning whether we need to check the default again, so just do it */ break; default: LOGINT(ctx); ret = -1; goto cleanup; } } else if (type->base == LY_TYPE_EMPTY) { LOGVAL(ctx, LYE_INCHILDSTMT, LY_VLOG_NONE, NULL, "default", type->parent->name); LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "The \"empty\" data type cannot have a default value."); ret = -1; goto cleanup; } /* dummy leaf */ memset(&node, 0, sizeof node); node.value_str = lydict_insert(ctx, dflt, 0); node.value_type = type->base; if (tpdf) { node.schema = calloc(1, sizeof (struct lys_node_leaf)); if (!node.schema) { LOGMEM(ctx); ret = -1; goto cleanup; } r = asprintf((char **)&node.schema->name, "typedef-%s-default", ((struct lys_tpdf *)type->parent)->name); if (r == -1) { LOGMEM(ctx); ret = -1; goto cleanup; } node.schema->module = module; memcpy(&((struct lys_node_leaf *)node.schema)->type, type, sizeof *type); } else { node.schema = (struct lys_node *)type->parent; } if (type->base == LY_TYPE_LEAFREF) { if (!type->info.lref.target) { ret = EXIT_FAILURE; LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Default value \"%s\" cannot be checked in an unresolved leafref.", dflt); goto cleanup; } ret = check_default(&type->info.lref.target->type, &dflt, module, 0); if (!ret) { /* adopt possibly changed default value to its canonical form */ if (*value) { lydict_remove(ctx, *value); *value = dflt; dflt = NULL; } } } else { if (!lyp_parse_value(type, &node.value_str, NULL, &node, NULL, module, 1, 1, 0)) { /* possible forward reference */ ret = EXIT_FAILURE; if (base_tpdf) { /* default value is defined in some base typedef */ if ((type->base == LY_TYPE_BITS && type->der->type.der) || (type->base == LY_TYPE_ENUM && type->der->type.der)) { /* we have refined bits/enums */ LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Invalid value \"%s\" of the default statement inherited to \"%s\" from \"%s\" base type.", dflt, type->parent->name, base_tpdf->name); } } } else { /* success - adopt canonical form from the node into the default value */ if (!ly_strequal(dflt, node.value_str, 1)) { /* this can happen only if we have non-inherited default value, * inherited default values are already in canonical form */ assert(ly_strequal(dflt, *value, 1)); lydict_remove(ctx, *value); *value = node.value_str; node.value_str = NULL; } } } cleanup: lyd_free_value(node.value, node.value_type, node.value_flags, type, NULL, NULL, NULL); lydict_remove(ctx, node.value_str); if (tpdf && node.schema) { free((char *)node.schema->name); free(node.schema); } lydict_remove(ctx, dflt); return ret; } /** * @brief Check a key for mandatory attributes. Logs directly. * * @param[in] key The key to check. * @param[in] flags What flags to check. * @param[in] list The list of all the keys. * @param[in] index Index of the key in the key list. * @param[in] name The name of the keys. * @param[in] len The name length. * * @return EXIT_SUCCESS on success, -1 on error. */ static int check_key(struct lys_node_list *list, int index, const char *name, int len) { struct lys_node_leaf *key = list->keys[index]; char *dup = NULL; int j; struct ly_ctx *ctx = list->module->ctx; /* existence */ if (!key) { if (name[len] != '\0') { dup = strdup(name); LY_CHECK_ERR_RETURN(!dup, LOGMEM(ctx), -1); dup[len] = '\0'; name = dup; } LOGVAL(ctx, LYE_KEY_MISS, LY_VLOG_LYS, list, name); free(dup); return -1; } /* uniqueness */ for (j = index - 1; j >= 0; j--) { if (key == list->keys[j]) { LOGVAL(ctx, LYE_KEY_DUP, LY_VLOG_LYS, list, key->name); return -1; } } /* key is a leaf */ if (key->nodetype != LYS_LEAF) { LOGVAL(ctx, LYE_KEY_NLEAF, LY_VLOG_LYS, list, key->name); return -1; } /* type of the leaf is not built-in empty */ if (key->type.base == LY_TYPE_EMPTY && key->module->version < LYS_VERSION_1_1) { LOGVAL(ctx, LYE_KEY_TYPE, LY_VLOG_LYS, list, key->name); return -1; } /* config attribute is the same as of the list */ if ((key->flags & LYS_CONFIG_MASK) && (list->flags & LYS_CONFIG_MASK) && ((list->flags & LYS_CONFIG_MASK) != (key->flags & LYS_CONFIG_MASK))) { LOGVAL(ctx, LYE_KEY_CONFIG, LY_VLOG_LYS, list, key->name); return -1; } /* key is not placed from augment */ if (key->parent->nodetype == LYS_AUGMENT) { LOGVAL(ctx, LYE_KEY_MISS, LY_VLOG_LYS, key, key->name); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Key inserted from augment."); return -1; } /* key is not when/if-feature -conditional */ j = 0; if (key->when || (key->iffeature_size && (j = 1))) { LOGVAL(ctx, LYE_INCHILDSTMT, LY_VLOG_LYS, key, j ? "if-feature" : "when", "leaf"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Key definition cannot depend on a \"%s\" condition.", j ? "if-feature" : "when"); return -1; } return EXIT_SUCCESS; } /** * @brief Resolve (test the target exists) unique. Logs directly. * * @param[in] parent The parent node of the unique structure. * @param[in] uniq_str_path One path from the unique string. * * @return EXIT_SUCCESS on succes, EXIT_FAILURE on forward reference, -1 on error. */ int resolve_unique(struct lys_node *parent, const char *uniq_str_path, uint8_t *trg_type) { int rc; const struct lys_node *leaf = NULL; struct ly_ctx *ctx = parent->module->ctx; rc = resolve_descendant_schema_nodeid(uniq_str_path, *lys_child(parent, LYS_LEAF), LYS_LEAF, 1, &leaf); if (rc || !leaf) { if (rc) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, parent, uniq_str_path, "unique"); if (rc > 0) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_PREV, NULL, uniq_str_path[rc - 1], &uniq_str_path[rc - 1]); } else if (rc == -2) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Unique argument references list."); } rc = -1; } else { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, parent, uniq_str_path, "unique"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Target leaf not found."); rc = EXIT_FAILURE; } goto error; } if (leaf->nodetype != LYS_LEAF) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, parent, uniq_str_path, "unique"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Target is not a leaf."); return -1; } /* check status */ if (parent->nodetype != LYS_EXT && lyp_check_status(parent->flags, parent->module, parent->name, leaf->flags, leaf->module, leaf->name, leaf)) { return -1; } /* check that all unique's targets are of the same config type */ if (*trg_type) { if (((*trg_type == 1) && (leaf->flags & LYS_CONFIG_R)) || ((*trg_type == 2) && (leaf->flags & LYS_CONFIG_W))) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, parent, uniq_str_path, "unique"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Leaf \"%s\" referenced in unique statement is config %s, but previous referenced leaf is config %s.", uniq_str_path, *trg_type == 1 ? "false" : "true", *trg_type == 1 ? "true" : "false"); return -1; } } else { /* first unique */ if (leaf->flags & LYS_CONFIG_W) { *trg_type = 1; } else { *trg_type = 2; } } /* set leaf's unique flag */ ((struct lys_node_leaf *)leaf)->flags |= LYS_UNIQUE; return EXIT_SUCCESS; error: return rc; } void unres_data_del(struct unres_data *unres, uint32_t i) { /* there are items after the one deleted */ if (i+1 < unres->count) { /* we only move the data, memory is left allocated, why bother */ memmove(&unres->node[i], &unres->node[i+1], (unres->count-(i+1)) * sizeof *unres->node); /* deleting the last item */ } else if (i == 0) { free(unres->node); unres->node = NULL; } /* if there are no items after and it is not the last one, just move the counter */ --unres->count; } /** * @brief Resolve (find) a data node from a specific module. Does not log. * * @param[in] mod Module to search in. * @param[in] name Name of the data node. * @param[in] nam_len Length of the name. * @param[in] start Data node to start the search from. * @param[in,out] parents Resolved nodes. If there are some parents, * they are replaced (!!) with the resolvents. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int resolve_data(const struct lys_module *mod, const char *name, int nam_len, struct lyd_node *start, struct unres_data *parents) { struct lyd_node *node; int flag; uint32_t i; if (!parents->count) { parents->count = 1; parents->node = malloc(sizeof *parents->node); LY_CHECK_ERR_RETURN(!parents->node, LOGMEM(mod->ctx), -1); parents->node[0] = NULL; } for (i = 0; i < parents->count;) { if (parents->node[i] && (parents->node[i]->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA))) { /* skip */ ++i; continue; } flag = 0; LY_TREE_FOR(parents->node[i] ? parents->node[i]->child : start, node) { if (lyd_node_module(node) == mod && !strncmp(node->schema->name, name, nam_len) && node->schema->name[nam_len] == '\0') { /* matching target */ if (!flag) { /* put node instead of the current parent */ parents->node[i] = node; flag = 1; } else { /* multiple matching, so create a new node */ ++parents->count; parents->node = ly_realloc(parents->node, parents->count * sizeof *parents->node); LY_CHECK_ERR_RETURN(!parents->node, LOGMEM(mod->ctx), EXIT_FAILURE); parents->node[parents->count-1] = node; ++i; } } } if (!flag) { /* remove item from the parents list */ unres_data_del(parents, i); } else { ++i; } } return parents->count ? EXIT_SUCCESS : EXIT_FAILURE; } static int resolve_schema_leafref_valid_dep_flag(const struct lys_node *op_node, const struct lys_module *local_mod, const struct lys_node *first_node, int abs_path) { int dep1, dep2; const struct lys_node *node; if (!op_node) { /* leafref pointing to a different module */ if (local_mod != lys_node_module(first_node)) { return 1; } } else if (lys_parent(op_node)) { /* inner operation (notif/action) */ if (abs_path) { return 1; } else { /* compare depth of both nodes */ for (dep1 = 0, node = op_node; lys_parent(node); node = lys_parent(node)); for (dep2 = 0, node = first_node; lys_parent(node); node = lys_parent(node)); if ((dep2 > dep1) || ((dep2 == dep1) && (op_node != first_node))) { return 1; } } } else { /* top-level operation (notif/rpc) */ if (op_node != first_node) { return 1; } } return 0; } /** * @brief Resolve a path (leafref) predicate in JSON schema context. Logs directly. * * @param[in] path Path to use. * @param[in] context_node Predicate context node (where the predicate is placed). * @param[in] parent Path context node (where the path begins/is placed). * @param[in] op_node Optional node if the leafref is in an operation (action/rpc/notif). * * @return 0 on forward reference, otherwise the number * of characters successfully parsed, * positive on success, negative on failure. */ static int resolve_schema_leafref_predicate(const char *path, const struct lys_node *context_node, struct lys_node *parent) { const struct lys_module *trg_mod; const struct lys_node *src_node, *dst_node; const char *path_key_expr, *source, *sour_pref, *dest, *dest_pref; int pke_len, sour_len, sour_pref_len, dest_len, dest_pref_len, pke_parsed, parsed = 0; int has_predicate, dest_parent_times, i, rc; struct ly_ctx *ctx = context_node->module->ctx; do { if ((i = parse_path_predicate(path, &sour_pref, &sour_pref_len, &source, &sour_len, &path_key_expr, &pke_len, &has_predicate)) < 1) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_LYS, parent, path[-i], path-i); return -parsed+i; } parsed += i; path += i; /* source (must be leaf) */ if (sour_pref) { trg_mod = lyp_get_module(lys_node_module(parent), NULL, 0, sour_pref, sour_pref_len, 0); } else { trg_mod = lys_node_module(parent); } rc = lys_getnext_data(trg_mod, context_node, source, sour_len, LYS_LEAF | LYS_LEAFLIST, &src_node); if (rc) { LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref predicate", path-parsed); return 0; } /* destination */ dest_parent_times = 0; pke_parsed = 0; if ((i = parse_path_key_expr(path_key_expr, &dest_pref, &dest_pref_len, &dest, &dest_len, &dest_parent_times)) < 1) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_LYS, parent, path_key_expr[-i], path_key_expr-i); return -parsed; } pke_parsed += i; for (i = 0, dst_node = parent; i < dest_parent_times; ++i) { if (!dst_node) { /* we went too much into parents, there is no parent anymore */ LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref predicate", path_key_expr); return 0; } if (dst_node->parent && (dst_node->parent->nodetype == LYS_AUGMENT) && !((struct lys_node_augment *)dst_node->parent)->target) { /* we are in an unresolved augment, cannot evaluate */ LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, dst_node->parent, "Cannot resolve leafref predicate \"%s\" because it is in an unresolved augment.", path_key_expr); return 0; } /* path is supposed to be evaluated in data tree, so we have to skip * all schema nodes that cannot be instantiated in data tree */ for (dst_node = lys_parent(dst_node); dst_node && !(dst_node->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_ACTION | LYS_NOTIF | LYS_RPC)); dst_node = lys_parent(dst_node)); } while (1) { if (dest_pref) { trg_mod = lyp_get_module(lys_node_module(parent), NULL, 0, dest_pref, dest_pref_len, 0); } else { trg_mod = lys_node_module(parent); } rc = lys_getnext_data(trg_mod, dst_node, dest, dest_len, LYS_CONTAINER | LYS_LIST | LYS_LEAF, &dst_node); if (rc) { LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref predicate", path_key_expr); return 0; } if (pke_len == pke_parsed) { break; } if ((i = parse_path_key_expr(path_key_expr + pke_parsed, &dest_pref, &dest_pref_len, &dest, &dest_len, &dest_parent_times)) < 1) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_LYS, parent, (path_key_expr + pke_parsed)[-i], (path_key_expr + pke_parsed)-i); return -parsed; } pke_parsed += i; } /* check source - dest match */ if (dst_node->nodetype != src_node->nodetype) { LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref predicate", path - parsed); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Destination node is not a %s, but a %s.", strnodetype(src_node->nodetype), strnodetype(dst_node->nodetype)); return -parsed; } } while (has_predicate); return parsed; } static int check_leafref_features(struct lys_type *type) { struct lys_node *iter; struct ly_set *src_parents, *trg_parents, *features; struct lys_node_augment *aug; struct ly_ctx *ctx = ((struct lys_tpdf *)type->parent)->module->ctx; unsigned int i, j, size, x; int ret = EXIT_SUCCESS; assert(type->parent); src_parents = ly_set_new(); trg_parents = ly_set_new(); features = ly_set_new(); /* get parents chain of source (leafref) */ for (iter = (struct lys_node *)type->parent; iter; iter = lys_parent(iter)) { if (iter->nodetype & (LYS_INPUT | LYS_OUTPUT)) { continue; } if (iter->parent && (iter->parent->nodetype == LYS_AUGMENT)) { aug = (struct lys_node_augment *)iter->parent; if ((aug->module->implemented && (aug->flags & LYS_NOTAPPLIED)) || !aug->target) { /* unresolved augment, wait until it's resolved */ LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, aug, "Cannot check leafref \"%s\" if-feature consistency because of an unresolved augment.", type->info.lref.path); ret = EXIT_FAILURE; goto cleanup; } /* also add this augment */ ly_set_add(src_parents, aug, LY_SET_OPT_USEASLIST); } ly_set_add(src_parents, iter, LY_SET_OPT_USEASLIST); } /* get parents chain of target */ for (iter = (struct lys_node *)type->info.lref.target; iter; iter = lys_parent(iter)) { if (iter->nodetype & (LYS_INPUT | LYS_OUTPUT)) { continue; } if (iter->parent && (iter->parent->nodetype == LYS_AUGMENT)) { aug = (struct lys_node_augment *)iter->parent; if ((aug->module->implemented && (aug->flags & LYS_NOTAPPLIED)) || !aug->target) { /* unresolved augment, wait until it's resolved */ LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, aug, "Cannot check leafref \"%s\" if-feature consistency because of an unresolved augment.", type->info.lref.path); ret = EXIT_FAILURE; goto cleanup; } } ly_set_add(trg_parents, iter, LY_SET_OPT_USEASLIST); } /* compare the features used in if-feature statements in the rest of both * chains of parents. The set of features used for target must be a subset * of features used for the leafref. This is not a perfect, we should compare * the truth tables but it could require too much resources, so we simplify that */ for (i = 0; i < src_parents->number; i++) { iter = src_parents->set.s[i]; /* shortcut */ if (!iter->iffeature_size) { continue; } for (j = 0; j < iter->iffeature_size; j++) { resolve_iffeature_getsizes(&iter->iffeature[j], NULL, &size); for (; size; size--) { if (!iter->iffeature[j].features[size - 1]) { /* not yet resolved feature, postpone this check */ ret = EXIT_FAILURE; goto cleanup; } ly_set_add(features, iter->iffeature[j].features[size - 1], 0); } } } x = features->number; for (i = 0; i < trg_parents->number; i++) { iter = trg_parents->set.s[i]; /* shortcut */ if (!iter->iffeature_size) { continue; } for (j = 0; j < iter->iffeature_size; j++) { resolve_iffeature_getsizes(&iter->iffeature[j], NULL, &size); for (; size; size--) { if (!iter->iffeature[j].features[size - 1]) { /* not yet resolved feature, postpone this check */ ret = EXIT_FAILURE; goto cleanup; } if ((unsigned)ly_set_add(features, iter->iffeature[j].features[size - 1], 0) >= x) { /* the feature is not present in features set of target's parents chain */ LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, type->parent, "leafref", type->info.lref.path); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Leafref is not conditional based on \"%s\" feature as its target.", iter->iffeature[j].features[size - 1]->name); ret = -1; goto cleanup; } } } } cleanup: ly_set_free(features); ly_set_free(src_parents); ly_set_free(trg_parents); return ret; } /** * @brief Resolve a path (leafref) in JSON schema context. Logs directly. * * @param[in] path Path to use. * @param[in] parent_node Parent of the leafref. * @param[out] ret Pointer to the resolved schema node. Can be NULL. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int resolve_schema_leafref(struct lys_type *type, struct lys_node *parent, struct unres_schema *unres) { const struct lys_node *node, *op_node = NULL, *tmp_parent; struct lys_node_augment *last_aug; const struct lys_module *tmp_mod, *cur_module; const char *id, *prefix, *name; int pref_len, nam_len, parent_times, has_predicate; int i, first_iter; struct ly_ctx *ctx = parent->module->ctx; if (!type->info.lref.target) { first_iter = 1; parent_times = 0; id = type->info.lref.path; /* find operation schema we are in */ for (op_node = lys_parent(parent); op_node && !(op_node->nodetype & (LYS_ACTION | LYS_NOTIF | LYS_RPC)); op_node = lys_parent(op_node)); cur_module = lys_node_module(parent); do { if ((i = parse_path_arg(cur_module, id, &prefix, &pref_len, &name, &nam_len, &parent_times, &has_predicate)) < 1) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_LYS, parent, id[-i], &id[-i]); return -1; } id += i; /* get the current module */ tmp_mod = prefix ? lyp_get_module(cur_module, NULL, 0, prefix, pref_len, 0) : cur_module; if (!tmp_mod) { LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref", type->info.lref.path); return EXIT_FAILURE; } last_aug = NULL; if (first_iter) { if (parent_times == -1) { /* use module data */ node = NULL; } else if (parent_times > 0) { /* we are looking for the right parent */ for (i = 0, node = parent; i < parent_times; i++) { if (node->parent && (node->parent->nodetype == LYS_AUGMENT) && !((struct lys_node_augment *)node->parent)->target) { /* we are in an unresolved augment, cannot evaluate */ LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, node->parent, "Cannot resolve leafref \"%s\" because it is in an unresolved augment.", type->info.lref.path); return EXIT_FAILURE; } /* path is supposed to be evaluated in data tree, so we have to skip * all schema nodes that cannot be instantiated in data tree */ for (node = lys_parent(node); node && !(node->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_ACTION | LYS_NOTIF | LYS_RPC)); node = lys_parent(node)); if (!node) { if (i == parent_times - 1) { /* top-level */ break; } /* higher than top-level */ LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref", type->info.lref.path); return EXIT_FAILURE; } } } else { LOGINT(ctx); return -1; } } /* find the next node (either in unconnected augment or as a schema sibling, node is NULL for top-level node - * - useless to search for that in augments) */ if (!tmp_mod->implemented && node) { get_next_augment: last_aug = lys_getnext_target_aug(last_aug, tmp_mod, node); } tmp_parent = (last_aug ? (struct lys_node *)last_aug : node); node = NULL; while ((node = lys_getnext(node, tmp_parent, tmp_mod, LYS_GETNEXT_NOSTATECHECK))) { if (lys_node_module(node) != lys_main_module(tmp_mod)) { continue; } if (strncmp(node->name, name, nam_len) || node->name[nam_len]) { continue; } /* match */ break; } if (!node) { if (last_aug) { /* restore the correct augment target */ node = last_aug->target; goto get_next_augment; } LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref", type->info.lref.path); return EXIT_FAILURE; } if (first_iter) { /* set external dependency flag, we can decide based on the first found node */ if (resolve_schema_leafref_valid_dep_flag(op_node, cur_module, node, (parent_times == -1 ? 1 : 0))) { parent->flags |= LYS_LEAFREF_DEP; } first_iter = 0; } if (has_predicate) { /* we have predicate, so the current result must be list */ if (node->nodetype != LYS_LIST) { LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref", type->info.lref.path); return -1; } i = resolve_schema_leafref_predicate(id, node, parent); if (!i) { return EXIT_FAILURE; } else if (i < 0) { return -1; } id += i; has_predicate = 0; } } while (id[0]); /* the target must be leaf or leaf-list (in YANG 1.1 only) */ if ((node->nodetype != LYS_LEAF) && (node->nodetype != LYS_LEAFLIST)) { LOGVAL(ctx, LYE_NORESOLV, LY_VLOG_LYS, parent, "leafref", type->info.lref.path); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Leafref target \"%s\" is not a leaf nor a leaf-list.", type->info.lref.path); return -1; } /* check status */ if (lyp_check_status(parent->flags, parent->module, parent->name, node->flags, node->module, node->name, node)) { return -1; } /* assign */ type->info.lref.target = (struct lys_node_leaf *)node; } /* as the last thing traverse this leafref and make targets on the path implemented */ if (lys_node_module(parent)->implemented) { /* make all the modules in the path implemented */ for (node = (struct lys_node *)type->info.lref.target; node; node = lys_parent(node)) { if (!lys_node_module(node)->implemented) { lys_node_module(node)->implemented = 1; if (unres_schema_add_node(lys_node_module(node), unres, NULL, UNRES_MOD_IMPLEMENT, NULL) == -1) { return -1; } } } /* store the backlink from leafref target */ if (lys_leaf_add_leafref_target(type->info.lref.target, (struct lys_node *)type->parent)) { return -1; } } /* check if leafref and its target are under common if-features */ return check_leafref_features(type); } /** * @brief Compare 2 data node values. * * Comparison performed on canonical forms, the first value * is first transformed into canonical form. * * @param[in] node Leaf/leaf-list with these values. * @param[in] noncan_val Non-canonical value. * @param[in] noncan_val_len Length of \p noncal_val. * @param[in] can_val Canonical value. * @return 1 if equal, 0 if not, -1 on error (logged). */ static int valequal(struct lys_node *node, const char *noncan_val, int noncan_val_len, const char *can_val) { int ret; struct lyd_node_leaf_list leaf; struct lys_node_leaf *sleaf = (struct lys_node_leaf*)node; /* dummy leaf */ memset(&leaf, 0, sizeof leaf); leaf.value_str = lydict_insert(node->module->ctx, noncan_val, noncan_val_len); repeat: leaf.value_type = sleaf->type.base; leaf.schema = node; if (leaf.value_type == LY_TYPE_LEAFREF) { if (!sleaf->type.info.lref.target) { /* it should either be unresolved leafref (leaf.value_type are ORed flags) or it will be resolved */ LOGINT(node->module->ctx); ret = -1; goto finish; } sleaf = sleaf->type.info.lref.target; goto repeat; } else { if (!lyp_parse_value(&sleaf->type, &leaf.value_str, NULL, &leaf, NULL, NULL, 0, 0, 0)) { ret = -1; goto finish; } } if (!strcmp(leaf.value_str, can_val)) { ret = 1; } else { ret = 0; } finish: lydict_remove(node->module->ctx, leaf.value_str); return ret; } /** * @brief Resolve instance-identifier predicate in JSON data format. * Does not log. * * @param[in] prev_mod Previous module to use in case there is no prefix. * @param[in] pred Predicate to use. * @param[in,out] node Node matching the restriction without * the predicate. If it does not satisfy the predicate, * it is set to NULL. * * @return Number of characters successfully parsed, * positive on success, negative on failure. */ static int resolve_instid_predicate(const struct lys_module *prev_mod, const char *pred, struct lyd_node **node, int cur_idx) { /* ... /node[key=value] ... */ struct lyd_node_leaf_list *key; struct lys_node_leaf **list_keys = NULL; struct lys_node_list *slist = NULL; const char *model, *name, *value; int mod_len, nam_len, val_len, i, has_predicate, parsed; struct ly_ctx *ctx = prev_mod->ctx; assert(pred && node && *node); parsed = 0; do { if ((i = parse_predicate(pred + parsed, &model, &mod_len, &name, &nam_len, &value, &val_len, &has_predicate)) < 1) { return -parsed + i; } parsed += i; if (!(*node)) { /* just parse it all */ continue; } /* target */ if (name[0] == '.') { /* leaf-list value */ if ((*node)->schema->nodetype != LYS_LEAFLIST) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier expects leaf-list, but have %s \"%s\".", strnodetype((*node)->schema->nodetype), (*node)->schema->name); parsed = -1; goto cleanup; } /* check the value */ if (!valequal((*node)->schema, value, val_len, ((struct lyd_node_leaf_list *)*node)->value_str)) { *node = NULL; goto cleanup; } } else if (isdigit(name[0])) { assert(!value); /* keyless list position */ if ((*node)->schema->nodetype != LYS_LIST) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier expects list, but have %s \"%s\".", strnodetype((*node)->schema->nodetype), (*node)->schema->name); parsed = -1; goto cleanup; } if (((struct lys_node_list *)(*node)->schema)->keys) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier expects list without keys, but have list \"%s\".", (*node)->schema->name); parsed = -1; goto cleanup; } /* check the index */ if (atoi(name) != cur_idx) { *node = NULL; goto cleanup; } } else { /* list key value */ if ((*node)->schema->nodetype != LYS_LIST) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier expects list, but have %s \"%s\".", strnodetype((*node)->schema->nodetype), (*node)->schema->name); parsed = -1; goto cleanup; } slist = (struct lys_node_list *)(*node)->schema; /* prepare key array */ if (!list_keys) { list_keys = malloc(slist->keys_size * sizeof *list_keys); LY_CHECK_ERR_RETURN(!list_keys, LOGMEM(ctx), -1); for (i = 0; i < slist->keys_size; ++i) { list_keys[i] = slist->keys[i]; } } /* find the schema key leaf */ for (i = 0; i < slist->keys_size; ++i) { if (list_keys[i] && !strncmp(list_keys[i]->name, name, nam_len) && !list_keys[i]->name[nam_len]) { break; } } if (i == slist->keys_size) { /* this list has no such key */ LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier expects list with the key \"%.*s\"," " but list \"%s\" does not define it.", nam_len, name, slist->name); parsed = -1; goto cleanup; } /* check module */ if (model) { if (strncmp(list_keys[i]->module->name, model, mod_len) || list_keys[i]->module->name[mod_len]) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier expects key \"%s\" from module \"%.*s\", not \"%s\".", list_keys[i]->name, model, mod_len, list_keys[i]->module->name); parsed = -1; goto cleanup; } } else { if (list_keys[i]->module != prev_mod) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier expects key \"%s\" from module \"%s\", not \"%s\".", list_keys[i]->name, prev_mod->name, list_keys[i]->module->name); parsed = -1; goto cleanup; } } /* find the actual data key */ for (key = (struct lyd_node_leaf_list *)(*node)->child; key; key = (struct lyd_node_leaf_list *)key->next) { if (key->schema == (struct lys_node *)list_keys[i]) { break; } } if (!key) { /* list instance is missing a key? definitely should not happen */ LOGINT(ctx); parsed = -1; goto cleanup; } /* check the value */ if (!valequal(key->schema, value, val_len, key->value_str)) { *node = NULL; /* we still want to parse the whole predicate */ continue; } /* everything is fine, mark this key as resolved */ list_keys[i] = NULL; } } while (has_predicate); /* check that all list keys were specified */ if (*node && list_keys) { for (i = 0; i < slist->keys_size; ++i) { if (list_keys[i]) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Instance identifier is missing list key \"%s\".", list_keys[i]->name); parsed = -1; goto cleanup; } } } cleanup: free(list_keys); return parsed; } static int check_xpath(struct lys_node *node, int check_place) { struct lys_node *parent; struct lyxp_set set; enum int_log_opts prev_ilo; if (check_place) { parent = node; while (parent) { if (parent->nodetype == LYS_GROUPING) { /* unresolved grouping, skip for now (will be checked later) */ return EXIT_SUCCESS; } if (parent->nodetype == LYS_AUGMENT) { if (!((struct lys_node_augment *)parent)->target) { /* unresolved augment, skip for now (will be checked later) */ return EXIT_FAILURE; } else { parent = ((struct lys_node_augment *)parent)->target; continue; } } parent = parent->parent; } } memset(&set, 0, sizeof set); /* produce just warnings */ ly_ilo_change(NULL, ILO_ERR2WRN, &prev_ilo, NULL); lyxp_node_atomize(node, &set, 1); ly_ilo_restore(NULL, prev_ilo, NULL, 0); if (set.val.snodes) { free(set.val.snodes); } return EXIT_SUCCESS; } static int check_leafref_config(struct lys_node_leaf *leaf, struct lys_type *type) { unsigned int i; if (type->base == LY_TYPE_LEAFREF) { if ((leaf->flags & LYS_CONFIG_W) && type->info.lref.target && type->info.lref.req != -1 && (type->info.lref.target->flags & LYS_CONFIG_R)) { LOGVAL(leaf->module->ctx, LYE_SPEC, LY_VLOG_LYS, leaf, "The leafref %s is config but refers to a non-config %s.", strnodetype(leaf->nodetype), strnodetype(type->info.lref.target->nodetype)); return -1; } /* we can skip the test in case the leafref is not yet resolved. In that case the test is done in the time * of leafref resolving (lys_leaf_add_leafref_target()) */ } else if (type->base == LY_TYPE_UNION) { for (i = 0; i < type->info.uni.count; i++) { if (check_leafref_config(leaf, &type->info.uni.types[i])) { return -1; } } } return 0; } /** * @brief Passes config flag down to children, skips nodes without config flags. * Logs. * * @param[in] node Siblings and their children to have flags changed. * @param[in] clear Flag to clear all config flags if parent is LYS_NOTIF, LYS_INPUT, LYS_OUTPUT, LYS_RPC. * @param[in] flags Flags to assign to all the nodes. * @param[in,out] unres List of unresolved items. * * @return 0 on success, -1 on error. */ int inherit_config_flag(struct lys_node *node, int flags, int clear) { struct lys_node_leaf *leaf; struct ly_ctx *ctx; if (!node) { return 0; } assert(!(flags ^ (flags & LYS_CONFIG_MASK))); ctx = node->module->ctx; LY_TREE_FOR(node, node) { if (clear) { node->flags &= ~LYS_CONFIG_MASK; node->flags &= ~LYS_CONFIG_SET; } else { if (node->flags & LYS_CONFIG_SET) { /* skip nodes with an explicit config value */ if ((flags & LYS_CONFIG_R) && (node->flags & LYS_CONFIG_W)) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, node, "true", "config"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "State nodes cannot have configuration nodes as children."); return -1; } continue; } if (!(node->nodetype & (LYS_USES | LYS_GROUPING))) { node->flags = (node->flags & ~LYS_CONFIG_MASK) | flags; /* check that configuration lists have keys */ if ((node->nodetype == LYS_LIST) && (node->flags & LYS_CONFIG_W) && !((struct lys_node_list *)node)->keys_size) { LOGVAL(ctx, LYE_MISSCHILDSTMT, LY_VLOG_LYS, node, "key", "list"); return -1; } } } if (!(node->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA))) { if (inherit_config_flag(node->child, flags, clear)) { return -1; } } else if (node->nodetype & (LYS_LEAF | LYS_LEAFLIST)) { leaf = (struct lys_node_leaf *)node; if (check_leafref_config(leaf, &leaf->type)) { return -1; } } } return 0; } /** * @brief Resolve augment target. Logs directly. * * @param[in] aug Augment to use. * @param[in] uses Parent where to start the search in. If set, uses augment, if not, standalone augment. * @param[in,out] unres List of unresolved items. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int resolve_augment(struct lys_node_augment *aug, struct lys_node *uses, struct unres_schema *unres) { int rc; struct lys_node *sub; struct lys_module *mod; struct ly_set *set; struct ly_ctx *ctx; assert(aug); mod = lys_main_module(aug->module); ctx = mod->ctx; /* set it as not applied for now */ aug->flags |= LYS_NOTAPPLIED; /* it can already be resolved in case we returned EXIT_FAILURE from if block below */ if (!aug->target) { /* resolve target node */ rc = resolve_schema_nodeid(aug->target_name, uses, (uses ? NULL : lys_node_module((struct lys_node *)aug)), &set, 0, 0); if (rc == -1) { LOGVAL(ctx, LYE_PATH, LY_VLOG_LYS, aug); return -1; } if (!set) { LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_LYS, aug, "augment", aug->target_name); return EXIT_FAILURE; } aug->target = set->set.s[0]; ly_set_free(set); } /* make this module implemented if the target module is (if the target is in an unimplemented module, * it is fine because when we will be making that module implemented, its augment will be applied * and that augment target module made implemented, recursively) */ if (mod->implemented && !lys_node_module(aug->target)->implemented) { lys_node_module(aug->target)->implemented = 1; if (unres_schema_add_node(lys_node_module(aug->target), unres, NULL, UNRES_MOD_IMPLEMENT, NULL) == -1) { return -1; } } /* check for mandatory nodes - if the target node is in another module * the added nodes cannot be mandatory */ if (!aug->parent && (lys_node_module((struct lys_node *)aug) != lys_node_module(aug->target)) && (rc = lyp_check_mandatory_augment(aug, aug->target))) { return rc; } /* check augment target type and then augment nodes type */ if (aug->target->nodetype & (LYS_CONTAINER | LYS_LIST)) { LY_TREE_FOR(aug->child, sub) { if (!(sub->nodetype & (LYS_ANYDATA | LYS_CONTAINER | LYS_LEAF | LYS_LIST | LYS_LEAFLIST | LYS_USES | LYS_CHOICE | LYS_ACTION | LYS_NOTIF))) { LOGVAL(ctx, LYE_INCHILDSTMT, LY_VLOG_LYS, aug, strnodetype(sub->nodetype), "augment"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Cannot augment \"%s\" with a \"%s\".", strnodetype(aug->target->nodetype), strnodetype(sub->nodetype)); return -1; } } } else if (aug->target->nodetype & (LYS_CASE | LYS_INPUT | LYS_OUTPUT | LYS_NOTIF)) { LY_TREE_FOR(aug->child, sub) { if (!(sub->nodetype & (LYS_ANYDATA | LYS_CONTAINER | LYS_LEAF | LYS_LIST | LYS_LEAFLIST | LYS_USES | LYS_CHOICE))) { LOGVAL(ctx, LYE_INCHILDSTMT, LY_VLOG_LYS, aug, strnodetype(sub->nodetype), "augment"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Cannot augment \"%s\" with a \"%s\".", strnodetype(aug->target->nodetype), strnodetype(sub->nodetype)); return -1; } } } else if (aug->target->nodetype == LYS_CHOICE) { LY_TREE_FOR(aug->child, sub) { if (!(sub->nodetype & (LYS_CASE | LYS_ANYDATA | LYS_CONTAINER | LYS_LEAF | LYS_LIST | LYS_LEAFLIST))) { LOGVAL(ctx, LYE_INCHILDSTMT, LY_VLOG_LYS, aug, strnodetype(sub->nodetype), "augment"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Cannot augment \"%s\" with a \"%s\".", strnodetype(aug->target->nodetype), strnodetype(sub->nodetype)); return -1; } } } else { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, aug, aug->target_name, "target-node"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Invalid augment target node type \"%s\".", strnodetype(aug->target->nodetype)); return -1; } /* check identifier uniqueness as in lys_node_addchild() */ LY_TREE_FOR(aug->child, sub) { if (lys_check_id(sub, aug->target, NULL)) { return -1; } } if (!aug->child) { /* empty augment, nothing to connect, but it is techincally applied */ LOGWRN(ctx, "Augment \"%s\" without children.", aug->target_name); aug->flags &= ~LYS_NOTAPPLIED; } else if ((aug->parent || mod->implemented) && apply_aug(aug, unres)) { /* we try to connect the augment only in case the module is implemented or * the augment applies on the used grouping, anyway we failed here */ return -1; } return EXIT_SUCCESS; } static int resolve_extension(struct unres_ext *info, struct lys_ext_instance **ext, struct unres_schema *unres) { enum LY_VLOG_ELEM vlog_type; void *vlog_node; unsigned int i, j; struct lys_ext *e; char *ext_name, *ext_prefix, *tmp; struct lyxml_elem *next_yin, *yin; const struct lys_module *mod; struct lys_ext_instance *tmp_ext; struct ly_ctx *ctx = NULL; LYEXT_TYPE etype; switch (info->parent_type) { case LYEXT_PAR_NODE: vlog_node = info->parent; vlog_type = LY_VLOG_LYS; break; case LYEXT_PAR_MODULE: case LYEXT_PAR_IMPORT: case LYEXT_PAR_INCLUDE: vlog_node = NULL; vlog_type = LY_VLOG_LYS; break; default: vlog_node = NULL; vlog_type = LY_VLOG_NONE; break; } if (info->datatype == LYS_IN_YIN) { /* YIN */ /* get the module where the extension is supposed to be defined */ mod = lyp_get_import_module_ns(info->mod, info->data.yin->ns->value); if (!mod) { LOGVAL(ctx, LYE_INSTMT, vlog_type, vlog_node, info->data.yin->name); return EXIT_FAILURE; } ctx = mod->ctx; /* find the extension definition */ e = NULL; for (i = 0; i < mod->extensions_size; i++) { if (ly_strequal(mod->extensions[i].name, info->data.yin->name, 1)) { e = &mod->extensions[i]; break; } } /* try submodules */ for (j = 0; !e && j < mod->inc_size; j++) { for (i = 0; i < mod->inc[j].submodule->extensions_size; i++) { if (ly_strequal(mod->inc[j].submodule->extensions[i].name, info->data.yin->name, 1)) { e = &mod->inc[j].submodule->extensions[i]; break; } } } if (!e) { LOGVAL(ctx, LYE_INSTMT, vlog_type, vlog_node, info->data.yin->name); return EXIT_FAILURE; } /* we have the extension definition, so now it cannot be forward referenced and error is always fatal */ if (e->plugin && e->plugin->check_position) { /* common part - we have plugin with position checking function, use it first */ if ((*e->plugin->check_position)(info->parent, info->parent_type, info->substmt)) { /* extension is not allowed here */ LOGVAL(ctx, LYE_INSTMT, vlog_type, vlog_node, e->name); return -1; } } /* extension type-specific part - allocation */ if (e->plugin) { etype = e->plugin->type; } else { /* default type */ etype = LYEXT_FLAG; } switch (etype) { case LYEXT_FLAG: (*ext) = calloc(1, sizeof(struct lys_ext_instance)); break; case LYEXT_COMPLEX: (*ext) = calloc(1, ((struct lyext_plugin_complex*)e->plugin)->instance_size); break; case LYEXT_ERR: /* we never should be here */ LOGINT(ctx); return -1; } LY_CHECK_ERR_RETURN(!*ext, LOGMEM(ctx), -1); /* common part for all extension types */ (*ext)->def = e; (*ext)->parent = info->parent; (*ext)->parent_type = info->parent_type; (*ext)->insubstmt = info->substmt; (*ext)->insubstmt_index = info->substmt_index; (*ext)->ext_type = e->plugin ? e->plugin->type : LYEXT_FLAG; (*ext)->flags |= e->plugin ? e->plugin->flags : 0; if (e->argument) { if (!(e->flags & LYS_YINELEM)) { (*ext)->arg_value = lyxml_get_attr(info->data.yin, e->argument, NULL); if (!(*ext)->arg_value) { LOGVAL(ctx, LYE_MISSARG, LY_VLOG_NONE, NULL, e->argument, info->data.yin->name); return -1; } (*ext)->arg_value = lydict_insert(mod->ctx, (*ext)->arg_value, 0); } else { LY_TREE_FOR_SAFE(info->data.yin->child, next_yin, yin) { if (ly_strequal(yin->name, e->argument, 1)) { (*ext)->arg_value = lydict_insert(mod->ctx, yin->content, 0); lyxml_free(mod->ctx, yin); break; } } } } if ((*ext)->flags & LYEXT_OPT_VALID && (info->parent_type == LYEXT_PAR_NODE || info->parent_type == LYEXT_PAR_TPDF)) { ((struct lys_node *)info->parent)->flags |= LYS_VALID_EXT; } (*ext)->nodetype = LYS_EXT; (*ext)->module = info->mod; /* extension type-specific part - parsing content */ switch (etype) { case LYEXT_FLAG: LY_TREE_FOR_SAFE(info->data.yin->child, next_yin, yin) { if (!yin->ns) { /* garbage */ lyxml_free(mod->ctx, yin); continue; } else if (!strcmp(yin->ns->value, LY_NSYIN)) { /* standard YANG statements are not expected here */ LOGVAL(ctx, LYE_INCHILDSTMT, vlog_type, vlog_node, yin->name, info->data.yin->name); return -1; } else if (yin->ns == info->data.yin->ns && (e->flags & LYS_YINELEM) && ly_strequal(yin->name, e->argument, 1)) { /* we have the extension's argument */ if ((*ext)->arg_value) { LOGVAL(ctx, LYE_TOOMANY, vlog_type, vlog_node, yin->name, info->data.yin->name); return -1; } (*ext)->arg_value = yin->content; yin->content = NULL; lyxml_free(mod->ctx, yin); } else { /* extension instance */ if (lyp_yin_parse_subnode_ext(info->mod, *ext, LYEXT_PAR_EXTINST, yin, LYEXT_SUBSTMT_SELF, 0, unres)) { return -1; } continue; } } break; case LYEXT_COMPLEX: ((struct lys_ext_instance_complex*)(*ext))->substmt = ((struct lyext_plugin_complex*)e->plugin)->substmt; if (lyp_yin_parse_complex_ext(info->mod, (struct lys_ext_instance_complex*)(*ext), info->data.yin, unres)) { /* TODO memory cleanup */ return -1; } break; default: break; } /* TODO - lyext_check_result_clb, other than LYEXT_FLAG plugins */ } else { /* YANG */ ext_prefix = (char *)(*ext)->def; tmp = strchr(ext_prefix, ':'); if (!tmp) { LOGVAL(ctx, LYE_INSTMT, vlog_type, vlog_node, ext_prefix); goto error; } ext_name = tmp + 1; /* get the module where the extension is supposed to be defined */ mod = lyp_get_module(info->mod, ext_prefix, tmp - ext_prefix, NULL, 0, 0); if (!mod) { LOGVAL(ctx, LYE_INSTMT, vlog_type, vlog_node, ext_prefix); return EXIT_FAILURE; } ctx = mod->ctx; /* find the extension definition */ e = NULL; for (i = 0; i < mod->extensions_size; i++) { if (ly_strequal(mod->extensions[i].name, ext_name, 0)) { e = &mod->extensions[i]; break; } } /* try submodules */ for (j = 0; !e && j < mod->inc_size; j++) { for (i = 0; i < mod->inc[j].submodule->extensions_size; i++) { if (ly_strequal(mod->inc[j].submodule->extensions[i].name, ext_name, 0)) { e = &mod->inc[j].submodule->extensions[i]; break; } } } if (!e) { LOGVAL(ctx, LYE_INSTMT, vlog_type, vlog_node, ext_prefix); return EXIT_FAILURE; } (*ext)->flags &= ~LYEXT_OPT_YANG; (*ext)->def = NULL; /* we have the extension definition, so now it cannot be forward referenced and error is always fatal */ if (e->plugin && e->plugin->check_position) { /* common part - we have plugin with position checking function, use it first */ if ((*e->plugin->check_position)(info->parent, info->parent_type, info->substmt)) { /* extension is not allowed here */ LOGVAL(ctx, LYE_INSTMT, vlog_type, vlog_node, e->name); goto error; } } /* extension common part */ (*ext)->def = e; (*ext)->parent = info->parent; (*ext)->ext_type = e->plugin ? e->plugin->type : LYEXT_FLAG; (*ext)->flags |= e->plugin ? e->plugin->flags : 0; if (e->argument && !(*ext)->arg_value) { LOGVAL(ctx, LYE_MISSARG, LY_VLOG_NONE, NULL, e->argument, ext_name); goto error; } if ((*ext)->flags & LYEXT_OPT_VALID && (info->parent_type == LYEXT_PAR_NODE || info->parent_type == LYEXT_PAR_TPDF)) { ((struct lys_node *)info->parent)->flags |= LYS_VALID_EXT; } (*ext)->module = info->mod; (*ext)->nodetype = LYS_EXT; /* extension type-specific part */ if (e->plugin) { etype = e->plugin->type; } else { /* default type */ etype = LYEXT_FLAG; } switch (etype) { case LYEXT_FLAG: /* nothing change */ break; case LYEXT_COMPLEX: tmp_ext = realloc(*ext, ((struct lyext_plugin_complex*)e->plugin)->instance_size); LY_CHECK_ERR_GOTO(!tmp_ext, LOGMEM(ctx), error); memset((char *)tmp_ext + offsetof(struct lys_ext_instance_complex, content), 0, ((struct lyext_plugin_complex*)e->plugin)->instance_size - offsetof(struct lys_ext_instance_complex, content)); (*ext) = tmp_ext; ((struct lys_ext_instance_complex*)(*ext))->substmt = ((struct lyext_plugin_complex*)e->plugin)->substmt; if (info->data.yang) { *tmp = ':'; if (yang_parse_ext_substatement(info->mod, unres, info->data.yang->ext_substmt, ext_prefix, (struct lys_ext_instance_complex*)(*ext))) { goto error; } if (yang_fill_extcomplex_module(info->mod->ctx, (struct lys_ext_instance_complex*)(*ext), ext_prefix, info->data.yang->ext_modules, info->mod->implemented)) { goto error; } } if (lyp_mand_check_ext((struct lys_ext_instance_complex*)(*ext), ext_prefix)) { goto error; } break; case LYEXT_ERR: /* we never should be here */ LOGINT(ctx); goto error; } if (yang_check_ext_instance(info->mod, &(*ext)->ext, (*ext)->ext_size, *ext, unres)) { goto error; } free(ext_prefix); } return EXIT_SUCCESS; error: free(ext_prefix); return -1; } /** * @brief Resolve (find) choice default case. Does not log. * * @param[in] choic Choice to use. * @param[in] dflt Name of the default case. * * @return Pointer to the default node or NULL. */ static struct lys_node * resolve_choice_dflt(struct lys_node_choice *choic, const char *dflt) { struct lys_node *child, *ret; LY_TREE_FOR(choic->child, child) { if (child->nodetype == LYS_USES) { ret = resolve_choice_dflt((struct lys_node_choice *)child, dflt); if (ret) { return ret; } } if (ly_strequal(child->name, dflt, 1) && (child->nodetype & (LYS_ANYDATA | LYS_CASE | LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST | LYS_LIST | LYS_CHOICE))) { return child; } } return NULL; } /** * @brief Resolve uses, apply augments, refines. Logs directly. * * @param[in] uses Uses to use. * @param[in,out] unres List of unresolved items. * * @return EXIT_SUCCESS on success, -1 on error. */ static int resolve_uses(struct lys_node_uses *uses, struct unres_schema *unres) { struct ly_ctx *ctx = uses->module->ctx; /* shortcut */ struct lys_node *node = NULL, *next, *iter, **refine_nodes = NULL; struct lys_node *node_aux, *parent, *tmp; struct lys_node_leaflist *llist; struct lys_node_leaf *leaf; struct lys_refine *rfn; struct lys_restr *must, **old_must; struct lys_iffeature *iff, **old_iff; int i, j, k, rc; uint8_t size, *old_size; unsigned int usize, usize1, usize2; assert(uses->grp); /* check that the grouping is resolved (no unresolved uses inside) */ assert(!uses->grp->unres_count); /* copy the data nodes from grouping into the uses context */ LY_TREE_FOR(uses->grp->child, node_aux) { if (node_aux->nodetype & LYS_GROUPING) { /* do not instantiate groupings from groupings */ continue; } node = lys_node_dup(uses->module, (struct lys_node *)uses, node_aux, unres, 0); if (!node) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, uses, uses->grp->name, "uses"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Copying data from grouping failed."); goto fail; } /* test the name of siblings */ LY_TREE_FOR((uses->parent) ? *lys_child(uses->parent, LYS_USES) : lys_main_module(uses->module)->data, tmp) { if (!(tmp->nodetype & (LYS_USES | LYS_GROUPING | LYS_CASE)) && ly_strequal(tmp->name, node_aux->name, 1)) { goto fail; } } } /* we managed to copy the grouping, the rest must be possible to resolve */ if (uses->refine_size) { refine_nodes = malloc(uses->refine_size * sizeof *refine_nodes); LY_CHECK_ERR_GOTO(!refine_nodes, LOGMEM(ctx), fail); } /* apply refines */ for (i = 0; i < uses->refine_size; i++) { rfn = &uses->refine[i]; rc = resolve_descendant_schema_nodeid(rfn->target_name, uses->child, LYS_NO_RPC_NOTIF_NODE | LYS_ACTION | LYS_NOTIF, 0, (const struct lys_node **)&node); if (rc || !node) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, uses, rfn->target_name, "refine"); goto fail; } if (rfn->target_type && !(node->nodetype & rfn->target_type)) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, uses, rfn->target_name, "refine"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Refine substatements not applicable to the target-node."); goto fail; } refine_nodes[i] = node; /* description on any nodetype */ if (rfn->dsc) { lydict_remove(ctx, node->dsc); node->dsc = lydict_insert(ctx, rfn->dsc, 0); } /* reference on any nodetype */ if (rfn->ref) { lydict_remove(ctx, node->ref); node->ref = lydict_insert(ctx, rfn->ref, 0); } /* config on any nodetype, * in case of notification or rpc/action, the config is not applicable (there is no config status) */ if ((rfn->flags & LYS_CONFIG_MASK) && (node->flags & LYS_CONFIG_MASK)) { node->flags &= ~LYS_CONFIG_MASK; node->flags |= (rfn->flags & LYS_CONFIG_MASK); } /* default value ... */ if (rfn->dflt_size) { if (node->nodetype == LYS_LEAF) { /* leaf */ leaf = (struct lys_node_leaf *)node; /* replace default value */ lydict_remove(ctx, leaf->dflt); leaf->dflt = lydict_insert(ctx, rfn->dflt[0], 0); /* check the default value */ if (unres_schema_add_node(leaf->module, unres, &leaf->type, UNRES_TYPE_DFLT, (struct lys_node *)(&leaf->dflt)) == -1) { goto fail; } } else if (node->nodetype == LYS_LEAFLIST) { /* leaf-list */ llist = (struct lys_node_leaflist *)node; /* remove complete set of defaults in target */ for (j = 0; j < llist->dflt_size; j++) { lydict_remove(ctx, llist->dflt[j]); } free(llist->dflt); /* copy the default set from refine */ llist->dflt = malloc(rfn->dflt_size * sizeof *llist->dflt); LY_CHECK_ERR_GOTO(!llist->dflt, LOGMEM(ctx), fail); llist->dflt_size = rfn->dflt_size; for (j = 0; j < llist->dflt_size; j++) { llist->dflt[j] = lydict_insert(ctx, rfn->dflt[j], 0); } /* check default value */ for (j = 0; j < llist->dflt_size; j++) { if (unres_schema_add_node(llist->module, unres, &llist->type, UNRES_TYPE_DFLT, (struct lys_node *)(&llist->dflt[j])) == -1) { goto fail; } } } } /* mandatory on leaf, anyxml or choice */ if (rfn->flags & LYS_MAND_MASK) { /* remove current value */ node->flags &= ~LYS_MAND_MASK; /* set new value */ node->flags |= (rfn->flags & LYS_MAND_MASK); if (rfn->flags & LYS_MAND_TRUE) { /* check if node has default value */ if ((node->nodetype & LYS_LEAF) && ((struct lys_node_leaf *)node)->dflt) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, uses, "The \"mandatory\" statement is forbidden on leaf with \"default\"."); goto fail; } if ((node->nodetype & LYS_CHOICE) && ((struct lys_node_choice *)node)->dflt) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, uses, "The \"mandatory\" statement is forbidden on choices with \"default\"."); goto fail; } } } /* presence on container */ if ((node->nodetype & LYS_CONTAINER) && rfn->mod.presence) { lydict_remove(ctx, ((struct lys_node_container *)node)->presence); ((struct lys_node_container *)node)->presence = lydict_insert(ctx, rfn->mod.presence, 0); } /* min/max-elements on list or leaf-list */ if (node->nodetype == LYS_LIST) { if (rfn->flags & LYS_RFN_MINSET) { ((struct lys_node_list *)node)->min = rfn->mod.list.min; } if (rfn->flags & LYS_RFN_MAXSET) { ((struct lys_node_list *)node)->max = rfn->mod.list.max; } } else if (node->nodetype == LYS_LEAFLIST) { if (rfn->flags & LYS_RFN_MINSET) { ((struct lys_node_leaflist *)node)->min = rfn->mod.list.min; } if (rfn->flags & LYS_RFN_MAXSET) { ((struct lys_node_leaflist *)node)->max = rfn->mod.list.max; } } /* must in leaf, leaf-list, list, container or anyxml */ if (rfn->must_size) { switch (node->nodetype) { case LYS_LEAF: old_size = &((struct lys_node_leaf *)node)->must_size; old_must = &((struct lys_node_leaf *)node)->must; break; case LYS_LEAFLIST: old_size = &((struct lys_node_leaflist *)node)->must_size; old_must = &((struct lys_node_leaflist *)node)->must; break; case LYS_LIST: old_size = &((struct lys_node_list *)node)->must_size; old_must = &((struct lys_node_list *)node)->must; break; case LYS_CONTAINER: old_size = &((struct lys_node_container *)node)->must_size; old_must = &((struct lys_node_container *)node)->must; break; case LYS_ANYXML: case LYS_ANYDATA: old_size = &((struct lys_node_anydata *)node)->must_size; old_must = &((struct lys_node_anydata *)node)->must; break; default: LOGINT(ctx); goto fail; } size = *old_size + rfn->must_size; must = realloc(*old_must, size * sizeof *rfn->must); LY_CHECK_ERR_GOTO(!must, LOGMEM(ctx), fail); for (k = 0, j = *old_size; k < rfn->must_size; k++, j++) { must[j].ext_size = rfn->must[k].ext_size; lys_ext_dup(ctx, rfn->module, rfn->must[k].ext, rfn->must[k].ext_size, &rfn->must[k], LYEXT_PAR_RESTR, &must[j].ext, 0, unres); must[j].expr = lydict_insert(ctx, rfn->must[k].expr, 0); must[j].dsc = lydict_insert(ctx, rfn->must[k].dsc, 0); must[j].ref = lydict_insert(ctx, rfn->must[k].ref, 0); must[j].eapptag = lydict_insert(ctx, rfn->must[k].eapptag, 0); must[j].emsg = lydict_insert(ctx, rfn->must[k].emsg, 0); must[j].flags = rfn->must[k].flags; } *old_must = must; *old_size = size; /* check XPath dependencies again */ if (unres_schema_add_node(node->module, unres, node, UNRES_XPATH, NULL) == -1) { goto fail; } } /* if-feature in leaf, leaf-list, list, container or anyxml */ if (rfn->iffeature_size) { old_size = &node->iffeature_size; old_iff = &node->iffeature; size = *old_size + rfn->iffeature_size; iff = realloc(*old_iff, size * sizeof *rfn->iffeature); LY_CHECK_ERR_GOTO(!iff, LOGMEM(ctx), fail); *old_iff = iff; for (k = 0, j = *old_size; k < rfn->iffeature_size; k++, j++) { resolve_iffeature_getsizes(&rfn->iffeature[k], &usize1, &usize2); if (usize1) { /* there is something to duplicate */ /* duplicate compiled expression */ usize = (usize1 / 4) + (usize1 % 4) ? 1 : 0; iff[j].expr = malloc(usize * sizeof *iff[j].expr); LY_CHECK_ERR_GOTO(!iff[j].expr, LOGMEM(ctx), fail); memcpy(iff[j].expr, rfn->iffeature[k].expr, usize * sizeof *iff[j].expr); /* duplicate list of feature pointers */ iff[j].features = malloc(usize2 * sizeof *iff[k].features); LY_CHECK_ERR_GOTO(!iff[j].expr, LOGMEM(ctx), fail); memcpy(iff[j].features, rfn->iffeature[k].features, usize2 * sizeof *iff[j].features); /* duplicate extensions */ iff[j].ext_size = rfn->iffeature[k].ext_size; lys_ext_dup(ctx, rfn->module, rfn->iffeature[k].ext, rfn->iffeature[k].ext_size, &rfn->iffeature[k], LYEXT_PAR_IFFEATURE, &iff[j].ext, 0, unres); } (*old_size)++; } assert(*old_size == size); } } /* apply augments */ for (i = 0; i < uses->augment_size; i++) { rc = resolve_augment(&uses->augment[i], (struct lys_node *)uses, unres); if (rc) { goto fail; } } /* check refines */ for (i = 0; i < uses->refine_size; i++) { node = refine_nodes[i]; rfn = &uses->refine[i]; /* config on any nodetype */ if ((rfn->flags & LYS_CONFIG_MASK) && (node->flags & LYS_CONFIG_MASK)) { for (parent = lys_parent(node); parent && parent->nodetype == LYS_USES; parent = lys_parent(parent)); if (parent && parent->nodetype != LYS_GROUPING && (parent->flags & LYS_CONFIG_MASK) && ((parent->flags & LYS_CONFIG_MASK) != (rfn->flags & LYS_CONFIG_MASK)) && (rfn->flags & LYS_CONFIG_W)) { /* setting config true under config false is prohibited */ LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, uses, "config", "refine"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "changing config from 'false' to 'true' is prohibited while " "the target's parent is still config 'false'."); goto fail; } /* inherit config change to the target children */ LY_TREE_DFS_BEGIN(node->child, next, iter) { if (rfn->flags & LYS_CONFIG_W) { if (iter->flags & LYS_CONFIG_SET) { /* config is set explicitely, go to next sibling */ next = NULL; goto nextsibling; } } else { /* LYS_CONFIG_R */ if ((iter->flags & LYS_CONFIG_SET) && (iter->flags & LYS_CONFIG_W)) { /* error - we would have config data under status data */ LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, uses, "config", "refine"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "changing config from 'true' to 'false' is prohibited while the target " "has still a children with explicit config 'true'."); goto fail; } } /* change config */ iter->flags &= ~LYS_CONFIG_MASK; iter->flags |= (rfn->flags & LYS_CONFIG_MASK); /* select next iter - modified LY_TREE_DFS_END */ if (iter->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { next = NULL; } else { next = iter->child; } nextsibling: if (!next) { /* try siblings */ next = iter->next; } while (!next) { /* parent is already processed, go to its sibling */ iter = lys_parent(iter); /* no siblings, go back through parents */ if (iter == node) { /* we are done, no next element to process */ break; } next = iter->next; } } } /* default value */ if (rfn->dflt_size) { if (node->nodetype == LYS_CHOICE) { /* choice */ ((struct lys_node_choice *)node)->dflt = resolve_choice_dflt((struct lys_node_choice *)node, rfn->dflt[0]); if (!((struct lys_node_choice *)node)->dflt) { LOGVAL(ctx, LYE_INARG, LY_VLOG_LYS, uses, rfn->dflt[0], "default"); goto fail; } if (lyp_check_mandatory_choice(node)) { goto fail; } } } /* min/max-elements on list or leaf-list */ if (node->nodetype == LYS_LIST && ((struct lys_node_list *)node)->max) { if (((struct lys_node_list *)node)->min > ((struct lys_node_list *)node)->max) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, uses, "Invalid value \"%d\" of \"%s\".", rfn->mod.list.min, "min-elements"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "\"min-elements\" is bigger than \"max-elements\"."); goto fail; } } else if (node->nodetype == LYS_LEAFLIST && ((struct lys_node_leaflist *)node)->max) { if (((struct lys_node_leaflist *)node)->min > ((struct lys_node_leaflist *)node)->max) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYS, uses, "Invalid value \"%d\" of \"%s\".", rfn->mod.list.min, "min-elements"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "\"min-elements\" is bigger than \"max-elements\"."); goto fail; } } /* additional checks */ /* default value with mandatory/min-elements */ if (node->nodetype == LYS_LEAFLIST) { llist = (struct lys_node_leaflist *)node; if (llist->dflt_size && llist->min) { LOGVAL(ctx, LYE_INCHILDSTMT, LY_VLOG_LYS, uses, rfn->dflt_size ? "default" : "min-elements", "refine"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "The \"min-elements\" statement with non-zero value is forbidden on leaf-lists with the \"default\" statement."); goto fail; } } else if (node->nodetype == LYS_LEAF) { leaf = (struct lys_node_leaf *)node; if (leaf->dflt && (leaf->flags & LYS_MAND_TRUE)) { LOGVAL(ctx, LYE_INCHILDSTMT, LY_VLOG_LYS, uses, rfn->dflt_size ? "default" : "mandatory", "refine"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "The \"mandatory\" statement is forbidden on leafs with the \"default\" statement."); goto fail; } } /* check for mandatory node in default case, first find the closest parent choice to the changed node */ if ((rfn->flags & LYS_MAND_TRUE) || rfn->mod.list.min) { for (parent = node->parent; parent && !(parent->nodetype & (LYS_CHOICE | LYS_GROUPING | LYS_ACTION | LYS_USES)); parent = parent->parent) { if (parent->nodetype == LYS_CONTAINER && ((struct lys_node_container *)parent)->presence) { /* stop also on presence containers */ break; } } /* and if it is a choice with the default case, check it for presence of a mandatory node in it */ if (parent && parent->nodetype == LYS_CHOICE && ((struct lys_node_choice *)parent)->dflt) { if (lyp_check_mandatory_choice(parent)) { goto fail; } } } } free(refine_nodes); return EXIT_SUCCESS; fail: LY_TREE_FOR_SAFE(uses->child, next, iter) { lys_node_free(iter, NULL, 0); } free(refine_nodes); return -1; } void resolve_identity_backlink_update(struct lys_ident *der, struct lys_ident *base) { int i; assert(der && base); if (!base->der) { /* create a set for backlinks if it does not exist */ base->der = ly_set_new(); } /* store backlink */ ly_set_add(base->der, der, LY_SET_OPT_USEASLIST); /* do it recursively */ for (i = 0; i < base->base_size; i++) { resolve_identity_backlink_update(der, base->base[i]); } } /** * @brief Resolve base identity recursively. Does not log. * * @param[in] module Main module. * @param[in] ident Identity to use. * @param[in] basename Base name of the identity. * @param[out] ret Pointer to the resolved identity. Can be NULL. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on crucial error. */ static int resolve_base_ident_sub(const struct lys_module *module, struct lys_ident *ident, const char *basename, struct unres_schema *unres, struct lys_ident **ret) { uint32_t i, j; struct lys_ident *base = NULL; struct ly_ctx *ctx = module->ctx; assert(ret); /* search module */ for (i = 0; i < module->ident_size; i++) { if (!strcmp(basename, module->ident[i].name)) { if (!ident) { /* just search for type, so do not modify anything, just return * the base identity pointer */ *ret = &module->ident[i]; return EXIT_SUCCESS; } base = &module->ident[i]; goto matchfound; } } /* search submodules */ for (j = 0; j < module->inc_size && module->inc[j].submodule; j++) { for (i = 0; i < module->inc[j].submodule->ident_size; i++) { if (!strcmp(basename, module->inc[j].submodule->ident[i].name)) { if (!ident) { *ret = &module->inc[j].submodule->ident[i]; return EXIT_SUCCESS; } base = &module->inc[j].submodule->ident[i]; goto matchfound; } } } matchfound: /* we found it somewhere */ if (base) { /* is it already completely resolved? */ for (i = 0; i < unres->count; i++) { if ((unres->item[i] == base) && (unres->type[i] == UNRES_IDENT)) { /* identity found, but not yet resolved, so do not return it in *res and try it again later */ /* simple check for circular reference, * the complete check is done as a side effect of using only completely * resolved identities (previous check of unres content) */ if (ly_strequal((const char *)unres->str_snode[i], ident->name, 1)) { LOGVAL(ctx, LYE_INARG, LY_VLOG_NONE, NULL, basename, "base"); LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Circular reference of \"%s\" identity.", basename); return -1; } return EXIT_FAILURE; } } /* checks done, store the result */ *ret = base; return EXIT_SUCCESS; } /* base not found (maybe a forward reference) */ return EXIT_FAILURE; } /** * @brief Resolve base identity. Logs directly. * * @param[in] module Main module. * @param[in] ident Identity to use. * @param[in] basename Base name of the identity. * @param[in] parent Either "type" or "identity". * @param[in,out] type Type structure where we want to resolve identity. Can be NULL. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int resolve_base_ident(const struct lys_module *module, struct lys_ident *ident, const char *basename, const char *parent, struct lys_type *type, struct unres_schema *unres) { const char *name; int mod_name_len = 0, rc; struct lys_ident *target, **ret; uint16_t flags; struct lys_module *mod; struct ly_ctx *ctx = module->ctx; assert((ident && !type) || (!ident && type)); if (!type) { /* have ident to resolve */ ret = ⌖ flags = ident->flags; mod = ident->module; } else { /* have type to fill */ ++type->info.ident.count; type->info.ident.ref = ly_realloc(type->info.ident.ref, type->info.ident.count * sizeof *type->info.ident.ref); LY_CHECK_ERR_RETURN(!type->info.ident.ref, LOGMEM(ctx), -1); ret = &type->info.ident.ref[type->info.ident.count - 1]; flags = type->parent->flags; mod = type->parent->module; } *ret = NULL; /* search for the base identity */ name = strchr(basename, ':'); if (name) { /* set name to correct position after colon */ mod_name_len = name - basename; name++; if (!strncmp(basename, module->name, mod_name_len) && !module->name[mod_name_len]) { /* prefix refers to the current module, ignore it */ mod_name_len = 0; } } else { name = basename; } /* get module where to search */ module = lyp_get_module(module, NULL, 0, mod_name_len ? basename : NULL, mod_name_len, 0); if (!module) { /* identity refers unknown data model */ LOGVAL(ctx, LYE_INMOD, LY_VLOG_NONE, NULL, basename); return -1; } /* search in the identified module ... */ rc = resolve_base_ident_sub(module, ident, name, unres, ret); if (!rc) { assert(*ret); /* check status */ if (lyp_check_status(flags, mod, ident ? ident->name : "of type", (*ret)->flags, (*ret)->module, (*ret)->name, NULL)) { rc = -1; } else if (ident) { ident->base[ident->base_size++] = *ret; if (lys_main_module(mod)->implemented) { /* in case of the implemented identity, maintain backlinks to it * from the base identities to make it available when resolving * data with the identity values (not implemented identity is not * allowed as an identityref value). */ resolve_identity_backlink_update(ident, *ret); } } } else if (rc == EXIT_FAILURE) { LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_NONE, NULL, parent, basename); if (type) { --type->info.ident.count; } } return rc; } /* * 1 - true (der is derived from base) * 0 - false (der is not derived from base) */ static int search_base_identity(struct lys_ident *der, struct lys_ident *base) { int i; if (der == base) { return 1; } else { for(i = 0; i < der->base_size; i++) { if (search_base_identity(der->base[i], base) == 1) { return 1; } } } return 0; } /** * @brief Resolve JSON data format identityref. Logs directly. * * @param[in] type Identityref type. * @param[in] ident_name Identityref name. * @param[in] node Node where the identityref is being resolved * @param[in] dflt flag if we are resolving default value in the schema * * @return Pointer to the identity resolvent, NULL on error. */ struct lys_ident * resolve_identref(struct lys_type *type, const char *ident_name, struct lyd_node *node, struct lys_module *mod, int dflt) { const char *mod_name, *name; char *str; int mod_name_len, nam_len, rc; int need_implemented = 0; unsigned int i, j; struct lys_ident *der, *cur; struct lys_module *imod = NULL, *m, *tmod; struct ly_ctx *ctx; assert(type && ident_name && mod); ctx = mod->ctx; if (!type || (!type->info.ident.count && !type->der) || !ident_name) { return NULL; } rc = parse_node_identifier(ident_name, &mod_name, &mod_name_len, &name, &nam_len, NULL, 0); if (rc < 1) { LOGVAL(ctx, LYE_INCHAR, node ? LY_VLOG_LYD : LY_VLOG_NONE, node, ident_name[-rc], &ident_name[-rc]); return NULL; } else if (rc < (signed)strlen(ident_name)) { LOGVAL(ctx, LYE_INCHAR, node ? LY_VLOG_LYD : LY_VLOG_NONE, node, ident_name[rc], &ident_name[rc]); return NULL; } m = lys_main_module(mod); /* shortcut */ if (!mod_name || (!strncmp(mod_name, m->name, mod_name_len) && !m->name[mod_name_len])) { /* identity is defined in the same module as node */ imod = m; } else if (dflt) { /* solving identityref in default definition in schema - * find the identity's module in the imported modules list to have a correct revision */ for (i = 0; i < mod->imp_size; i++) { if (!strncmp(mod_name, mod->imp[i].module->name, mod_name_len) && !mod->imp[i].module->name[mod_name_len]) { imod = mod->imp[i].module; break; } } /* We may need to pull it from the module that the typedef came from */ if (!imod && type && type->der) { tmod = type->der->module; for (i = 0; i < tmod->imp_size; i++) { if (!strncmp(mod_name, tmod->imp[i].module->name, mod_name_len) && !tmod->imp[i].module->name[mod_name_len]) { imod = tmod->imp[i].module; break; } } } } else { /* solving identityref in data - get the module from the context */ for (i = 0; i < (unsigned)mod->ctx->models.used; ++i) { imod = mod->ctx->models.list[i]; if (!strncmp(mod_name, imod->name, mod_name_len) && !imod->name[mod_name_len]) { break; } imod = NULL; } if (!imod && mod->ctx->models.parsing_sub_modules_count) { /* we are currently parsing some module and checking XPath or a default value, * so take this module into account */ for (i = 0; i < mod->ctx->models.parsing_sub_modules_count; i++) { imod = mod->ctx->models.parsing_sub_modules[i]; if (imod->type) { /* skip submodules */ continue; } if (!strncmp(mod_name, imod->name, mod_name_len) && !imod->name[mod_name_len]) { break; } imod = NULL; } } } if (!dflt && (!imod || !imod->implemented) && ctx->data_clb) { /* the needed module was not found, but it may have been expected so call the data callback */ if (imod) { ctx->data_clb(ctx, imod->name, imod->ns, LY_MODCLB_NOT_IMPLEMENTED, ctx->data_clb_data); } else if (mod_name) { str = strndup(mod_name, mod_name_len); imod = (struct lys_module *)ctx->data_clb(ctx, str, NULL, 0, ctx->data_clb_data); free(str); } } if (!imod) { goto fail; } if (m != imod || lys_main_module(type->parent->module) != mod) { /* the type is not referencing the same schema, * THEN, we may need to make the module with the identity implemented, but only if it really * contains the identity */ if (!imod->implemented) { cur = NULL; /* get the identity in the module */ for (i = 0; i < imod->ident_size; i++) { if (!strcmp(name, imod->ident[i].name)) { cur = &imod->ident[i]; break; } } if (!cur) { /* go through includes */ for (j = 0; j < imod->inc_size; j++) { for (i = 0; i < imod->inc[j].submodule->ident_size; i++) { if (!strcmp(name, imod->inc[j].submodule->ident[i].name)) { cur = &imod->inc[j].submodule->ident[i]; break; } } } if (!cur) { goto fail; } } /* check that identity is derived from one of the type's base */ while (type->der) { for (i = 0; i < type->info.ident.count; i++) { if (search_base_identity(cur, type->info.ident.ref[i])) { /* cur's base matches the type's base */ need_implemented = 1; goto match; } } type = &type->der->type; } /* matching base not found */ LOGVAL(ctx, LYE_SPEC, node ? LY_VLOG_LYD : LY_VLOG_NONE, node, "Identity used as identityref value is not implemented."); goto fail; } } /* go through all the derived types of all the bases */ while (type->der) { for (i = 0; i < type->info.ident.count; ++i) { cur = type->info.ident.ref[i]; if (cur->der) { /* there are some derived identities */ for (j = 0; j < cur->der->number; j++) { der = (struct lys_ident *)cur->der->set.g[j]; /* shortcut */ if (!strcmp(der->name, name) && lys_main_module(der->module) == imod) { /* we have match */ cur = der; goto match; } } } } type = &type->der->type; } fail: LOGVAL(ctx, LYE_INRESOLV, node ? LY_VLOG_LYD : LY_VLOG_NONE, node, "identityref", ident_name); return NULL; match: for (i = 0; i < cur->iffeature_size; i++) { if (!resolve_iffeature(&cur->iffeature[i])) { if (node) { LOGVAL(ctx, LYE_INVAL, LY_VLOG_LYD, node, cur->name, node->schema->name); } LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Identity \"%s\" is disabled by its if-feature condition.", cur->name); return NULL; } } if (need_implemented) { if (dflt) { /* later try to make the module implemented */ LOGVRB("Making \"%s\" module implemented because of identityref default value \"%s\" used in the implemented \"%s\" module", imod->name, cur->name, mod->name); /* to be more effective we should use UNRES_MOD_IMPLEMENT but that would require changing prototype of * several functions with little gain */ if (lys_set_implemented(imod)) { LOGERR(ctx, ly_errno, "Setting the module \"%s\" implemented because of used default identity \"%s\" failed.", imod->name, cur->name); goto fail; } } else { /* just say that it was found, but in a non-implemented module */ LOGVAL(ctx, LYE_SPEC, LY_VLOG_NONE, NULL, "Identity found, but in a non-implemented module \"%s\".", lys_main_module(cur->module)->name); goto fail; } } return cur; } /** * @brief Resolve unresolved uses. Logs directly. * * @param[in] uses Uses to use. * @param[in] unres Specific unres item. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int resolve_unres_schema_uses(struct lys_node_uses *uses, struct unres_schema *unres) { int rc; struct lys_node *par_grp; struct ly_ctx *ctx = uses->module->ctx; /* HACK: when a grouping has uses inside, all such uses have to be resolved before the grouping itself is used * in some uses. When we see such a uses, the grouping's unres counter is used to store number of so far * unresolved uses. The grouping cannot be used unless this counter is decreased back to 0. To remember * that the uses already increased grouping's counter, the LYS_USESGRP flag is used. */ for (par_grp = lys_parent((struct lys_node *)uses); par_grp && (par_grp->nodetype != LYS_GROUPING); par_grp = lys_parent(par_grp)); if (par_grp && ly_strequal(par_grp->name, uses->name, 1)) { LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_LYS, uses, "uses", uses->name); return -1; } if (!uses->grp) { rc = resolve_uses_schema_nodeid(uses->name, (const struct lys_node *)uses, (const struct lys_node_grp **)&uses->grp); if (rc == -1) { LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_LYS, uses, "uses", uses->name); return -1; } else if (rc > 0) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_LYS, uses, uses->name[rc - 1], &uses->name[rc - 1]); return -1; } else if (!uses->grp) { if (par_grp && !(uses->flags & LYS_USESGRP)) { if (++((struct lys_node_grp *)par_grp)->unres_count == 0) { LOGERR(ctx, LY_EINT, "Too many unresolved items (uses) inside a grouping."); return -1; } uses->flags |= LYS_USESGRP; } LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_LYS, uses, "uses", uses->name); return EXIT_FAILURE; } } if (uses->grp->unres_count) { if (par_grp && !(uses->flags & LYS_USESGRP)) { if (++((struct lys_node_grp *)par_grp)->unres_count == 0) { LOGERR(ctx, LY_EINT, "Too many unresolved items (uses) inside a grouping."); return -1; } uses->flags |= LYS_USESGRP; } else { /* instantiate grouping only when it is completely resolved */ uses->grp = NULL; } LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_LYS, uses, "uses", uses->name); return EXIT_FAILURE; } rc = resolve_uses(uses, unres); if (!rc) { /* decrease unres count only if not first try */ if (par_grp && (uses->flags & LYS_USESGRP)) { assert(((struct lys_node_grp *)par_grp)->unres_count); ((struct lys_node_grp *)par_grp)->unres_count--; uses->flags &= ~LYS_USESGRP; } /* check status */ if (lyp_check_status(uses->flags, uses->module, "of uses", uses->grp->flags, uses->grp->module, uses->grp->name, (struct lys_node *)uses)) { return -1; } return EXIT_SUCCESS; } return rc; } /** * @brief Resolve list keys. Logs directly. * * @param[in] list List to use. * @param[in] keys_str Keys node value. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int resolve_list_keys(struct lys_node_list *list, const char *keys_str) { int i, len, rc; const char *value; char *s = NULL; struct ly_ctx *ctx = list->module->ctx; for (i = 0; i < list->keys_size; ++i) { assert(keys_str); if (!list->child) { /* no child, possible forward reference */ LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_LYS, list, "list keys", keys_str); return EXIT_FAILURE; } /* get the key name */ if ((value = strpbrk(keys_str, " \t\n"))) { len = value - keys_str; while (isspace(value[0])) { value++; } } else { len = strlen(keys_str); } rc = lys_getnext_data(lys_node_module((struct lys_node *)list), (struct lys_node *)list, keys_str, len, LYS_LEAF, (const struct lys_node **)&list->keys[i]); if (rc) { LOGVAL(ctx, LYE_INRESOLV, LY_VLOG_LYS, list, "list key", keys_str); return EXIT_FAILURE; } if (check_key(list, i, keys_str, len)) { /* check_key logs */ return -1; } /* check status */ if (lyp_check_status(list->flags, list->module, list->name, list->keys[i]->flags, list->keys[i]->module, list->keys[i]->name, (struct lys_node *)list->keys[i])) { return -1; } /* default value - is ignored, keep it but print a warning */ if (list->keys[i]->dflt) { /* log is not hidden only in case this resolving fails and in such a case * we cannot get here */ assert(log_opt == ILO_STORE); log_opt = ILO_LOG; LOGWRN(ctx, "Default value \"%s\" in the list key \"%s\" is ignored. (%s)", list->keys[i]->dflt, list->keys[i]->name, s = lys_path((struct lys_node*)list, LYS_PATH_FIRST_PREFIX)); log_opt = ILO_STORE; free(s); } /* prepare for next iteration */ while (value && isspace(value[0])) { value++; } keys_str = value; } return EXIT_SUCCESS; } /** * @brief Resolve (check) all must conditions of \p node. * Logs directly. * * @param[in] node Data node with optional must statements. * @param[in] inout_parent If set, must in input or output parent of node->schema will be resolved. * * @return EXIT_SUCCESS on pass, EXIT_FAILURE on fail, -1 on error. */ static int resolve_must(struct lyd_node *node, int inout_parent, int ignore_fail) { uint8_t i, must_size; struct lys_node *schema; struct lys_restr *must; struct lyxp_set set; struct ly_ctx *ctx = node->schema->module->ctx; assert(node); memset(&set, 0, sizeof set); if (inout_parent) { for (schema = lys_parent(node->schema); schema && (schema->nodetype & (LYS_CHOICE | LYS_CASE | LYS_USES)); schema = lys_parent(schema)); if (!schema || !(schema->nodetype & (LYS_INPUT | LYS_OUTPUT))) { LOGINT(ctx); return -1; } must_size = ((struct lys_node_inout *)schema)->must_size; must = ((struct lys_node_inout *)schema)->must; /* context node is the RPC/action */ node = node->parent; if (!(node->schema->nodetype & (LYS_RPC | LYS_ACTION))) { LOGINT(ctx); return -1; } } else { switch (node->schema->nodetype) { case LYS_CONTAINER: must_size = ((struct lys_node_container *)node->schema)->must_size; must = ((struct lys_node_container *)node->schema)->must; break; case LYS_LEAF: must_size = ((struct lys_node_leaf *)node->schema)->must_size; must = ((struct lys_node_leaf *)node->schema)->must; break; case LYS_LEAFLIST: must_size = ((struct lys_node_leaflist *)node->schema)->must_size; must = ((struct lys_node_leaflist *)node->schema)->must; break; case LYS_LIST: must_size = ((struct lys_node_list *)node->schema)->must_size; must = ((struct lys_node_list *)node->schema)->must; break; case LYS_ANYXML: case LYS_ANYDATA: must_size = ((struct lys_node_anydata *)node->schema)->must_size; must = ((struct lys_node_anydata *)node->schema)->must; break; case LYS_NOTIF: must_size = ((struct lys_node_notif *)node->schema)->must_size; must = ((struct lys_node_notif *)node->schema)->must; break; default: must_size = 0; break; } } for (i = 0; i < must_size; ++i) { if (lyxp_eval(must[i].expr, node, LYXP_NODE_ELEM, lyd_node_module(node), &set, LYXP_MUST)) { return -1; } lyxp_set_cast(&set, LYXP_SET_BOOLEAN, node, lyd_node_module(node), LYXP_MUST); if (!set.val.bool) { if ((ignore_fail == 1) || ((must[i].flags & (LYS_XPCONF_DEP | LYS_XPSTATE_DEP)) && (ignore_fail == 2))) { LOGVRB("Must condition \"%s\" not satisfied, but it is not required.", must[i].expr); } else { LOGVAL(ctx, LYE_NOMUST, LY_VLOG_LYD, node, must[i].expr); if (must[i].emsg) { ly_vlog_str(ctx, LY_VLOG_PREV, must[i].emsg); } if (must[i].eapptag) { ly_err_last_set_apptag(ctx, must[i].eapptag); } return 1; } } } return EXIT_SUCCESS; } /** * @brief Resolve (find) when condition schema context node. Does not log. * * @param[in] schema Schema node with the when condition. * @param[out] ctx_snode When schema context node. * @param[out] ctx_snode_type Schema context node type. */ void resolve_when_ctx_snode(const struct lys_node *schema, struct lys_node **ctx_snode, enum lyxp_node_type *ctx_snode_type) { const struct lys_node *sparent; /* find a not schema-only node */ *ctx_snode_type = LYXP_NODE_ELEM; while (schema->nodetype & (LYS_USES | LYS_CHOICE | LYS_CASE | LYS_AUGMENT | LYS_INPUT | LYS_OUTPUT)) { if (schema->nodetype == LYS_AUGMENT) { sparent = ((struct lys_node_augment *)schema)->target; } else { sparent = schema->parent; } if (!sparent) { /* context node is the document root (fake root in our case) */ if (schema->flags & LYS_CONFIG_W) { *ctx_snode_type = LYXP_NODE_ROOT_CONFIG; } else { *ctx_snode_type = LYXP_NODE_ROOT; } /* we need the first top-level sibling, but no uses or groupings */ schema = lys_getnext(NULL, NULL, lys_node_module(schema), LYS_GETNEXT_NOSTATECHECK); break; } schema = sparent; } *ctx_snode = (struct lys_node *)schema; } /** * @brief Resolve (find) when condition context node. Does not log. * * @param[in] node Data node, whose conditional definition is being decided. * @param[in] schema Schema node with the when condition. * @param[out] ctx_node Context node. * @param[out] ctx_node_type Context node type. * * @return EXIT_SUCCESS on success, -1 on error. */ static int resolve_when_ctx_node(struct lyd_node *node, struct lys_node *schema, struct lyd_node **ctx_node, enum lyxp_node_type *ctx_node_type) { struct lyd_node *parent; struct lys_node *sparent; enum lyxp_node_type node_type; uint16_t i, data_depth, schema_depth; resolve_when_ctx_snode(schema, &schema, &node_type); if (node_type == LYXP_NODE_ELEM) { /* standard element context node */ for (parent = node, data_depth = 0; parent; parent = parent->parent, ++data_depth); for (sparent = schema, schema_depth = 0; sparent; sparent = (sparent->nodetype == LYS_AUGMENT ? ((struct lys_node_augment *)sparent)->target : sparent->parent)) { if (sparent->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST | LYS_LIST | LYS_ANYDATA | LYS_NOTIF | LYS_RPC)) { ++schema_depth; } } if (data_depth < schema_depth) { return -1; } /* find the corresponding data node */ for (i = 0; i < data_depth - schema_depth; ++i) { node = node->parent; } if (node->schema != schema) { return -1; } } else { /* root context node */ while (node->parent) { node = node->parent; } while (node->prev->next) { node = node->prev; } } *ctx_node = node; *ctx_node_type = node_type; return EXIT_SUCCESS; } /** * @brief Temporarily unlink nodes as per YANG 1.1 RFC section 7.21.5 for when XPath evaluation. * The context node is adjusted if needed. * * @param[in] snode Schema node, whose children instances need to be unlinked. * @param[in,out] node Data siblings where to look for the children of \p snode. If it is unlinked, * it is moved to point to another sibling still in the original tree. * @param[in,out] ctx_node When context node, adjusted if needed. * @param[in] ctx_node_type Context node type, just for information to detect invalid situations. * @param[out] unlinked_nodes Unlinked siblings. Can be safely appended to \p node afterwards. * Ordering may change, but there will be no semantic change. * * @return EXIT_SUCCESS on success, -1 on error. */ static int resolve_when_unlink_nodes(struct lys_node *snode, struct lyd_node **node, struct lyd_node **ctx_node, enum lyxp_node_type ctx_node_type, struct lyd_node **unlinked_nodes) { struct lyd_node *next, *elem; const struct lys_node *slast; struct ly_ctx *ctx = snode->module->ctx; switch (snode->nodetype) { case LYS_AUGMENT: case LYS_USES: case LYS_CHOICE: case LYS_CASE: slast = NULL; while ((slast = lys_getnext(slast, snode, NULL, LYS_GETNEXT_PARENTUSES))) { if (slast->nodetype & (LYS_ACTION | LYS_NOTIF)) { continue; } if (resolve_when_unlink_nodes((struct lys_node *)slast, node, ctx_node, ctx_node_type, unlinked_nodes)) { return -1; } } break; case LYS_CONTAINER: case LYS_LIST: case LYS_LEAF: case LYS_LEAFLIST: case LYS_ANYXML: case LYS_ANYDATA: LY_TREE_FOR_SAFE(lyd_first_sibling(*node), next, elem) { if (elem->schema == snode) { if (elem == *ctx_node) { /* We are going to unlink our context node! This normally cannot happen, * but we use normal top-level data nodes for faking a document root node, * so if this is the context node, we just use the next top-level node. * Additionally, it can even happen that there are no top-level data nodes left, * all were unlinked, so in this case we pass NULL as the context node/data tree, * lyxp_eval() can handle this special situation. */ if (ctx_node_type == LYXP_NODE_ELEM) { LOGINT(ctx); return -1; } if (elem->prev == elem) { /* unlinking last top-level element, use an empty data tree */ *ctx_node = NULL; } else { /* in this case just use the previous/last top-level data node */ *ctx_node = elem->prev; } } else if (elem == *node) { /* We are going to unlink the currently processed node. This does not matter that * much, but we would lose access to the original data tree, so just move our * pointer somewhere still inside it. */ if ((*node)->prev != *node) { *node = (*node)->prev; } else { /* the processed node with sibings were all unlinked, oh well */ *node = NULL; } } /* temporarily unlink the node */ lyd_unlink_internal(elem, 0); if (*unlinked_nodes) { if (lyd_insert_after((*unlinked_nodes)->prev, elem)) { LOGINT(ctx); return -1; } } else { *unlinked_nodes = elem; } if (snode->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_ANYDATA)) { /* there can be only one instance */ break; } } } break; default: LOGINT(ctx); return -1; } return EXIT_SUCCESS; } /** * @brief Relink the unlinked nodes back. * * @param[in] node Data node to link the nodes back to. It can actually be the adjusted context node, * we simply need a sibling from the original data tree. * @param[in] unlinked_nodes Unlinked nodes to relink to \p node. * @param[in] ctx_node_type Context node type to distinguish between \p node being the parent * or the sibling of \p unlinked_nodes. * * @return EXIT_SUCCESS on success, -1 on error. */ static int resolve_when_relink_nodes(struct lyd_node *node, struct lyd_node *unlinked_nodes, enum lyxp_node_type ctx_node_type) { struct lyd_node *elem; LY_TREE_FOR_SAFE(unlinked_nodes, unlinked_nodes, elem) { lyd_unlink_internal(elem, 0); if (ctx_node_type == LYXP_NODE_ELEM) { if (lyd_insert_common(node, NULL, elem, 0)) { return -1; } } else { if (lyd_insert_nextto(node, elem, 0, 0)) { return -1; } } } return EXIT_SUCCESS; } int resolve_applies_must(const struct lyd_node *node) { int ret = 0; uint8_t must_size; struct lys_node *schema, *iter; assert(node); schema = node->schema; /* their own must */ switch (schema->nodetype) { case LYS_CONTAINER: must_size = ((struct lys_node_container *)schema)->must_size; break; case LYS_LEAF: must_size = ((struct lys_node_leaf *)schema)->must_size; break; case LYS_LEAFLIST: must_size = ((struct lys_node_leaflist *)schema)->must_size; break; case LYS_LIST: must_size = ((struct lys_node_list *)schema)->must_size; break; case LYS_ANYXML: case LYS_ANYDATA: must_size = ((struct lys_node_anydata *)schema)->must_size; break; case LYS_NOTIF: must_size = ((struct lys_node_notif *)schema)->must_size; break; default: must_size = 0; break; } if (must_size) { ++ret; } /* schema may be a direct data child of input/output with must (but it must be first, it needs to be evaluated only once) */ if (!node->prev->next) { for (iter = lys_parent(schema); iter && (iter->nodetype & (LYS_CHOICE | LYS_CASE | LYS_USES)); iter = lys_parent(iter)); if (iter && (iter->nodetype & (LYS_INPUT | LYS_OUTPUT))) { ret += 0x2; } } return ret; } static struct lys_when * snode_get_when(const struct lys_node *schema) { switch (schema->nodetype) { case LYS_CONTAINER: return ((struct lys_node_container *)schema)->when; case LYS_CHOICE: return ((struct lys_node_choice *)schema)->when; case LYS_LEAF: return ((struct lys_node_leaf *)schema)->when; case LYS_LEAFLIST: return ((struct lys_node_leaflist *)schema)->when; case LYS_LIST: return ((struct lys_node_list *)schema)->when; case LYS_ANYDATA: case LYS_ANYXML: return ((struct lys_node_anydata *)schema)->when; case LYS_CASE: return ((struct lys_node_case *)schema)->when; case LYS_USES: return ((struct lys_node_uses *)schema)->when; case LYS_AUGMENT: return ((struct lys_node_augment *)schema)->when; default: return NULL; } } int resolve_applies_when(const struct lys_node *schema, int mode, const struct lys_node *stop) { const struct lys_node *parent; assert(schema); if (!(schema->nodetype & (LYS_NOTIF | LYS_RPC)) && snode_get_when(schema)) { return 1; } parent = schema; goto check_augment; while (parent) { /* stop conditions */ if (!mode) { /* stop on node that can be instantiated in data tree */ if (!(parent->nodetype & (LYS_USES | LYS_CHOICE | LYS_CASE))) { break; } } else { /* stop on the specified node */ if (parent == stop) { break; } } if (snode_get_when(parent)) { return 1; } check_augment: if (parent->parent && (parent->parent->nodetype == LYS_AUGMENT) && snode_get_when(parent->parent)) { return 1; } parent = lys_parent(parent); } return 0; } /** * @brief Resolve (check) all when conditions relevant for \p node. * Logs directly. * * @param[in] node Data node, whose conditional reference, if such, is being decided. * @param[in] ignore_fail 1 if when does not have to be satisfied, 2 if it does not have to be satisfied * only when requiring external dependencies. * * @return * -1 - error, ly_errno is set * 0 - all "when" statements true * 0, ly_vecode = LYVE_NOWHEN - some "when" statement false, returned in failed_when * 1, ly_vecode = LYVE_INWHEN - nodes needed to resolve are conditional and not yet resolved (under another "when") */ int resolve_when(struct lyd_node *node, int ignore_fail, struct lys_when **failed_when) { struct lyd_node *ctx_node = NULL, *unlinked_nodes, *tmp_node; struct lys_node *sparent; struct lyxp_set set; enum lyxp_node_type ctx_node_type; struct ly_ctx *ctx = node->schema->module->ctx; int rc = 0; assert(node); memset(&set, 0, sizeof set); if (!(node->schema->nodetype & (LYS_NOTIF | LYS_RPC | LYS_ACTION)) && snode_get_when(node->schema)) { /* make the node dummy for the evaluation */ node->validity |= LYD_VAL_INUSE; rc = lyxp_eval(snode_get_when(node->schema)->cond, node, LYXP_NODE_ELEM, lyd_node_module(node), &set, LYXP_WHEN); node->validity &= ~LYD_VAL_INUSE; if (rc) { if (rc == 1) { LOGVAL(ctx, LYE_INWHEN, LY_VLOG_LYD, node, snode_get_when(node->schema)->cond); } goto cleanup; } /* set boolean result of the condition */ lyxp_set_cast(&set, LYXP_SET_BOOLEAN, node, lyd_node_module(node), LYXP_WHEN); if (!set.val.bool) { node->when_status |= LYD_WHEN_FALSE; if ((ignore_fail == 1) || ((snode_get_when(node->schema)->flags & (LYS_XPCONF_DEP | LYS_XPSTATE_DEP)) && (ignore_fail == 2))) { LOGVRB("When condition \"%s\" is not satisfied, but it is not required.", snode_get_when(node->schema)->cond); } else { LOGVAL(ctx, LYE_NOWHEN, LY_VLOG_LYD, node, snode_get_when(node->schema)->cond); if (failed_when) { *failed_when = snode_get_when(node->schema); } goto cleanup; } } /* free xpath set content */ lyxp_set_cast(&set, LYXP_SET_EMPTY, node, lyd_node_module(node), 0); } sparent = node->schema; goto check_augment; /* check when in every schema node that affects node */ while (sparent && (sparent->nodetype & (LYS_USES | LYS_CHOICE | LYS_CASE))) { if (snode_get_when(sparent)) { if (!ctx_node) { rc = resolve_when_ctx_node(node, sparent, &ctx_node, &ctx_node_type); if (rc) { LOGINT(ctx); goto cleanup; } } unlinked_nodes = NULL; /* we do not want our node pointer to change */ tmp_node = node; rc = resolve_when_unlink_nodes(sparent, &tmp_node, &ctx_node, ctx_node_type, &unlinked_nodes); if (rc) { goto cleanup; } rc = lyxp_eval(snode_get_when(sparent)->cond, ctx_node, ctx_node_type, lys_node_module(sparent), &set, LYXP_WHEN); if (unlinked_nodes && ctx_node) { if (resolve_when_relink_nodes(ctx_node, unlinked_nodes, ctx_node_type)) { rc = -1; goto cleanup; } } if (rc) { if (rc == 1) { LOGVAL(ctx, LYE_INWHEN, LY_VLOG_LYD, node, snode_get_when(sparent)->cond); } goto cleanup; } lyxp_set_cast(&set, LYXP_SET_BOOLEAN, ctx_node, lys_node_module(sparent), LYXP_WHEN); if (!set.val.bool) { if ((ignore_fail == 1) || ((snode_get_when(sparent)->flags & (LYS_XPCONF_DEP | LYS_XPSTATE_DEP)) && (ignore_fail == 2))) { LOGVRB("When condition \"%s\" is not satisfied, but it is not required.", snode_get_when(sparent)->cond); } else { node->when_status |= LYD_WHEN_FALSE; LOGVAL(ctx, LYE_NOWHEN, LY_VLOG_LYD, node, snode_get_when(sparent)->cond); if (failed_when) { *failed_when = snode_get_when(sparent); } goto cleanup; } } /* free xpath set content */ lyxp_set_cast(&set, LYXP_SET_EMPTY, ctx_node, lys_node_module(sparent), 0); } check_augment: if ((sparent->parent && (sparent->parent->nodetype == LYS_AUGMENT) && snode_get_when(sparent->parent))) { if (!ctx_node) { rc = resolve_when_ctx_node(node, sparent->parent, &ctx_node, &ctx_node_type); if (rc) { LOGINT(ctx); goto cleanup; } } unlinked_nodes = NULL; tmp_node = node; rc = resolve_when_unlink_nodes(sparent->parent, &tmp_node, &ctx_node, ctx_node_type, &unlinked_nodes); if (rc) { goto cleanup; } rc = lyxp_eval(snode_get_when(sparent->parent)->cond, ctx_node, ctx_node_type, lys_node_module(sparent->parent), &set, LYXP_WHEN); /* reconnect nodes, if ctx_node is NULL then all the nodes were unlinked, but linked together, * so the tree did not actually change and there is nothing for us to do */ if (unlinked_nodes && ctx_node) { if (resolve_when_relink_nodes(ctx_node, unlinked_nodes, ctx_node_type)) { rc = -1; goto cleanup; } } if (rc) { if (rc == 1) { LOGVAL(ctx, LYE_INWHEN, LY_VLOG_LYD, node, snode_get_when(sparent->parent)->cond); } goto cleanup; } lyxp_set_cast(&set, LYXP_SET_BOOLEAN, ctx_node, lys_node_module(sparent->parent), LYXP_WHEN); if (!set.val.bool) { node->when_status |= LYD_WHEN_FALSE; if ((ignore_fail == 1) || ((snode_get_when(sparent->parent)->flags & (LYS_XPCONF_DEP | LYS_XPSTATE_DEP)) && (ignore_fail == 2))) { LOGVRB("When condition \"%s\" is not satisfied, but it is not required.", snode_get_when(sparent->parent)->cond); } else { LOGVAL(ctx, LYE_NOWHEN, LY_VLOG_LYD, node, snode_get_when(sparent->parent)->cond); if (failed_when) { *failed_when = snode_get_when(sparent->parent); } goto cleanup; } } /* free xpath set content */ lyxp_set_cast(&set, LYXP_SET_EMPTY, ctx_node, lys_node_module(sparent->parent), 0); } sparent = lys_parent(sparent); } node->when_status |= LYD_WHEN_TRUE; cleanup: /* free xpath set content */ lyxp_set_cast(&set, LYXP_SET_EMPTY, ctx_node ? ctx_node : node, NULL, 0); return rc; } static int check_type_union_leafref(struct lys_type *type) { uint8_t i; if ((type->base == LY_TYPE_UNION) && type->info.uni.count) { /* go through unions and look for leafref */ for (i = 0; i < type->info.uni.count; ++i) { switch (type->info.uni.types[i].base) { case LY_TYPE_LEAFREF: return 1; case LY_TYPE_UNION: if (check_type_union_leafref(&type->info.uni.types[i])) { return 1; } break; default: break; } } return 0; } /* just inherit the flag value */ return type->der->has_union_leafref; } /** * @brief Resolve a single unres schema item. Logs indirectly. * * @param[in] mod Main module. * @param[in] item Item to resolve. Type determined by \p type. * @param[in] type Type of the unresolved item. * @param[in] str_snode String, a schema node, or NULL. * @param[in] unres Unres schema structure to use. * @param[in] final_fail Whether we are just printing errors of the failed unres items. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ static int resolve_unres_schema_item(struct lys_module *mod, void *item, enum UNRES_ITEM type, void *str_snode, struct unres_schema *unres) { /* has_str - whether the str_snode is a string in a dictionary that needs to be freed */ int rc = -1, has_str = 0, parent_type = 0, i, k; unsigned int j; struct ly_ctx * ctx = mod->ctx; struct lys_node *root, *next, *node, *par_grp; const char *expr; uint8_t *u; struct ly_set *refs, *procs; struct lys_feature *ref, *feat; struct lys_ident *ident; struct lys_type *stype; struct lys_node_choice *choic; struct lyxml_elem *yin; struct yang_type *yang; struct unres_list_uniq *unique_info; struct unres_iffeat_data *iff_data; struct unres_ext *ext_data; struct lys_ext_instance *ext, **extlist; struct lyext_plugin *eplugin; switch (type) { case UNRES_IDENT: expr = str_snode; has_str = 1; ident = item; rc = resolve_base_ident(mod, ident, expr, "identity", NULL, unres); break; case UNRES_TYPE_IDENTREF: expr = str_snode; has_str = 1; stype = item; rc = resolve_base_ident(mod, NULL, expr, "type", stype, unres); break; case UNRES_TYPE_LEAFREF: node = str_snode; stype = item; rc = resolve_schema_leafref(stype, node, unres); break; case UNRES_TYPE_DER_EXT: parent_type++; /* falls through */ case UNRES_TYPE_DER_TPDF: parent_type++; /* falls through */ case UNRES_TYPE_DER: /* parent */ node = str_snode; stype = item; /* HACK type->der is temporarily unparsed type statement */ yin = (struct lyxml_elem *)stype->der; stype->der = NULL; if (yin->flags & LY_YANG_STRUCTURE_FLAG) { yang = (struct yang_type *)yin; rc = yang_check_type(mod, node, yang, stype, parent_type, unres); if (rc) { /* may try again later */ stype->der = (struct lys_tpdf *)yang; } else { /* we need to always be able to free this, it's safe only in this case */ lydict_remove(ctx, yang->name); free(yang); } } else { rc = fill_yin_type(mod, node, yin, stype, parent_type, unres); if (!rc || rc == -1) { /* we need to always be able to free this, it's safe only in this case */ lyxml_free(ctx, yin); } else { /* may try again later, put all back how it was */ stype->der = (struct lys_tpdf *)yin; } } if (rc == EXIT_SUCCESS) { /* it does not make sense to have leaf-list of empty type */ if (!parent_type && node->nodetype == LYS_LEAFLIST && stype->base == LY_TYPE_EMPTY) { LOGWRN(ctx, "The leaf-list \"%s\" is of \"empty\" type, which does not make sense.", node->name); } if ((type == UNRES_TYPE_DER_TPDF) && (stype->base == LY_TYPE_UNION)) { /* fill typedef union leafref flag */ ((struct lys_tpdf *)stype->parent)->has_union_leafref = check_type_union_leafref(stype); } else if ((type == UNRES_TYPE_DER) && stype->der->has_union_leafref) { /* copy the type in case it has union leafref flag */ if (lys_copy_union_leafrefs(mod, node, stype, NULL, unres)) { LOGERR(ctx, LY_EINT, "Failed to duplicate type."); return -1; } } } else if (rc == EXIT_FAILURE && !(stype->value_flags & LY_VALUE_UNRESGRP)) { /* forward reference - in case the type is in grouping, we have to make the grouping unusable * by uses statement until the type is resolved. We do that the same way as uses statements inside * grouping. The grouping cannot be used unless the unres counter is 0. * To remember that the grouping already increased the counter, the LYTYPE_GRP is used as value * of the type's base member. */ for (par_grp = node; par_grp && (par_grp->nodetype != LYS_GROUPING); par_grp = lys_parent(par_grp)); if (par_grp) { if (++((struct lys_node_grp *)par_grp)->unres_count == 0) { LOGERR(ctx, LY_EINT, "Too many unresolved items (type) inside a grouping."); return -1; } stype->value_flags |= LY_VALUE_UNRESGRP; } } break; case UNRES_IFFEAT: iff_data = str_snode; rc = resolve_feature(iff_data->fname, strlen(iff_data->fname), iff_data->node, item); if (!rc) { /* success */ if (iff_data->infeature) { /* store backlink into the target feature to allow reverse changes in case of changing feature status */ feat = *((struct lys_feature **)item); if (!feat->depfeatures) { feat->depfeatures = ly_set_new(); } ly_set_add(feat->depfeatures, iff_data->node, LY_SET_OPT_USEASLIST); } /* cleanup temporary data */ lydict_remove(ctx, iff_data->fname); free(iff_data); } break; case UNRES_FEATURE: feat = (struct lys_feature *)item; if (feat->iffeature_size) { refs = ly_set_new(); procs = ly_set_new(); ly_set_add(procs, feat, 0); while (procs->number) { ref = procs->set.g[procs->number - 1]; ly_set_rm_index(procs, procs->number - 1); for (i = 0; i < ref->iffeature_size; i++) { resolve_iffeature_getsizes(&ref->iffeature[i], NULL, &j); for (; j > 0 ; j--) { if (ref->iffeature[i].features[j - 1]) { if (ref->iffeature[i].features[j - 1] == feat) { LOGVAL(ctx, LYE_CIRC_FEATURES, LY_VLOG_NONE, NULL, feat->name); goto featurecheckdone; } if (ref->iffeature[i].features[j - 1]->iffeature_size) { k = refs->number; if (ly_set_add(refs, ref->iffeature[i].features[j - 1], 0) == k) { /* not yet seen feature, add it for processing */ ly_set_add(procs, ref->iffeature[i].features[j - 1], 0); } } } else { /* forward reference */ rc = EXIT_FAILURE; goto featurecheckdone; } } } } rc = EXIT_SUCCESS; featurecheckdone: ly_set_free(refs); ly_set_free(procs); } break; case UNRES_USES: rc = resolve_unres_schema_uses(item, unres); break; case UNRES_TYPEDEF_DFLT: parent_type++; /* falls through */ case UNRES_TYPE_DFLT: stype = item; rc = check_default(stype, (const char **)str_snode, mod, parent_type); if ((rc == EXIT_FAILURE) && !parent_type && (stype->base == LY_TYPE_LEAFREF)) { for (par_grp = (struct lys_node *)stype->parent; par_grp && (par_grp->nodetype != LYS_GROUPING); par_grp = lys_parent(par_grp)); if (par_grp) { /* checking default value in a grouping finished with forward reference means we cannot check the value */ rc = EXIT_SUCCESS; } } break; case UNRES_CHOICE_DFLT: expr = str_snode; has_str = 1; choic = item; if (!choic->dflt) { choic->dflt = resolve_choice_dflt(choic, expr); } if (choic->dflt) { rc = lyp_check_mandatory_choice((struct lys_node *)choic); } else { rc = EXIT_FAILURE; } break; case UNRES_LIST_KEYS: rc = resolve_list_keys(item, ((struct lys_node_list *)item)->keys_str); break; case UNRES_LIST_UNIQ: unique_info = (struct unres_list_uniq *)item; rc = resolve_unique(unique_info->list, unique_info->expr, unique_info->trg_type); break; case UNRES_AUGMENT: rc = resolve_augment(item, NULL, unres); break; case UNRES_XPATH: node = (struct lys_node *)item; rc = check_xpath(node, 1); break; case UNRES_MOD_IMPLEMENT: rc = lys_make_implemented_r(mod, unres); break; case UNRES_EXT: ext_data = (struct unres_ext *)str_snode; extlist = &(*(struct lys_ext_instance ***)item)[ext_data->ext_index]; rc = resolve_extension(ext_data, extlist, unres); if (!rc) { /* success */ /* is there a callback to be done to finalize the extension? */ eplugin = extlist[0]->def->plugin; if (eplugin) { if (eplugin->check_result || (eplugin->flags & LYEXT_OPT_INHERIT)) { u = malloc(sizeof *u); LY_CHECK_ERR_RETURN(!u, LOGMEM(ctx), -1); (*u) = ext_data->ext_index; if (unres_schema_add_node(mod, unres, item, UNRES_EXT_FINALIZE, (struct lys_node *)u) == -1) { /* something really bad happend since the extension finalization is not actually * being resolved while adding into unres, so something more serious with the unres * list itself must happened */ return -1; } } } } if (!rc || rc == -1) { /* cleanup on success or fatal error */ if (ext_data->datatype == LYS_IN_YIN) { /* YIN */ lyxml_free(ctx, ext_data->data.yin); } else { /* YANG */ yang_free_ext_data(ext_data->data.yang); } free(ext_data); } break; case UNRES_EXT_FINALIZE: u = (uint8_t *)str_snode; ext = (*(struct lys_ext_instance ***)item)[*u]; free(u); eplugin = ext->def->plugin; /* inherit */ if ((eplugin->flags & LYEXT_OPT_INHERIT) && (ext->parent_type == LYEXT_PAR_NODE)) { root = (struct lys_node *)ext->parent; if (!(root->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA))) { LY_TREE_DFS_BEGIN(root->child, next, node) { /* first, check if the node already contain instance of the same extension, * in such a case we won't inherit. In case the node was actually defined as * augment data, we are supposed to check the same way also the augment node itself */ if (lys_ext_instance_presence(ext->def, node->ext, node->ext_size) != -1) { goto inherit_dfs_sibling; } else if (node->parent != root && node->parent->nodetype == LYS_AUGMENT && lys_ext_instance_presence(ext->def, node->parent->ext, node->parent->ext_size) != -1) { goto inherit_dfs_sibling; } if (eplugin->check_inherit) { /* we have a callback to check the inheritance, use it */ switch ((rc = (*eplugin->check_inherit)(ext, node))) { case 0: /* yes - continue with the inheriting code */ break; case 1: /* no - continue with the node's sibling */ goto inherit_dfs_sibling; case 2: /* no, but continue with the children, just skip the inheriting code for this node */ goto inherit_dfs_child; default: LOGERR(ctx, LY_EINT, "Plugin's (%s:%s) check_inherit callback returns invalid value (%d),", ext->def->module->name, ext->def->name, rc); } } /* inherit the extension */ extlist = realloc(node->ext, (node->ext_size + 1) * sizeof *node->ext); LY_CHECK_ERR_RETURN(!extlist, LOGMEM(ctx), -1); extlist[node->ext_size] = malloc(sizeof **extlist); LY_CHECK_ERR_RETURN(!extlist[node->ext_size], LOGMEM(ctx); node->ext = extlist, -1); memcpy(extlist[node->ext_size], ext, sizeof *ext); extlist[node->ext_size]->flags |= LYEXT_OPT_INHERIT; node->ext = extlist; node->ext_size++; inherit_dfs_child: /* modification of - select element for the next run - children first */ if (node->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { next = NULL; } else { next = node->child; } if (!next) { inherit_dfs_sibling: /* no children, try siblings */ next = node->next; } while (!next) { /* go to the parent */ node = lys_parent(node); /* we are done if we are back in the root (the starter's parent */ if (node == root) { break; } /* parent is already processed, go to its sibling */ next = node->next; } } } } /* final check */ if (eplugin->check_result) { if ((*eplugin->check_result)(ext)) { LOGERR(ctx, LY_EPLUGIN, "Resolving extension failed."); return -1; } } rc = 0; break; default: LOGINT(ctx); break; } if (has_str && !rc) { /* the string is no more needed in case of success. * In case of forward reference, we will try to resolve the string later */ lydict_remove(ctx, str_snode); } return rc; } /* logs directly */ static void print_unres_schema_item_fail(void *item, enum UNRES_ITEM type, void *str_node) { struct lyxml_elem *xml; struct lyxml_attr *attr; struct unres_iffeat_data *iff_data; const char *name = NULL; struct unres_ext *extinfo; switch (type) { case UNRES_IDENT: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "identity", (char *)str_node); break; case UNRES_TYPE_IDENTREF: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "identityref", (char *)str_node); break; case UNRES_TYPE_LEAFREF: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "leafref", ((struct lys_type *)item)->info.lref.path); break; case UNRES_TYPE_DER_EXT: case UNRES_TYPE_DER_TPDF: case UNRES_TYPE_DER: xml = (struct lyxml_elem *)((struct lys_type *)item)->der; if (xml->flags & LY_YANG_STRUCTURE_FLAG) { name = ((struct yang_type *)xml)->name; } else { LY_TREE_FOR(xml->attr, attr) { if ((attr->type == LYXML_ATTR_STD) && !strcmp(attr->name, "name")) { name = attr->value; break; } } assert(attr); } LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "derived type", name); break; case UNRES_IFFEAT: iff_data = str_node; LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "if-feature", iff_data->fname); break; case UNRES_FEATURE: LOGVRB("There are unresolved if-features for \"%s\" feature circular dependency check, it will be attempted later", ((struct lys_feature *)item)->name); break; case UNRES_USES: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "uses", ((struct lys_node_uses *)item)->name); break; case UNRES_TYPEDEF_DFLT: case UNRES_TYPE_DFLT: if (*(char **)str_node) { LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "type default", *(char **)str_node); } /* else no default value in the type itself, but we are checking some restrictions against * possible default value of some base type. The failure is caused by not resolved base type, * so it was already reported */ break; case UNRES_CHOICE_DFLT: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "choice default", (char *)str_node); break; case UNRES_LIST_KEYS: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "list keys", (char *)str_node); break; case UNRES_LIST_UNIQ: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "list unique", (char *)str_node); break; case UNRES_AUGMENT: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "augment target", ((struct lys_node_augment *)item)->target_name); break; case UNRES_XPATH: LOGVRB("Resolving %s \"%s\" failed, it will be attempted later.", "XPath expressions of", ((struct lys_node *)item)->name); break; case UNRES_EXT: extinfo = (struct unres_ext *)str_node; name = extinfo->datatype == LYS_IN_YIN ? extinfo->data.yin->name : NULL; /* TODO YANG extension */ LOGVRB("Resolving extension \"%s\" failed, it will be attempted later.", name); break; default: LOGINT(NULL); break; } } static int resolve_unres_schema_types(struct unres_schema *unres, enum UNRES_ITEM types, struct ly_ctx *ctx, int forward_ref, int print_all_errors, uint32_t *resolved) { uint32_t i, unres_count, res_count; int ret = 0, rc; struct ly_err_item *prev_eitem; enum int_log_opts prev_ilo; LY_ERR prev_ly_errno; /* if there can be no forward references, every failure is final, so we can print it directly */ if (forward_ref) { prev_ly_errno = ly_errno; ly_ilo_change(ctx, ILO_STORE, &prev_ilo, &prev_eitem); } do { unres_count = 0; res_count = 0; for (i = 0; i < unres->count; ++i) { /* UNRES_TYPE_LEAFREF must be resolved (for storing leafref target pointers); * if-features are resolved here to make sure that we will have all if-features for * later check of feature circular dependency */ if (unres->type[i] & types) { ++unres_count; rc = resolve_unres_schema_item(unres->module[i], unres->item[i], unres->type[i], unres->str_snode[i], unres); if (unres->type[i] == UNRES_EXT_FINALIZE) { /* to avoid double free */ unres->type[i] = UNRES_RESOLVED; } if (!rc || (unres->type[i] == UNRES_XPATH)) { /* invalid XPath can never cause an error, only a warning */ if (unres->type[i] == UNRES_LIST_UNIQ) { /* free the allocated structure */ free(unres->item[i]); } unres->type[i] = UNRES_RESOLVED; ++(*resolved); ++res_count; } else if ((rc == EXIT_FAILURE) && forward_ref) { /* forward reference, erase errors */ ly_err_free_next(ctx, prev_eitem); } else if (print_all_errors) { /* just so that we quit the loop */ ++res_count; ret = -1; } else { if (forward_ref) { ly_ilo_restore(ctx, prev_ilo, prev_eitem, 1); } return -1; } } } } while (res_count && (res_count < unres_count)); if (res_count < unres_count) { assert(forward_ref); /* just print the errors (but we must free the ones we have and get them again :-/ ) */ ly_ilo_restore(ctx, prev_ilo, prev_eitem, 0); for (i = 0; i < unres->count; ++i) { if (unres->type[i] & types) { resolve_unres_schema_item(unres->module[i], unres->item[i], unres->type[i], unres->str_snode[i], unres); } } return -1; } if (forward_ref) { /* restore log */ ly_ilo_restore(ctx, prev_ilo, prev_eitem, 0); ly_errno = prev_ly_errno; } return ret; } /** * @brief Resolve every unres schema item in the structure. Logs directly. * * @param[in] mod Main module. * @param[in] unres Unres schema structure to use. * * @return EXIT_SUCCESS on success, -1 on error. */ int resolve_unres_schema(struct lys_module *mod, struct unres_schema *unres) { uint32_t resolved = 0; assert(unres); LOGVRB("Resolving \"%s\" unresolved schema nodes and their constraints...", mod->name); /* UNRES_TYPE_LEAFREF must be resolved (for storing leafref target pointers); * if-features are resolved here to make sure that we will have all if-features for * later check of feature circular dependency */ if (resolve_unres_schema_types(unres, UNRES_USES | UNRES_IFFEAT | UNRES_TYPE_DER | UNRES_TYPE_DER_TPDF | UNRES_TYPE_DER_TPDF | UNRES_TYPE_LEAFREF | UNRES_MOD_IMPLEMENT | UNRES_AUGMENT | UNRES_CHOICE_DFLT | UNRES_IDENT, mod->ctx, 1, 0, &resolved)) { return -1; } /* another batch of resolved items */ if (resolve_unres_schema_types(unres, UNRES_TYPE_IDENTREF | UNRES_FEATURE | UNRES_TYPEDEF_DFLT | UNRES_TYPE_DFLT | UNRES_LIST_KEYS | UNRES_LIST_UNIQ | UNRES_EXT, mod->ctx, 1, 0, &resolved)) { return -1; } /* print xpath warnings and finalize extensions, keep it last to provide the complete schema tree information to the plugin's checkers */ if (resolve_unres_schema_types(unres, UNRES_XPATH | UNRES_EXT_FINALIZE, mod->ctx, 0, 1, &resolved)) { return -1; } LOGVRB("All \"%s\" schema nodes and constraints resolved.", mod->name); unres->count = 0; return EXIT_SUCCESS; } /** * @brief Try to resolve an unres schema item with a string argument. Logs indirectly. * * @param[in] mod Main module. * @param[in] unres Unres schema structure to use. * @param[in] item Item to resolve. Type determined by \p type. * @param[in] type Type of the unresolved item. * @param[in] str String argument. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on storing the item in unres, -1 on error. */ int unres_schema_add_str(struct lys_module *mod, struct unres_schema *unres, void *item, enum UNRES_ITEM type, const char *str) { int rc; const char *dictstr; dictstr = lydict_insert(mod->ctx, str, 0); rc = unres_schema_add_node(mod, unres, item, type, (struct lys_node *)dictstr); if (rc < 0) { lydict_remove(mod->ctx, dictstr); } return rc; } /** * @brief Try to resolve an unres schema item with a schema node argument. Logs indirectly. * * @param[in] mod Main module. * @param[in] unres Unres schema structure to use. * @param[in] item Item to resolve. Type determined by \p type. * @param[in] type Type of the unresolved item. UNRES_TYPE_DER is handled specially! * @param[in] snode Schema node argument. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on storing the item in unres, -1 on error. */ int unres_schema_add_node(struct lys_module *mod, struct unres_schema *unres, void *item, enum UNRES_ITEM type, struct lys_node *snode) { int rc; uint32_t u; enum int_log_opts prev_ilo; struct ly_err_item *prev_eitem; LY_ERR prev_ly_errno; struct lyxml_elem *yin; struct ly_ctx *ctx = mod->ctx; assert(unres && (item || (type == UNRES_MOD_IMPLEMENT)) && ((type != UNRES_LEAFREF) && (type != UNRES_INSTID) && (type != UNRES_WHEN) && (type != UNRES_MUST))); /* check for duplicities in unres */ for (u = 0; u < unres->count; u++) { if (unres->type[u] == type && unres->item[u] == item && unres->str_snode[u] == snode && unres->module[u] == mod) { /* duplication can happen when the node contains multiple statements of the same type to check, * this can happen for example when refinement is being applied, so we just postpone the processing * and do not duplicate the information */ return EXIT_FAILURE; } } if ((type == UNRES_EXT_FINALIZE) || (type == UNRES_XPATH) || (type == UNRES_MOD_IMPLEMENT)) { /* extension finalization is not even tried when adding the item into the inres list, * xpath is not tried because it would hide some potential warnings, * implementing module must be deferred because some other nodes can be added that will need to be traversed * and their targets made implemented */ rc = EXIT_FAILURE; } else { prev_ly_errno = ly_errno; ly_ilo_change(ctx, ILO_STORE, &prev_ilo, &prev_eitem); rc = resolve_unres_schema_item(mod, item, type, snode, unres); if (rc != EXIT_FAILURE) { ly_ilo_restore(ctx, prev_ilo, prev_eitem, rc == -1 ? 1 : 0); if (rc != -1) { ly_errno = prev_ly_errno; } if (type == UNRES_LIST_UNIQ) { /* free the allocated structure */ free(item); } else if (rc == -1 && type == UNRES_IFFEAT) { /* free the allocated resources */ free(*((char **)item)); } return rc; } else { /* erase info about validation errors */ ly_ilo_restore(ctx, prev_ilo, prev_eitem, 0); ly_errno = prev_ly_errno; } print_unres_schema_item_fail(item, type, snode); /* HACK unlinking is performed here so that we do not do any (NS) copying in vain */ if (type == UNRES_TYPE_DER || type == UNRES_TYPE_DER_TPDF) { yin = (struct lyxml_elem *)((struct lys_type *)item)->der; if (!(yin->flags & LY_YANG_STRUCTURE_FLAG)) { lyxml_unlink_elem(mod->ctx, yin, 1); ((struct lys_type *)item)->der = (struct lys_tpdf *)yin; } } } unres->count++; unres->item = ly_realloc(unres->item, unres->count*sizeof *unres->item); LY_CHECK_ERR_RETURN(!unres->item, LOGMEM(ctx), -1); unres->item[unres->count-1] = item; unres->type = ly_realloc(unres->type, unres->count*sizeof *unres->type); LY_CHECK_ERR_RETURN(!unres->type, LOGMEM(ctx), -1); unres->type[unres->count-1] = type; unres->str_snode = ly_realloc(unres->str_snode, unres->count*sizeof *unres->str_snode); LY_CHECK_ERR_RETURN(!unres->str_snode, LOGMEM(ctx), -1); unres->str_snode[unres->count-1] = snode; unres->module = ly_realloc(unres->module, unres->count*sizeof *unres->module); LY_CHECK_ERR_RETURN(!unres->module, LOGMEM(ctx), -1); unres->module[unres->count-1] = mod; return rc; } /** * @brief Duplicate an unres schema item. Logs indirectly. * * @param[in] mod Main module. * @param[in] unres Unres schema structure to use. * @param[in] item Old item to be resolved. * @param[in] type Type of the old unresolved item. * @param[in] new_item New item to use in the duplicate. * * @return EXIT_SUCCESS on success, EXIT_FAILURE if item is not in unres, -1 on error. */ int unres_schema_dup(struct lys_module *mod, struct unres_schema *unres, void *item, enum UNRES_ITEM type, void *new_item) { int i; struct unres_list_uniq aux_uniq; struct unres_iffeat_data *iff_data; assert(item && new_item && ((type != UNRES_LEAFREF) && (type != UNRES_INSTID) && (type != UNRES_WHEN))); /* hack for UNRES_LIST_UNIQ, which stores multiple items behind its item */ if (type == UNRES_LIST_UNIQ) { aux_uniq.list = item; aux_uniq.expr = ((struct unres_list_uniq *)new_item)->expr; item = &aux_uniq; } i = unres_schema_find(unres, -1, item, type); if (i == -1) { if (type == UNRES_LIST_UNIQ) { free(new_item); } return EXIT_FAILURE; } if ((type == UNRES_TYPE_LEAFREF) || (type == UNRES_USES) || (type == UNRES_TYPE_DFLT) || (type == UNRES_FEATURE) || (type == UNRES_LIST_UNIQ)) { if (unres_schema_add_node(mod, unres, new_item, type, unres->str_snode[i]) == -1) { LOGINT(mod->ctx); return -1; } } else if (type == UNRES_IFFEAT) { /* duplicate unres_iffeature_data */ iff_data = malloc(sizeof *iff_data); LY_CHECK_ERR_RETURN(!iff_data, LOGMEM(mod->ctx), -1); iff_data->fname = lydict_insert(mod->ctx, ((struct unres_iffeat_data *)unres->str_snode[i])->fname, 0); iff_data->node = ((struct unres_iffeat_data *)unres->str_snode[i])->node; if (unres_schema_add_node(mod, unres, new_item, type, (struct lys_node *)iff_data) == -1) { LOGINT(mod->ctx); return -1; } } else { if (unres_schema_add_str(mod, unres, new_item, type, unres->str_snode[i]) == -1) { LOGINT(mod->ctx); return -1; } } return EXIT_SUCCESS; } /* does not log */ int unres_schema_find(struct unres_schema *unres, int start_on_backwards, void *item, enum UNRES_ITEM type) { int i; struct unres_list_uniq *aux_uniq1, *aux_uniq2; if (!unres->count) { return -1; } if (start_on_backwards >= 0) { i = start_on_backwards; } else { i = unres->count - 1; } for (; i > -1; i--) { if (unres->type[i] != type) { continue; } if (type != UNRES_LIST_UNIQ) { if (unres->item[i] == item) { break; } } else { aux_uniq1 = (struct unres_list_uniq *)unres->item[i - 1]; aux_uniq2 = (struct unres_list_uniq *)item; if ((aux_uniq1->list == aux_uniq2->list) && ly_strequal(aux_uniq1->expr, aux_uniq2->expr, 0)) { break; } } } return i; } static void unres_schema_free_item(struct ly_ctx *ctx, struct unres_schema *unres, uint32_t i) { struct lyxml_elem *yin; struct yang_type *yang; struct unres_iffeat_data *iff_data; switch (unres->type[i]) { case UNRES_TYPE_DER_TPDF: case UNRES_TYPE_DER: yin = (struct lyxml_elem *)((struct lys_type *)unres->item[i])->der; if (yin->flags & LY_YANG_STRUCTURE_FLAG) { yang =(struct yang_type *)yin; ((struct lys_type *)unres->item[i])->base = yang->base; lydict_remove(ctx, yang->name); free(yang); if (((struct lys_type *)unres->item[i])->base == LY_TYPE_UNION) { yang_free_type_union(ctx, (struct lys_type *)unres->item[i]); } } else { lyxml_free(ctx, yin); } break; case UNRES_IFFEAT: iff_data = (struct unres_iffeat_data *)unres->str_snode[i]; lydict_remove(ctx, iff_data->fname); free(unres->str_snode[i]); break; case UNRES_IDENT: case UNRES_TYPE_IDENTREF: case UNRES_CHOICE_DFLT: case UNRES_LIST_KEYS: lydict_remove(ctx, (const char *)unres->str_snode[i]); break; case UNRES_LIST_UNIQ: free(unres->item[i]); break; case UNRES_EXT: free(unres->str_snode[i]); break; case UNRES_EXT_FINALIZE: free(unres->str_snode[i]); default: break; } unres->type[i] = UNRES_RESOLVED; } void unres_schema_free(struct lys_module *module, struct unres_schema **unres, int all) { uint32_t i; unsigned int unresolved = 0; if (!unres || !(*unres)) { return; } assert(module || ((*unres)->count == 0)); for (i = 0; i < (*unres)->count; ++i) { if (!all && ((*unres)->module[i] != module)) { if ((*unres)->type[i] != UNRES_RESOLVED) { unresolved++; } continue; } /* free heap memory for the specific item */ unres_schema_free_item(module->ctx, *unres, i); } /* free it all */ if (!module || all || (!unresolved && !module->type)) { free((*unres)->item); free((*unres)->type); free((*unres)->str_snode); free((*unres)->module); free((*unres)); (*unres) = NULL; } } /* check whether instance-identifier points outside its data subtree (for operation it is any node * outside the operation subtree, otherwise it is a node from a foreign model) */ static int check_instid_ext_dep(const struct lys_node *sleaf, const char *json_instid) { const struct lys_node *op_node, *first_node; enum int_log_opts prev_ilo; char *buf, *tmp; if (!json_instid || !json_instid[0]) { /* no/empty value */ return 0; } for (op_node = lys_parent(sleaf); op_node && !(op_node->nodetype & (LYS_NOTIF | LYS_RPC | LYS_ACTION)); op_node = lys_parent(op_node)); if (op_node && lys_parent(op_node)) { /* nested operation - any absolute path is external */ return 1; } /* get the first node from the instid */ tmp = strchr(json_instid + 1, '/'); buf = strndup(json_instid, tmp ? (size_t)(tmp - json_instid) : strlen(json_instid)); if (!buf) { /* so that we do not have to bother with logging, say it is not external */ return 0; } /* find the first schema node, do not log */ ly_ilo_change(NULL, ILO_IGNORE, &prev_ilo, NULL); first_node = ly_ctx_get_node(NULL, sleaf, buf, 0); ly_ilo_restore(NULL, prev_ilo, NULL, 0); free(buf); if (!first_node) { /* unknown path, say it is external */ return 1; } /* based on the first schema node in the path we can decide whether it points to an external tree or not */ if (op_node) { if (op_node != first_node) { /* it is a top-level operation, so we're good if it points somewhere inside it */ return 1; } } else { if (lys_node_module(sleaf) != lys_node_module(first_node)) { /* modules differ */ return 1; } } return 0; } /** * @brief Resolve instance-identifier in JSON data format. Logs directly. * * @param[in] data Data node where the path is used * @param[in] path Instance-identifier node value. * @param[in,out] ret Resolved instance or NULL. * * @return 0 on success (even if unresolved and \p ret is NULL), -1 on error. */ static int resolve_instid(struct lyd_node *data, const char *path, int req_inst, struct lyd_node **ret) { int i = 0, j, parsed, cur_idx; const struct lys_module *mod, *prev_mod = NULL; struct ly_ctx *ctx = data->schema->module->ctx; struct lyd_node *root, *node; const char *model = NULL, *name; char *str; int mod_len, name_len, has_predicate; struct unres_data node_match; memset(&node_match, 0, sizeof node_match); *ret = NULL; /* we need root to resolve absolute path */ for (root = data; root->parent; root = root->parent); /* we're still parsing it and the pointer is not correct yet */ if (root->prev) { for (; root->prev->next; root = root->prev); } /* search for the instance node */ while (path[i]) { j = parse_instance_identifier(&path[i], &model, &mod_len, &name, &name_len, &has_predicate); if (j <= 0) { LOGVAL(ctx, LYE_INCHAR, LY_VLOG_LYD, data, path[i-j], &path[i-j]); goto error; } i += j; if (model) { str = strndup(model, mod_len); if (!str) { LOGMEM(ctx); goto error; } mod = ly_ctx_get_module(ctx, str, NULL, 1); if (ctx->data_clb) { if (!mod) { mod = ctx->data_clb(ctx, str, NULL, 0, ctx->data_clb_data); } else if (!mod->implemented) { mod = ctx->data_clb(ctx, mod->name, mod->ns, LY_MODCLB_NOT_IMPLEMENTED, ctx->data_clb_data); } } free(str); if (!mod || !mod->implemented || mod->disabled) { break; } } else if (!prev_mod) { /* first iteration and we are missing module name */ LOGVAL(ctx, LYE_INELEM_LEN, LY_VLOG_LYD, data, name_len, name); LOGVAL(ctx, LYE_SPEC, LY_VLOG_PREV, NULL, "Instance-identifier is missing prefix in the first node."); goto error; } else { mod = prev_mod; } if (resolve_data(mod, name, name_len, root, &node_match)) { /* no instance exists */ break; } if (has_predicate) { /* we have predicate, so the current results must be list or leaf-list */ parsed = j = 0; /* index of the current node (for lists with position predicates) */ cur_idx = 1; while (j < (signed)node_match.count) { node = node_match.node[j]; parsed = resolve_instid_predicate(mod, &path[i], &node, cur_idx); if (parsed < 1) { LOGVAL(ctx, LYE_INPRED, LY_VLOG_LYD, data, &path[i - parsed]); goto error; } if (!node) { /* current node does not satisfy the predicate */ unres_data_del(&node_match, j); } else { ++j; } ++cur_idx; } i += parsed; } else if (node_match.count) { /* check that we are not addressing lists */ for (j = 0; (unsigned)j < node_match.count; ++j) { if (node_match.node[j]->schema->nodetype == LYS_LIST) { unres_data_del(&node_match, j--); } } if (!node_match.count) { LOGVAL(ctx, LYE_SPEC, LY_VLOG_LYD, data, "Instance identifier is missing list keys."); } } prev_mod = mod; } if (!node_match.count) { /* no instance exists */ if (req_inst > -1) { LOGVAL(ctx, LYE_NOREQINS, LY_VLOG_LYD, data, path); return EXIT_FAILURE; } LOGVRB("There is no instance of \"%s\", but it is not required.", path); return EXIT_SUCCESS; } else if (node_match.count > 1) { /* instance identifier must resolve to a single node */ LOGVAL(ctx, LYE_TOOMANY, LY_VLOG_LYD, data, path, "data tree"); goto error; } else { /* we have required result, remember it and cleanup */ *ret = node_match.node[0]; free(node_match.node); return EXIT_SUCCESS; } error: /* cleanup */ free(node_match.node); return -1; } static int resolve_leafref(struct lyd_node_leaf_list *leaf, const char *path, int req_inst, struct lyd_node **ret) { struct lyxp_set xp_set; uint32_t i; memset(&xp_set, 0, sizeof xp_set); *ret = NULL; /* syntax was already checked, so just evaluate the path using standard XPath */ if (lyxp_eval(path, (struct lyd_node *)leaf, LYXP_NODE_ELEM, lyd_node_module((struct lyd_node *)leaf), &xp_set, 0) != EXIT_SUCCESS) { return -1; } if (xp_set.type == LYXP_SET_NODE_SET) { for (i = 0; i < xp_set.used; ++i) { if ((xp_set.val.nodes[i].type != LYXP_NODE_ELEM) || !(xp_set.val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { continue; } /* not that the value is already in canonical form since the parsers does the conversion, * so we can simply compare just the values */ if (ly_strequal(leaf->value_str, ((struct lyd_node_leaf_list *)xp_set.val.nodes[i].node)->value_str, 1)) { /* we have the match */ *ret = xp_set.val.nodes[i].node; break; } } } lyxp_set_cast(&xp_set, LYXP_SET_EMPTY, (struct lyd_node *)leaf, NULL, 0); if (!*ret) { /* reference not found */ if (req_inst > -1) { LOGVAL(leaf->schema->module->ctx, LYE_NOLEAFREF, LY_VLOG_LYD, leaf, path, leaf->value_str); return EXIT_FAILURE; } else { LOGVRB("There is no leafref \"%s\" with the value \"%s\", but it is not required.", path, leaf->value_str); } } return EXIT_SUCCESS; } /* ignore fail because we are parsing edit-config, get, or get-config - but only if the union includes leafref or instid */ int resolve_union(struct lyd_node_leaf_list *leaf, struct lys_type *type, int store, int ignore_fail, struct lys_type **resolved_type) { struct ly_ctx *ctx = leaf->schema->module->ctx; struct lys_type *t; struct lyd_node *ret; enum int_log_opts prev_ilo; int found, success = 0, ext_dep, req_inst; const char *json_val = NULL; assert(type->base == LY_TYPE_UNION); if ((leaf->value_type == LY_TYPE_UNION) || ((leaf->value_type == LY_TYPE_INST) && (leaf->value_flags & LY_VALUE_UNRES))) { /* either NULL or instid previously converted to JSON */ json_val = lydict_insert(ctx, leaf->value.string, 0); } if (store) { lyd_free_value(leaf->value, leaf->value_type, leaf->value_flags, &((struct lys_node_leaf *)leaf->schema)->type, NULL, NULL, NULL); memset(&leaf->value, 0, sizeof leaf->value); } /* turn logging off, we are going to try to validate the value with all the types in order */ ly_ilo_change(NULL, ILO_IGNORE, &prev_ilo, 0); t = NULL; found = 0; while ((t = lyp_get_next_union_type(type, t, &found))) { found = 0; switch (t->base) { case LY_TYPE_LEAFREF: if ((ignore_fail == 1) || ((leaf->schema->flags & LYS_LEAFREF_DEP) && (ignore_fail == 2))) { req_inst = -1; } else { req_inst = t->info.lref.req; } if (!resolve_leafref(leaf, t->info.lref.path, req_inst, &ret)) { if (store) { if (ret && !(leaf->schema->flags & LYS_LEAFREF_DEP)) { /* valid resolved */ leaf->value.leafref = ret; leaf->value_type = LY_TYPE_LEAFREF; } else { /* valid unresolved */ ly_ilo_restore(NULL, prev_ilo, NULL, 0); if (!lyp_parse_value(t, &leaf->value_str, NULL, leaf, NULL, NULL, 1, 0, 0)) { return -1; } ly_ilo_change(NULL, ILO_IGNORE, &prev_ilo, NULL); } } success = 1; } break; case LY_TYPE_INST: ext_dep = check_instid_ext_dep(leaf->schema, (json_val ? json_val : leaf->value_str)); if ((ignore_fail == 1) || (ext_dep && (ignore_fail == 2))) { req_inst = -1; } else { req_inst = t->info.inst.req; } if (!resolve_instid((struct lyd_node *)leaf, (json_val ? json_val : leaf->value_str), req_inst, &ret)) { if (store) { if (ret && !ext_dep) { /* valid resolved */ leaf->value.instance = ret; leaf->value_type = LY_TYPE_INST; if (json_val) { lydict_remove(leaf->schema->module->ctx, leaf->value_str); leaf->value_str = json_val; json_val = NULL; } } else { /* valid unresolved */ if (json_val) { /* put the JSON val back */ leaf->value.string = json_val; json_val = NULL; } else { leaf->value.instance = NULL; } leaf->value_type = LY_TYPE_INST; leaf->value_flags |= LY_VALUE_UNRES; } } success = 1; } break; default: if (lyp_parse_value(t, &leaf->value_str, NULL, leaf, NULL, NULL, store, 0, 0)) { success = 1; } break; } if (success) { break; } /* erase possible present and invalid value data */ if (store) { lyd_free_value(leaf->value, leaf->value_type, leaf->value_flags, t, NULL, NULL, NULL); memset(&leaf->value, 0, sizeof leaf->value); } } /* turn logging back on */ ly_ilo_restore(NULL, prev_ilo, NULL, 0); if (json_val) { if (!success) { /* put the value back for now */ assert(leaf->value_type == LY_TYPE_UNION); leaf->value.string = json_val; } else { /* value was ultimately useless, but we could not have known */ lydict_remove(leaf->schema->module->ctx, json_val); } } if (success) { if (resolved_type) { *resolved_type = t; } } else if (!ignore_fail || !type->info.uni.has_ptr_type) { /* not found and it is required */ LOGVAL(ctx, LYE_INVAL, LY_VLOG_LYD, leaf, leaf->value_str ? leaf->value_str : "", leaf->schema->name); return EXIT_FAILURE; } return EXIT_SUCCESS; } /** * @brief Resolve a single unres data item. Logs directly. * * @param[in] node Data node to resolve. * @param[in] type Type of the unresolved item. * @param[in] ignore_fail 0 - no, 1 - yes, 2 - yes, but only for external dependencies. * * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. */ int resolve_unres_data_item(struct lyd_node *node, enum UNRES_ITEM type, int ignore_fail, struct lys_when **failed_when) { int rc, req_inst, ext_dep; struct lyd_node_leaf_list *leaf; struct lyd_node *ret; struct lys_node_leaf *sleaf; leaf = (struct lyd_node_leaf_list *)node; sleaf = (struct lys_node_leaf *)leaf->schema; switch (type) { case UNRES_LEAFREF: assert(sleaf->type.base == LY_TYPE_LEAFREF); assert(leaf->validity & LYD_VAL_LEAFREF); if ((ignore_fail == 1) || ((leaf->schema->flags & LYS_LEAFREF_DEP) && (ignore_fail == 2))) { req_inst = -1; } else { req_inst = sleaf->type.info.lref.req; } rc = resolve_leafref(leaf, sleaf->type.info.lref.path, req_inst, &ret); if (!rc) { if (ret && !(leaf->schema->flags & LYS_LEAFREF_DEP)) { /* valid resolved */ if (leaf->value_type == LY_TYPE_BITS) { free(leaf->value.bit); } leaf->value.leafref = ret; leaf->value_type = LY_TYPE_LEAFREF; leaf->value_flags &= ~LY_VALUE_UNRES; } else { /* valid unresolved */ if (!(leaf->value_flags & LY_VALUE_UNRES)) { if (!lyp_parse_value(&sleaf->type, &leaf->value_str, NULL, leaf, NULL, NULL, 1, 0, 0)) { return -1; } } } leaf->validity &= ~LYD_VAL_LEAFREF; } else { return rc; } break; case UNRES_INSTID: assert(sleaf->type.base == LY_TYPE_INST); ext_dep = check_instid_ext_dep(leaf->schema, leaf->value_str); if (ext_dep == -1) { return -1; } if ((ignore_fail == 1) || (ext_dep && (ignore_fail == 2))) { req_inst = -1; } else { req_inst = sleaf->type.info.inst.req; } rc = resolve_instid(node, leaf->value_str, req_inst, &ret); if (!rc) { if (ret && !ext_dep) { /* valid resolved */ leaf->value.instance = ret; leaf->value_type = LY_TYPE_INST; leaf->value_flags &= ~LY_VALUE_UNRES; } else { /* valid unresolved */ leaf->value.instance = NULL; leaf->value_type = LY_TYPE_INST; leaf->value_flags |= LY_VALUE_UNRES; } } else { return rc; } break; case UNRES_UNION: assert(sleaf->type.base == LY_TYPE_UNION); return resolve_union(leaf, &sleaf->type, 1, ignore_fail, NULL); case UNRES_WHEN: if ((rc = resolve_when(node, ignore_fail, failed_when))) { return rc; } break; case UNRES_MUST: if ((rc = resolve_must(node, 0, ignore_fail))) { return rc; } break; case UNRES_MUST_INOUT: if ((rc = resolve_must(node, 1, ignore_fail))) { return rc; } break; case UNRES_UNIQ_LEAVES: if (lyv_data_unique(node)) { return -1; } break; default: LOGINT(NULL); return -1; } return EXIT_SUCCESS; } /** * @brief add data unres item * * @param[in] unres Unres data structure to use. * @param[in] node Data node to use. * * @return 0 on success, -1 on error. */ int unres_data_add(struct unres_data *unres, struct lyd_node *node, enum UNRES_ITEM type) { assert(unres && node); assert((type == UNRES_LEAFREF) || (type == UNRES_INSTID) || (type == UNRES_WHEN) || (type == UNRES_MUST) || (type == UNRES_MUST_INOUT) || (type == UNRES_UNION) || (type == UNRES_UNIQ_LEAVES)); unres->count++; unres->node = ly_realloc(unres->node, unres->count * sizeof *unres->node); LY_CHECK_ERR_RETURN(!unres->node, LOGMEM(NULL), -1); unres->node[unres->count - 1] = node; unres->type = ly_realloc(unres->type, unres->count * sizeof *unres->type); LY_CHECK_ERR_RETURN(!unres->type, LOGMEM(NULL), -1); unres->type[unres->count - 1] = type; return 0; } static void resolve_unres_data_autodel_diff(struct unres_data *unres, uint32_t unres_i) { struct lyd_node *next, *child, *parent; uint32_t i; for (i = 0; i < unres->diff_idx; ++i) { if (unres->diff->type[i] == LYD_DIFF_DELETED) { /* only leaf(-list) default could be removed and there is nothing to be checked in that case */ continue; } if (unres->diff->second[i] == unres->node[unres_i]) { /* 1) default value was supposed to be created, but is disabled by when * -> remove it from diff altogether */ unres_data_diff_rem(unres, i); /* if diff type is CREATED, the value was just a pointer, it can be freed normally (unlike in 4) */ return; } else { parent = unres->diff->second[i]->parent; while (parent && (parent != unres->node[unres_i])) { parent = parent->parent; } if (parent) { /* 2) default value was supposed to be created but is disabled by when in some parent * -> remove this default subtree and add the rest into diff as deleted instead in 4) */ unres_data_diff_rem(unres, i); break; } LY_TREE_DFS_BEGIN(unres->diff->second[i]->parent, next, child) { if (child == unres->node[unres_i]) { /* 3) some default child of a default value was supposed to be created but has false when * -> the subtree will be freed later and automatically disconnected from the diff parent node */ return; } LY_TREE_DFS_END(unres->diff->second[i]->parent, next, child); } } } /* 4) it does not overlap with created default values in any way * -> just add it into diff as deleted */ unres_data_diff_new(unres, unres->node[unres_i], unres->node[unres_i]->parent, 0); lyd_unlink(unres->node[unres_i]); /* should not be freed anymore */ unres->node[unres_i] = NULL; } /** * @brief Resolve every unres data item in the structure. Logs directly. * * If options include #LYD_OPT_TRUSTED, the data are considered trusted (must conditions are not expected, * unresolved leafrefs/instids are accepted, when conditions are normally resolved because at least some implicit * non-presence containers may need to be deleted). * * If options includes #LYD_OPT_WHENAUTODEL, the non-default nodes with false when conditions are auto-deleted. * * @param[in] ctx Context used. * @param[in] unres Unres data structure to use. * @param[in,out] root Root node of the data tree, can be changed due to autodeletion. * @param[in] options Data options as described above. * * @return EXIT_SUCCESS on success, -1 on error. */ int resolve_unres_data(struct ly_ctx *ctx, struct unres_data *unres, struct lyd_node **root, int options) { uint32_t i, j, first, resolved, del_items, stmt_count; uint8_t prev_when_status; int rc, progress, ignore_fail; enum int_log_opts prev_ilo; struct ly_err_item *prev_eitem; LY_ERR prev_ly_errno = ly_errno; struct lyd_node *parent; struct lys_when *when; assert(root); assert(unres); if (!unres->count) { return EXIT_SUCCESS; } if (options & (LYD_OPT_NOTIF_FILTER | LYD_OPT_GET | LYD_OPT_GETCONFIG | LYD_OPT_EDIT)) { ignore_fail = 1; } else if (options & LYD_OPT_NOEXTDEPS) { ignore_fail = 2; } else { ignore_fail = 0; } LOGVRB("Resolving unresolved data nodes and their constraints..."); if (!ignore_fail) { /* remember logging state only if errors are generated and valid */ ly_ilo_change(ctx, ILO_STORE, &prev_ilo, &prev_eitem); } /* * when-stmt first */ first = 1; stmt_count = 0; resolved = 0; del_items = 0; do { if (!ignore_fail) { ly_err_free_next(ctx, prev_eitem); } progress = 0; for (i = 0; i < unres->count; i++) { if (unres->type[i] != UNRES_WHEN) { continue; } if (first) { /* count when-stmt nodes in unres list */ stmt_count++; } /* resolve when condition only when all parent when conditions are already resolved */ for (parent = unres->node[i]->parent; parent && LYD_WHEN_DONE(parent->when_status); parent = parent->parent) { if (!parent->parent && (parent->when_status & LYD_WHEN_FALSE)) { /* the parent node was already unlinked, do not resolve this node, * it will be removed anyway, so just mark it as resolved */ unres->node[i]->when_status |= LYD_WHEN_FALSE; unres->type[i] = UNRES_RESOLVED; resolved++; break; } } if (parent) { continue; } prev_when_status = unres->node[i]->when_status; rc = resolve_unres_data_item(unres->node[i], unres->type[i], ignore_fail, &when); if (!rc) { /* finish with error/delete the node only if when was changed from true to false, an external * dependency was not required, or it was not provided (the flag would not be passed down otherwise, * checked in upper functions) */ if ((unres->node[i]->when_status & LYD_WHEN_FALSE) && (!(when->flags & (LYS_XPCONF_DEP | LYS_XPSTATE_DEP)) || !(options & LYD_OPT_NOEXTDEPS))) { if ((!(prev_when_status & LYD_WHEN_TRUE) || !(options & LYD_OPT_WHENAUTODEL)) && !unres->node[i]->dflt) { /* false when condition */ goto error; } /* follows else */ /* auto-delete */ LOGVRB("Auto-deleting node \"%s\" due to when condition (%s)", ly_errpath(ctx), when->cond); /* only unlink now, the subtree can contain another nodes stored in the unres list */ /* if it has parent non-presence containers that would be empty, we should actually * remove the container */ for (parent = unres->node[i]; parent->parent && parent->parent->schema->nodetype == LYS_CONTAINER; parent = parent->parent) { if (((struct lys_node_container *)parent->parent->schema)->presence) { /* presence container */ break; } if (parent->next || parent->prev != parent) { /* non empty (the child we are in and we are going to remove is not the only child) */ break; } } unres->node[i] = parent; if (*root && *root == unres->node[i]) { *root = (*root)->next; } lyd_unlink(unres->node[i]); unres->type[i] = UNRES_DELETE; del_items++; /* update the rest of unres items */ for (j = 0; j < unres->count; j++) { if (unres->type[j] == UNRES_RESOLVED || unres->type[j] == UNRES_DELETE) { continue; } /* test if the node is in subtree to be deleted */ for (parent = unres->node[j]; parent; parent = parent->parent) { if (parent == unres->node[i]) { /* yes, it is */ unres->type[j] = UNRES_RESOLVED; resolved++; break; } } } } else { unres->type[i] = UNRES_RESOLVED; } if (!ignore_fail) { ly_err_free_next(ctx, prev_eitem); } resolved++; progress = 1; } else if (rc == -1) { goto error; } /* else forward reference */ } first = 0; } while (progress && resolved < stmt_count); /* do we have some unresolved when-stmt? */ if (stmt_count > resolved) { goto error; } for (i = 0; del_items && i < unres->count; i++) { /* we had some when-stmt resulted to false, so now we have to sanitize the unres list */ if (unres->type[i] != UNRES_DELETE) { continue; } if (!unres->node[i]) { unres->type[i] = UNRES_RESOLVED; del_items--; continue; } if (unres->store_diff) { resolve_unres_data_autodel_diff(unres, i); } /* really remove the complete subtree */ lyd_free(unres->node[i]); unres->type[i] = UNRES_RESOLVED; del_items--; } /* * now leafrefs */ if (options & LYD_OPT_TRUSTED) { /* we want to attempt to resolve leafrefs */ assert(!ignore_fail); ignore_fail = 1; ly_ilo_restore(ctx, prev_ilo, prev_eitem, 0); ly_errno = prev_ly_errno; } first = 1; stmt_count = 0; resolved = 0; do { progress = 0; for (i = 0; i < unres->count; i++) { if (unres->type[i] != UNRES_LEAFREF) { continue; } if (first) { /* count leafref nodes in unres list */ stmt_count++; } rc = resolve_unres_data_item(unres->node[i], unres->type[i], ignore_fail, NULL); if (!rc) { unres->type[i] = UNRES_RESOLVED; if (!ignore_fail) { ly_err_free_next(ctx, prev_eitem); } resolved++; progress = 1; } else if (rc == -1) { goto error; } /* else forward reference */ } first = 0; } while (progress && resolved < stmt_count); /* do we have some unresolved leafrefs? */ if (stmt_count > resolved) { goto error; } if (!ignore_fail) { /* log normally now, throw away irrelevant errors */ ly_ilo_restore(ctx, prev_ilo, prev_eitem, 0); ly_errno = prev_ly_errno; } /* * rest */ for (i = 0; i < unres->count; ++i) { if (unres->type[i] == UNRES_RESOLVED) { continue; } assert(!(options & LYD_OPT_TRUSTED) || ((unres->type[i] != UNRES_MUST) && (unres->type[i] != UNRES_MUST_INOUT))); rc = resolve_unres_data_item(unres->node[i], unres->type[i], ignore_fail, NULL); if (rc) { /* since when was already resolved, a forward reference is an error */ return -1; } unres->type[i] = UNRES_RESOLVED; } LOGVRB("All data nodes and constraints resolved."); unres->count = 0; return EXIT_SUCCESS; error: if (!ignore_fail) { /* print all the new errors */ ly_ilo_restore(ctx, prev_ilo, prev_eitem, 1); /* do not restore ly_errno, it was udpated properly */ } return -1; }