/* * MD4 (RFC-1320) message digest. * Modified from MD5 code by Andrey Panin * * Written by Solar Designer in 2001, and placed in * the public domain. There's absolutely no warranty. * * This differs from Colin Plumb's older public domain implementation in * that no 32-bit integer data type is required, there's no compile-time * endianness configuration. * The primary goals are portability and ease of use. * * This implementation is meant to be fast, but not as fast as possible. * Some known optimizations are not included to reduce source code size * and avoid compile-time configuration. */ #include "crypt-port.h" #include "alg-md4.h" #include "byteorder.h" #if INCLUDE_nthash /* * The basic MD4 functions. */ #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) /* * The MD4 transformation for all four rounds. */ #define STEP(f, a, b, c, d, x, s) \ (a) += f((b), (c), (d)) + (x); \ (a) = ((a) << (s)) | ((a) >> (32 - (s))) /* * SET reads 4 input bytes in little-endian byte order and stores them * in a properly aligned word in host byte order. * * The check for little-endian architectures which tolerate unaligned * memory accesses is just an optimization. Nothing will break if it * doesn't work. */ #define SET(n) \ (ctx->block[(n)] = le32_to_cpu (&ptr[(n) * 4])) #define GET(n) \ (ctx->block[(n)]) /* * This processes one or more 64-byte data blocks, but does NOT update * the bit counters. There're no alignment requirements. */ static const unsigned char * body (struct md4_ctx *ctx, const unsigned char *data, size_t size) { const unsigned char *ptr; uint32_t a, b, c, d; uint32_t saved_a, saved_b, saved_c, saved_d; ptr = data; a = ctx->a; b = ctx->b; c = ctx->c; d = ctx->d; do { saved_a = a; saved_b = b; saved_c = c; saved_d = d; /* Round 1 */ STEP(F, a, b, c, d, SET( 0), 3); STEP(F, d, a, b, c, SET( 1), 7); STEP(F, c, d, a, b, SET( 2), 11); STEP(F, b, c, d, a, SET( 3), 19); STEP(F, a, b, c, d, SET( 4), 3); STEP(F, d, a, b, c, SET( 5), 7); STEP(F, c, d, a, b, SET( 6), 11); STEP(F, b, c, d, a, SET( 7), 19); STEP(F, a, b, c, d, SET( 8), 3); STEP(F, d, a, b, c, SET( 9), 7); STEP(F, c, d, a, b, SET(10), 11); STEP(F, b, c, d, a, SET(11), 19); STEP(F, a, b, c, d, SET(12), 3); STEP(F, d, a, b, c, SET(13), 7); STEP(F, c, d, a, b, SET(14), 11); STEP(F, b, c, d, a, SET(15), 19); /* Round 2 */ STEP(G, a, b, c, d, GET( 0) + 0x5A827999, 3); STEP(G, d, a, b, c, GET( 4) + 0x5A827999, 5); STEP(G, c, d, a, b, GET( 8) + 0x5A827999, 9); STEP(G, b, c, d, a, GET(12) + 0x5A827999, 13); STEP(G, a, b, c, d, GET( 1) + 0x5A827999, 3); STEP(G, d, a, b, c, GET( 5) + 0x5A827999, 5); STEP(G, c, d, a, b, GET( 9) + 0x5A827999, 9); STEP(G, b, c, d, a, GET(13) + 0x5A827999, 13); STEP(G, a, b, c, d, GET( 2) + 0x5A827999, 3); STEP(G, d, a, b, c, GET( 6) + 0x5A827999, 5); STEP(G, c, d, a, b, GET(10) + 0x5A827999, 9); STEP(G, b, c, d, a, GET(14) + 0x5A827999, 13); STEP(G, a, b, c, d, GET( 3) + 0x5A827999, 3); STEP(G, d, a, b, c, GET( 7) + 0x5A827999, 5); STEP(G, c, d, a, b, GET(11) + 0x5A827999, 9); STEP(G, b, c, d, a, GET(15) + 0x5A827999, 13); /* Round 3 */ STEP(H, a, b, c, d, GET( 0) + 0x6ED9EBA1, 3); STEP(H, d, a, b, c, GET( 8) + 0x6ED9EBA1, 9); STEP(H, c, d, a, b, GET( 4) + 0x6ED9EBA1, 11); STEP(H, b, c, d, a, GET(12) + 0x6ED9EBA1, 15); STEP(H, a, b, c, d, GET( 2) + 0x6ED9EBA1, 3); STEP(H, d, a, b, c, GET(10) + 0x6ED9EBA1, 9); STEP(H, c, d, a, b, GET( 6) + 0x6ED9EBA1, 11); STEP(H, b, c, d, a, GET(14) + 0x6ED9EBA1, 15); STEP(H, a, b, c, d, GET( 1) + 0x6ED9EBA1, 3); STEP(H, d, a, b, c, GET( 9) + 0x6ED9EBA1, 9); STEP(H, c, d, a, b, GET( 5) + 0x6ED9EBA1, 11); STEP(H, b, c, d, a, GET(13) + 0x6ED9EBA1, 15); STEP(H, a, b, c, d, GET( 3) + 0x6ED9EBA1, 3); STEP(H, d, a, b, c, GET(11) + 0x6ED9EBA1, 9); STEP(H, c, d, a, b, GET( 7) + 0x6ED9EBA1, 11); STEP(H, b, c, d, a, GET(15) + 0x6ED9EBA1, 15); a += saved_a; b += saved_b; c += saved_c; d += saved_d; ptr += 64; } while (size -= 64); ctx->a = a; ctx->b = b; ctx->c = c; ctx->d = d; return ptr; } /* Put result from CTX in first 16 bytes following RESBUF. The result will be in little endian byte order. */ static void * md4_read_ctx (struct md4_ctx *ctx, void *resbuf) { unsigned char *buf = resbuf; cpu_to_le32 (buf + 0, ctx->a); cpu_to_le32 (buf + 4, ctx->b); cpu_to_le32 (buf + 8, ctx->c); cpu_to_le32 (buf + 12, ctx->d); XCRYPT_SECURE_MEMSET (ctx, sizeof(struct md4_ctx)); return resbuf; } void md4_init_ctx (struct md4_ctx *ctx) { ctx->a = 0x67452301; ctx->b = 0xefcdab89; ctx->c = 0x98badcfe; ctx->d = 0x10325476; ctx->lo = 0; ctx->hi = 0; } void md4_process_bytes (const void *buffer, struct md4_ctx *ctx, size_t size) { uint32_t saved_lo; size_t used, free; saved_lo = ctx->lo; if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) ctx->hi++; ctx->hi += (uint32_t)(size >> 29); used = saved_lo & 0x3f; if (used) { free = 64 - used; if (size < free) { memcpy(&ctx->buffer[used], buffer, size); return; } memcpy(&ctx->buffer[used], buffer, free); buffer = (const unsigned char *) buffer + free; size -= free; body(ctx, ctx->buffer, 64); } if (size >= 64) { buffer = body(ctx, buffer, size & ~(uint32_t)0x3f); size &= 0x3f; } memcpy(ctx->buffer, buffer, size); } void * md4_finish_ctx (struct md4_ctx *ctx, void *resbuf) { size_t used, free; used = ctx->lo & 0x3f; ctx->buffer[used++] = 0x80; free = 64 - used; if (free < 8) { XCRYPT_SECURE_MEMSET (&ctx->buffer[used], free); body(ctx, ctx->buffer, 64); used = 0; free = 64; } XCRYPT_SECURE_MEMSET (&ctx->buffer[used], free - 8); ctx->lo <<= 3; ctx->buffer[56] = (unsigned char)((ctx->lo) & 0xff); ctx->buffer[57] = (unsigned char)((ctx->lo >> 8) & 0xff); ctx->buffer[58] = (unsigned char)((ctx->lo >> 16) & 0xff); ctx->buffer[59] = (unsigned char)((ctx->lo >> 24) & 0xff); ctx->buffer[60] = (unsigned char)((ctx->hi) & 0xff); ctx->buffer[61] = (unsigned char)((ctx->hi >> 8) & 0xff); ctx->buffer[62] = (unsigned char)((ctx->hi >> 16) & 0xff); ctx->buffer[63] = (unsigned char)((ctx->hi >> 24) & 0xff); body(ctx, ctx->buffer, 64); return md4_read_ctx (ctx, resbuf); } #endif