// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // YUV->RGB conversion functions // // Author: Skal (pascal.massimino@gmail.com) #include "src/dsp/yuv.h" #if defined(WEBP_USE_SSE2) #include "src/dsp/common_sse2.h" #include #include //----------------------------------------------------------------------------- // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. // These constants are 14b fixed-point version of ITU-R BT.601 constants. // R = (19077 * y + 26149 * v - 14234) >> 6 // G = (19077 * y - 6419 * u - 13320 * v + 8708) >> 6 // B = (19077 * y + 33050 * u - 17685) >> 6 static void ConvertYUV444ToRGB_SSE2(const __m128i* const Y0, const __m128i* const U0, const __m128i* const V0, __m128i* const R, __m128i* const G, __m128i* const B) { const __m128i k19077 = _mm_set1_epi16(19077); const __m128i k26149 = _mm_set1_epi16(26149); const __m128i k14234 = _mm_set1_epi16(14234); // 33050 doesn't fit in a signed short: only use this with unsigned arithmetic const __m128i k33050 = _mm_set1_epi16((short)33050); const __m128i k17685 = _mm_set1_epi16(17685); const __m128i k6419 = _mm_set1_epi16(6419); const __m128i k13320 = _mm_set1_epi16(13320); const __m128i k8708 = _mm_set1_epi16(8708); const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077); const __m128i R0 = _mm_mulhi_epu16(*V0, k26149); const __m128i R1 = _mm_sub_epi16(Y1, k14234); const __m128i R2 = _mm_add_epi16(R1, R0); const __m128i G0 = _mm_mulhi_epu16(*U0, k6419); const __m128i G1 = _mm_mulhi_epu16(*V0, k13320); const __m128i G2 = _mm_add_epi16(Y1, k8708); const __m128i G3 = _mm_add_epi16(G0, G1); const __m128i G4 = _mm_sub_epi16(G2, G3); // be careful with the saturated *unsigned* arithmetic here! const __m128i B0 = _mm_mulhi_epu16(*U0, k33050); const __m128i B1 = _mm_adds_epu16(B0, Y1); const __m128i B2 = _mm_subs_epu16(B1, k17685); // use logical shift for B2, which can be larger than 32767 *R = _mm_srai_epi16(R2, 6); // range: [-14234, 30815] *G = _mm_srai_epi16(G4, 6); // range: [-10953, 27710] *B = _mm_srli_epi16(B2, 6); // range: [0, 34238] } // Load the bytes into the *upper* part of 16b words. That's "<< 8", basically. static WEBP_INLINE __m128i Load_HI_16_SSE2(const uint8_t* src) { const __m128i zero = _mm_setzero_si128(); return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src)); } // Load and replicate the U/V samples static WEBP_INLINE __m128i Load_UV_HI_8_SSE2(const uint8_t* src) { const __m128i zero = _mm_setzero_si128(); const __m128i tmp0 = _mm_cvtsi32_si128(*(const uint32_t*)src); const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0); return _mm_unpacklo_epi16(tmp1, tmp1); // replicate samples } // Convert 32 samples of YUV444 to R/G/B static void YUV444ToRGB_SSE2(const uint8_t* const y, const uint8_t* const u, const uint8_t* const v, __m128i* const R, __m128i* const G, __m128i* const B) { const __m128i Y0 = Load_HI_16_SSE2(y), U0 = Load_HI_16_SSE2(u), V0 = Load_HI_16_SSE2(v); ConvertYUV444ToRGB_SSE2(&Y0, &U0, &V0, R, G, B); } // Convert 32 samples of YUV420 to R/G/B static void YUV420ToRGB_SSE2(const uint8_t* const y, const uint8_t* const u, const uint8_t* const v, __m128i* const R, __m128i* const G, __m128i* const B) { const __m128i Y0 = Load_HI_16_SSE2(y), U0 = Load_UV_HI_8_SSE2(u), V0 = Load_UV_HI_8_SSE2(v); ConvertYUV444ToRGB_SSE2(&Y0, &U0, &V0, R, G, B); } // Pack R/G/B/A results into 32b output. static WEBP_INLINE void PackAndStore4_SSE2(const __m128i* const R, const __m128i* const G, const __m128i* const B, const __m128i* const A, uint8_t* const dst) { const __m128i rb = _mm_packus_epi16(*R, *B); const __m128i ga = _mm_packus_epi16(*G, *A); const __m128i rg = _mm_unpacklo_epi8(rb, ga); const __m128i ba = _mm_unpackhi_epi8(rb, ga); const __m128i RGBA_lo = _mm_unpacklo_epi16(rg, ba); const __m128i RGBA_hi = _mm_unpackhi_epi16(rg, ba); _mm_storeu_si128((__m128i*)(dst + 0), RGBA_lo); _mm_storeu_si128((__m128i*)(dst + 16), RGBA_hi); } // Pack R/G/B/A results into 16b output. static WEBP_INLINE void PackAndStore4444_SSE2(const __m128i* const R, const __m128i* const G, const __m128i* const B, const __m128i* const A, uint8_t* const dst) { #if (WEBP_SWAP_16BIT_CSP == 0) const __m128i rg0 = _mm_packus_epi16(*R, *G); const __m128i ba0 = _mm_packus_epi16(*B, *A); #else const __m128i rg0 = _mm_packus_epi16(*B, *A); const __m128i ba0 = _mm_packus_epi16(*R, *G); #endif const __m128i mask_0xf0 = _mm_set1_epi8(0xf0); const __m128i rb1 = _mm_unpacklo_epi8(rg0, ba0); // rbrbrbrbrb... const __m128i ga1 = _mm_unpackhi_epi8(rg0, ba0); // gagagagaga... const __m128i rb2 = _mm_and_si128(rb1, mask_0xf0); const __m128i ga2 = _mm_srli_epi16(_mm_and_si128(ga1, mask_0xf0), 4); const __m128i rgba4444 = _mm_or_si128(rb2, ga2); _mm_storeu_si128((__m128i*)dst, rgba4444); } // Pack R/G/B results into 16b output. static WEBP_INLINE void PackAndStore565_SSE2(const __m128i* const R, const __m128i* const G, const __m128i* const B, uint8_t* const dst) { const __m128i r0 = _mm_packus_epi16(*R, *R); const __m128i g0 = _mm_packus_epi16(*G, *G); const __m128i b0 = _mm_packus_epi16(*B, *B); const __m128i r1 = _mm_and_si128(r0, _mm_set1_epi8(0xf8)); const __m128i b1 = _mm_and_si128(_mm_srli_epi16(b0, 3), _mm_set1_epi8(0x1f)); const __m128i g1 = _mm_srli_epi16(_mm_and_si128(g0, _mm_set1_epi8(0xe0)), 5); const __m128i g2 = _mm_slli_epi16(_mm_and_si128(g0, _mm_set1_epi8(0x1c)), 3); const __m128i rg = _mm_or_si128(r1, g1); const __m128i gb = _mm_or_si128(g2, b1); #if (WEBP_SWAP_16BIT_CSP == 0) const __m128i rgb565 = _mm_unpacklo_epi8(rg, gb); #else const __m128i rgb565 = _mm_unpacklo_epi8(gb, rg); #endif _mm_storeu_si128((__m128i*)dst, rgb565); } // Pack the planar buffers // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... // triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... static WEBP_INLINE void PlanarTo24b_SSE2(__m128i* const in0, __m128i* const in1, __m128i* const in2, __m128i* const in3, __m128i* const in4, __m128i* const in5, uint8_t* const rgb) { // The input is 6 registers of sixteen 8b but for the sake of explanation, // let's take 6 registers of four 8b values. // To pack, we will keep taking one every two 8b integer and move it // around as follows: // Input: // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 // Split the 6 registers in two sets of 3 registers: the first set as the even // 8b bytes, the second the odd ones: // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 // Repeat the same permutations twice more: // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 VP8PlanarTo24b_SSE2(in0, in1, in2, in3, in4, in5); _mm_storeu_si128((__m128i*)(rgb + 0), *in0); _mm_storeu_si128((__m128i*)(rgb + 16), *in1); _mm_storeu_si128((__m128i*)(rgb + 32), *in2); _mm_storeu_si128((__m128i*)(rgb + 48), *in3); _mm_storeu_si128((__m128i*)(rgb + 64), *in4); _mm_storeu_si128((__m128i*)(rgb + 80), *in5); } void VP8YuvToRgba32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { const __m128i kAlpha = _mm_set1_epi16(255); int n; for (n = 0; n < 32; n += 8, dst += 32) { __m128i R, G, B; YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); PackAndStore4_SSE2(&R, &G, &B, &kAlpha, dst); } } void VP8YuvToBgra32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { const __m128i kAlpha = _mm_set1_epi16(255); int n; for (n = 0; n < 32; n += 8, dst += 32) { __m128i R, G, B; YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); PackAndStore4_SSE2(&B, &G, &R, &kAlpha, dst); } } void VP8YuvToArgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { const __m128i kAlpha = _mm_set1_epi16(255); int n; for (n = 0; n < 32; n += 8, dst += 32) { __m128i R, G, B; YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); PackAndStore4_SSE2(&kAlpha, &R, &G, &B, dst); } } void VP8YuvToRgba444432_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { const __m128i kAlpha = _mm_set1_epi16(255); int n; for (n = 0; n < 32; n += 8, dst += 16) { __m128i R, G, B; YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); PackAndStore4444_SSE2(&R, &G, &B, &kAlpha, dst); } } void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; for (n = 0; n < 32; n += 8, dst += 16) { __m128i R, G, B; YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); PackAndStore565_SSE2(&R, &G, &B, dst); } } void VP8YuvToRgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; YUV444ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV444ToRGB_SSE2(y + 8, u + 8, v + 8, &R1, &G1, &B1); YUV444ToRGB_SSE2(y + 16, u + 16, v + 16, &R2, &G2, &B2); YUV444ToRGB_SSE2(y + 24, u + 24, v + 24, &R3, &G3, &B3); // Cast to 8b and store as RRRRGGGGBBBB. rgb0 = _mm_packus_epi16(R0, R1); rgb1 = _mm_packus_epi16(R2, R3); rgb2 = _mm_packus_epi16(G0, G1); rgb3 = _mm_packus_epi16(G2, G3); rgb4 = _mm_packus_epi16(B0, B1); rgb5 = _mm_packus_epi16(B2, B3); // Pack as RGBRGBRGBRGB. PlanarTo24b_SSE2(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); } void VP8YuvToBgr32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; YUV444ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV444ToRGB_SSE2(y + 8, u + 8, v + 8, &R1, &G1, &B1); YUV444ToRGB_SSE2(y + 16, u + 16, v + 16, &R2, &G2, &B2); YUV444ToRGB_SSE2(y + 24, u + 24, v + 24, &R3, &G3, &B3); // Cast to 8b and store as BBBBGGGGRRRR. bgr0 = _mm_packus_epi16(B0, B1); bgr1 = _mm_packus_epi16(B2, B3); bgr2 = _mm_packus_epi16(G0, G1); bgr3 = _mm_packus_epi16(G2, G3); bgr4 = _mm_packus_epi16(R0, R1); bgr5= _mm_packus_epi16(R2, R3); // Pack as BGRBGRBGRBGR. PlanarTo24b_SSE2(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); } //----------------------------------------------------------------------------- // Arbitrary-length row conversion functions static void YuvToRgbaRow_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { const __m128i kAlpha = _mm_set1_epi16(255); int n; for (n = 0; n + 8 <= len; n += 8, dst += 32) { __m128i R, G, B; YUV420ToRGB_SSE2(y, u, v, &R, &G, &B); PackAndStore4_SSE2(&R, &G, &B, &kAlpha, dst); y += 8; u += 4; v += 4; } for (; n < len; ++n) { // Finish off VP8YuvToRgba(y[0], u[0], v[0], dst); dst += 4; y += 1; u += (n & 1); v += (n & 1); } } static void YuvToBgraRow_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { const __m128i kAlpha = _mm_set1_epi16(255); int n; for (n = 0; n + 8 <= len; n += 8, dst += 32) { __m128i R, G, B; YUV420ToRGB_SSE2(y, u, v, &R, &G, &B); PackAndStore4_SSE2(&B, &G, &R, &kAlpha, dst); y += 8; u += 4; v += 4; } for (; n < len; ++n) { // Finish off VP8YuvToBgra(y[0], u[0], v[0], dst); dst += 4; y += 1; u += (n & 1); v += (n & 1); } } static void YuvToArgbRow_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { const __m128i kAlpha = _mm_set1_epi16(255); int n; for (n = 0; n + 8 <= len; n += 8, dst += 32) { __m128i R, G, B; YUV420ToRGB_SSE2(y, u, v, &R, &G, &B); PackAndStore4_SSE2(&kAlpha, &R, &G, &B, dst); y += 8; u += 4; v += 4; } for (; n < len; ++n) { // Finish off VP8YuvToArgb(y[0], u[0], v[0], dst); dst += 4; y += 1; u += (n & 1); v += (n & 1); } } static void YuvToRgbRow_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; YUV420ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV420ToRGB_SSE2(y + 8, u + 4, v + 4, &R1, &G1, &B1); YUV420ToRGB_SSE2(y + 16, u + 8, v + 8, &R2, &G2, &B2); YUV420ToRGB_SSE2(y + 24, u + 12, v + 12, &R3, &G3, &B3); // Cast to 8b and store as RRRRGGGGBBBB. rgb0 = _mm_packus_epi16(R0, R1); rgb1 = _mm_packus_epi16(R2, R3); rgb2 = _mm_packus_epi16(G0, G1); rgb3 = _mm_packus_epi16(G2, G3); rgb4 = _mm_packus_epi16(B0, B1); rgb5 = _mm_packus_epi16(B2, B3); // Pack as RGBRGBRGBRGB. PlanarTo24b_SSE2(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); y += 32; u += 16; v += 16; } for (; n < len; ++n) { // Finish off VP8YuvToRgb(y[0], u[0], v[0], dst); dst += 3; y += 1; u += (n & 1); v += (n & 1); } } static void YuvToBgrRow_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; YUV420ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV420ToRGB_SSE2(y + 8, u + 4, v + 4, &R1, &G1, &B1); YUV420ToRGB_SSE2(y + 16, u + 8, v + 8, &R2, &G2, &B2); YUV420ToRGB_SSE2(y + 24, u + 12, v + 12, &R3, &G3, &B3); // Cast to 8b and store as BBBBGGGGRRRR. bgr0 = _mm_packus_epi16(B0, B1); bgr1 = _mm_packus_epi16(B2, B3); bgr2 = _mm_packus_epi16(G0, G1); bgr3 = _mm_packus_epi16(G2, G3); bgr4 = _mm_packus_epi16(R0, R1); bgr5 = _mm_packus_epi16(R2, R3); // Pack as BGRBGRBGRBGR. PlanarTo24b_SSE2(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); y += 32; u += 16; v += 16; } for (; n < len; ++n) { // Finish off VP8YuvToBgr(y[0], u[0], v[0], dst); dst += 3; y += 1; u += (n & 1); v += (n & 1); } } //------------------------------------------------------------------------------ // Entry point extern void WebPInitSamplersSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE2(void) { WebPSamplers[MODE_RGB] = YuvToRgbRow_SSE2; WebPSamplers[MODE_RGBA] = YuvToRgbaRow_SSE2; WebPSamplers[MODE_BGR] = YuvToBgrRow_SSE2; WebPSamplers[MODE_BGRA] = YuvToBgraRow_SSE2; WebPSamplers[MODE_ARGB] = YuvToArgbRow_SSE2; } //------------------------------------------------------------------------------ // RGB24/32 -> YUV converters // Load eight 16b-words from *src. #define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src)) // Store either 16b-words into *dst #define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V)) // Function that inserts a value of the second half of the in buffer in between // every two char of the first half. static WEBP_INLINE void RGB24PackedToPlanarHelper_SSE2( const __m128i* const in /*in[6]*/, __m128i* const out /*out[6]*/) { out[0] = _mm_unpacklo_epi8(in[0], in[3]); out[1] = _mm_unpackhi_epi8(in[0], in[3]); out[2] = _mm_unpacklo_epi8(in[1], in[4]); out[3] = _mm_unpackhi_epi8(in[1], in[4]); out[4] = _mm_unpacklo_epi8(in[2], in[5]); out[5] = _mm_unpackhi_epi8(in[2], in[5]); } // Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers: // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... // Similar to PlanarTo24bHelper(), but in reverse order. static WEBP_INLINE void RGB24PackedToPlanar_SSE2( const uint8_t* const rgb, __m128i* const out /*out[6]*/) { __m128i tmp[6]; tmp[0] = _mm_loadu_si128((const __m128i*)(rgb + 0)); tmp[1] = _mm_loadu_si128((const __m128i*)(rgb + 16)); tmp[2] = _mm_loadu_si128((const __m128i*)(rgb + 32)); tmp[3] = _mm_loadu_si128((const __m128i*)(rgb + 48)); tmp[4] = _mm_loadu_si128((const __m128i*)(rgb + 64)); tmp[5] = _mm_loadu_si128((const __m128i*)(rgb + 80)); RGB24PackedToPlanarHelper_SSE2(tmp, out); RGB24PackedToPlanarHelper_SSE2(out, tmp); RGB24PackedToPlanarHelper_SSE2(tmp, out); RGB24PackedToPlanarHelper_SSE2(out, tmp); RGB24PackedToPlanarHelper_SSE2(tmp, out); } // Convert 8 packed ARGB to r[], g[], b[] static WEBP_INLINE void RGB32PackedToPlanar_SSE2(const uint32_t* const argb, __m128i* const rgb /*in[6]*/) { const __m128i zero = _mm_setzero_si128(); __m128i a0 = LOAD_16(argb + 0); __m128i a1 = LOAD_16(argb + 4); __m128i a2 = LOAD_16(argb + 8); __m128i a3 = LOAD_16(argb + 12); VP8L32bToPlanar_SSE2(&a0, &a1, &a2, &a3); rgb[0] = _mm_unpacklo_epi8(a1, zero); rgb[1] = _mm_unpackhi_epi8(a1, zero); rgb[2] = _mm_unpacklo_epi8(a2, zero); rgb[3] = _mm_unpackhi_epi8(a2, zero); rgb[4] = _mm_unpacklo_epi8(a3, zero); rgb[5] = _mm_unpackhi_epi8(a3, zero); } // This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX // It's a macro and not a function because we need to use immediate values with // srai_epi32, e.g. #define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \ ROUNDER, DESCALE_FIX, OUT) do { \ const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \ const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \ const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \ const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \ const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \ const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \ const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \ const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \ const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \ const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \ (OUT) = _mm_packs_epi32(V5_lo, V5_hi); \ } while (0) #define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A)) static WEBP_INLINE void ConvertRGBToY_SSE2(const __m128i* const R, const __m128i* const G, const __m128i* const B, __m128i* const Y) { const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384); const __m128i kGB_y = MK_CST_16(16384, 6420); const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF); const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y); } static WEBP_INLINE void ConvertRGBToUV_SSE2(const __m128i* const R, const __m128i* const G, const __m128i* const B, __m128i* const U, __m128i* const V) { const __m128i kRG_u = MK_CST_16(-9719, -19081); const __m128i kGB_u = MK_CST_16(0, 28800); const __m128i kRG_v = MK_CST_16(28800, 0); const __m128i kGB_v = MK_CST_16(-24116, -4684); const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2); const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u, kHALF_UV, YUV_FIX + 2, *U); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v, kHALF_UV, YUV_FIX + 2, *V); } #undef MK_CST_16 #undef TRANSFORM static void ConvertRGB24ToY_SSE2(const uint8_t* rgb, uint8_t* y, int width) { const int max_width = width & ~31; int i; for (i = 0; i < max_width; rgb += 3 * 16 * 2) { __m128i rgb_plane[6]; int j; RGB24PackedToPlanar_SSE2(rgb, rgb_plane); for (j = 0; j < 2; ++j, i += 16) { const __m128i zero = _mm_setzero_si128(); __m128i r, g, b, Y0, Y1; // Convert to 16-bit Y. r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero); g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero); b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero); ConvertRGBToY_SSE2(&r, &g, &b, &Y0); // Convert to 16-bit Y. r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero); g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero); b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero); ConvertRGBToY_SSE2(&r, &g, &b, &Y1); // Cast to 8-bit and store. STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } } for (; i < width; ++i, rgb += 3) { // left-over y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); } } static void ConvertBGR24ToY_SSE2(const uint8_t* bgr, uint8_t* y, int width) { const int max_width = width & ~31; int i; for (i = 0; i < max_width; bgr += 3 * 16 * 2) { __m128i bgr_plane[6]; int j; RGB24PackedToPlanar_SSE2(bgr, bgr_plane); for (j = 0; j < 2; ++j, i += 16) { const __m128i zero = _mm_setzero_si128(); __m128i r, g, b, Y0, Y1; // Convert to 16-bit Y. b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero); g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero); r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero); ConvertRGBToY_SSE2(&r, &g, &b, &Y0); // Convert to 16-bit Y. b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero); g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero); r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero); ConvertRGBToY_SSE2(&r, &g, &b, &Y1); // Cast to 8-bit and store. STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } } for (; i < width; ++i, bgr += 3) { // left-over y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); } } static void ConvertARGBToY_SSE2(const uint32_t* argb, uint8_t* y, int width) { const int max_width = width & ~15; int i; for (i = 0; i < max_width; i += 16) { __m128i Y0, Y1, rgb[6]; RGB32PackedToPlanar_SSE2(&argb[i], rgb); ConvertRGBToY_SSE2(&rgb[0], &rgb[2], &rgb[4], &Y0); ConvertRGBToY_SSE2(&rgb[1], &rgb[3], &rgb[5], &Y1); STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } for (; i < width; ++i) { // left-over const uint32_t p = argb[i]; y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, YUV_HALF); } } // Horizontal add (doubled) of two 16b values, result is 16b. // in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ... static void HorizontalAddPack_SSE2(const __m128i* const A, const __m128i* const B, __m128i* const out) { const __m128i k2 = _mm_set1_epi16(2); const __m128i C = _mm_madd_epi16(*A, k2); const __m128i D = _mm_madd_epi16(*B, k2); *out = _mm_packs_epi32(C, D); } static void ConvertARGBToUV_SSE2(const uint32_t* argb, uint8_t* u, uint8_t* v, int src_width, int do_store) { const int max_width = src_width & ~31; int i; for (i = 0; i < max_width; i += 32, u += 16, v += 16) { __m128i rgb[6], U0, V0, U1, V1; RGB32PackedToPlanar_SSE2(&argb[i], rgb); HorizontalAddPack_SSE2(&rgb[0], &rgb[1], &rgb[0]); HorizontalAddPack_SSE2(&rgb[2], &rgb[3], &rgb[2]); HorizontalAddPack_SSE2(&rgb[4], &rgb[5], &rgb[4]); ConvertRGBToUV_SSE2(&rgb[0], &rgb[2], &rgb[4], &U0, &V0); RGB32PackedToPlanar_SSE2(&argb[i + 16], rgb); HorizontalAddPack_SSE2(&rgb[0], &rgb[1], &rgb[0]); HorizontalAddPack_SSE2(&rgb[2], &rgb[3], &rgb[2]); HorizontalAddPack_SSE2(&rgb[4], &rgb[5], &rgb[4]); ConvertRGBToUV_SSE2(&rgb[0], &rgb[2], &rgb[4], &U1, &V1); U0 = _mm_packus_epi16(U0, U1); V0 = _mm_packus_epi16(V0, V1); if (!do_store) { const __m128i prev_u = LOAD_16(u); const __m128i prev_v = LOAD_16(v); U0 = _mm_avg_epu8(U0, prev_u); V0 = _mm_avg_epu8(V0, prev_v); } STORE_16(U0, u); STORE_16(V0, v); } if (i < src_width) { // left-over WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); } } // Convert 16 packed ARGB 16b-values to r[], g[], b[] static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE2( const uint16_t* const rgbx, __m128i* const r, __m128i* const g, __m128i* const b) { const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ... const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ... // column-wise transpose const __m128i A0 = _mm_unpacklo_epi16(in0, in1); const __m128i A1 = _mm_unpackhi_epi16(in0, in1); const __m128i A2 = _mm_unpacklo_epi16(in2, in3); const __m128i A3 = _mm_unpackhi_epi16(in2, in3); const __m128i B0 = _mm_unpacklo_epi16(A0, A1); // r0 r1 r2 r3 | g0 g1 .. const __m128i B1 = _mm_unpackhi_epi16(A0, A1); // b0 b1 b2 b3 | x x x x const __m128i B2 = _mm_unpacklo_epi16(A2, A3); // r4 r5 r6 r7 | g4 g5 .. const __m128i B3 = _mm_unpackhi_epi16(A2, A3); // b4 b5 b6 b7 | x x x x *r = _mm_unpacklo_epi64(B0, B2); *g = _mm_unpackhi_epi64(B0, B2); *b = _mm_unpacklo_epi64(B1, B3); } static void ConvertRGBA32ToUV_SSE2(const uint16_t* rgb, uint8_t* u, uint8_t* v, int width) { const int max_width = width & ~15; const uint16_t* const last_rgb = rgb + 4 * max_width; while (rgb < last_rgb) { __m128i r, g, b, U0, V0, U1, V1; RGBA32PackedToPlanar_16b_SSE2(rgb + 0, &r, &g, &b); ConvertRGBToUV_SSE2(&r, &g, &b, &U0, &V0); RGBA32PackedToPlanar_16b_SSE2(rgb + 32, &r, &g, &b); ConvertRGBToUV_SSE2(&r, &g, &b, &U1, &V1); STORE_16(_mm_packus_epi16(U0, U1), u); STORE_16(_mm_packus_epi16(V0, V1), v); u += 16; v += 16; rgb += 2 * 32; } if (max_width < width) { // left-over WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width); } } //------------------------------------------------------------------------------ extern void WebPInitConvertARGBToYUVSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE2(void) { WebPConvertARGBToY = ConvertARGBToY_SSE2; WebPConvertARGBToUV = ConvertARGBToUV_SSE2; WebPConvertRGB24ToY = ConvertRGB24ToY_SSE2; WebPConvertBGR24ToY = ConvertBGR24ToY_SSE2; WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE2; } //------------------------------------------------------------------------------ #define MAX_Y ((1 << 10) - 1) // 10b precision over 16b-arithmetic static uint16_t clip_y(int v) { return (v < 0) ? 0 : (v > MAX_Y) ? MAX_Y : (uint16_t)v; } static uint64_t SharpYUVUpdateY_SSE2(const uint16_t* ref, const uint16_t* src, uint16_t* dst, int len) { uint64_t diff = 0; uint32_t tmp[4]; int i; const __m128i zero = _mm_setzero_si128(); const __m128i max = _mm_set1_epi16(MAX_Y); const __m128i one = _mm_set1_epi16(1); __m128i sum = zero; for (i = 0; i + 8 <= len; i += 8) { const __m128i A = _mm_loadu_si128((const __m128i*)(ref + i)); const __m128i B = _mm_loadu_si128((const __m128i*)(src + i)); const __m128i C = _mm_loadu_si128((const __m128i*)(dst + i)); const __m128i D = _mm_sub_epi16(A, B); // diff_y const __m128i E = _mm_cmpgt_epi16(zero, D); // sign (-1 or 0) const __m128i F = _mm_add_epi16(C, D); // new_y const __m128i G = _mm_or_si128(E, one); // -1 or 1 const __m128i H = _mm_max_epi16(_mm_min_epi16(F, max), zero); const __m128i I = _mm_madd_epi16(D, G); // sum(abs(...)) _mm_storeu_si128((__m128i*)(dst + i), H); sum = _mm_add_epi32(sum, I); } _mm_storeu_si128((__m128i*)tmp, sum); diff = tmp[3] + tmp[2] + tmp[1] + tmp[0]; for (; i < len; ++i) { const int diff_y = ref[i] - src[i]; const int new_y = (int)dst[i] + diff_y; dst[i] = clip_y(new_y); diff += (uint64_t)abs(diff_y); } return diff; } static void SharpYUVUpdateRGB_SSE2(const int16_t* ref, const int16_t* src, int16_t* dst, int len) { int i = 0; for (i = 0; i + 8 <= len; i += 8) { const __m128i A = _mm_loadu_si128((const __m128i*)(ref + i)); const __m128i B = _mm_loadu_si128((const __m128i*)(src + i)); const __m128i C = _mm_loadu_si128((const __m128i*)(dst + i)); const __m128i D = _mm_sub_epi16(A, B); // diff_uv const __m128i E = _mm_add_epi16(C, D); // new_uv _mm_storeu_si128((__m128i*)(dst + i), E); } for (; i < len; ++i) { const int diff_uv = ref[i] - src[i]; dst[i] += diff_uv; } } static void SharpYUVFilterRow_SSE2(const int16_t* A, const int16_t* B, int len, const uint16_t* best_y, uint16_t* out) { int i; const __m128i kCst8 = _mm_set1_epi16(8); const __m128i max = _mm_set1_epi16(MAX_Y); const __m128i zero = _mm_setzero_si128(); for (i = 0; i + 8 <= len; i += 8) { const __m128i a0 = _mm_loadu_si128((const __m128i*)(A + i + 0)); const __m128i a1 = _mm_loadu_si128((const __m128i*)(A + i + 1)); const __m128i b0 = _mm_loadu_si128((const __m128i*)(B + i + 0)); const __m128i b1 = _mm_loadu_si128((const __m128i*)(B + i + 1)); const __m128i a0b1 = _mm_add_epi16(a0, b1); const __m128i a1b0 = _mm_add_epi16(a1, b0); const __m128i a0a1b0b1 = _mm_add_epi16(a0b1, a1b0); // A0+A1+B0+B1 const __m128i a0a1b0b1_8 = _mm_add_epi16(a0a1b0b1, kCst8); const __m128i a0b1_2 = _mm_add_epi16(a0b1, a0b1); // 2*(A0+B1) const __m128i a1b0_2 = _mm_add_epi16(a1b0, a1b0); // 2*(A1+B0) const __m128i c0 = _mm_srai_epi16(_mm_add_epi16(a0b1_2, a0a1b0b1_8), 3); const __m128i c1 = _mm_srai_epi16(_mm_add_epi16(a1b0_2, a0a1b0b1_8), 3); const __m128i d0 = _mm_add_epi16(c1, a0); const __m128i d1 = _mm_add_epi16(c0, a1); const __m128i e0 = _mm_srai_epi16(d0, 1); const __m128i e1 = _mm_srai_epi16(d1, 1); const __m128i f0 = _mm_unpacklo_epi16(e0, e1); const __m128i f1 = _mm_unpackhi_epi16(e0, e1); const __m128i g0 = _mm_loadu_si128((const __m128i*)(best_y + 2 * i + 0)); const __m128i g1 = _mm_loadu_si128((const __m128i*)(best_y + 2 * i + 8)); const __m128i h0 = _mm_add_epi16(g0, f0); const __m128i h1 = _mm_add_epi16(g1, f1); const __m128i i0 = _mm_max_epi16(_mm_min_epi16(h0, max), zero); const __m128i i1 = _mm_max_epi16(_mm_min_epi16(h1, max), zero); _mm_storeu_si128((__m128i*)(out + 2 * i + 0), i0); _mm_storeu_si128((__m128i*)(out + 2 * i + 8), i1); } for (; i < len; ++i) { // (9 * A0 + 3 * A1 + 3 * B0 + B1 + 8) >> 4 = // = (8 * A0 + 2 * (A1 + B0) + (A0 + A1 + B0 + B1 + 8)) >> 4 // We reuse the common sub-expressions. const int a0b1 = A[i + 0] + B[i + 1]; const int a1b0 = A[i + 1] + B[i + 0]; const int a0a1b0b1 = a0b1 + a1b0 + 8; const int v0 = (8 * A[i + 0] + 2 * a1b0 + a0a1b0b1) >> 4; const int v1 = (8 * A[i + 1] + 2 * a0b1 + a0a1b0b1) >> 4; out[2 * i + 0] = clip_y(best_y[2 * i + 0] + v0); out[2 * i + 1] = clip_y(best_y[2 * i + 1] + v1); } } #undef MAX_Y //------------------------------------------------------------------------------ extern void WebPInitSharpYUVSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitSharpYUVSSE2(void) { WebPSharpYUVUpdateY = SharpYUVUpdateY_SSE2; WebPSharpYUVUpdateRGB = SharpYUVUpdateRGB_SSE2; WebPSharpYUVFilterRow = SharpYUVFilterRow_SSE2; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(WebPInitSamplersSSE2) WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE2) WEBP_DSP_INIT_STUB(WebPInitSharpYUVSSE2) #endif // WEBP_USE_SSE2