// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Utilities for processing transparent channel. // // Author: Skal (pascal.massimino@gmail.com) #include "src/dsp/dsp.h" #if defined(WEBP_USE_SSE2) #include //------------------------------------------------------------------------------ static int DispatchAlpha_SSE2(const uint8_t* alpha, int alpha_stride, int width, int height, uint8_t* dst, int dst_stride) { // alpha_and stores an 'and' operation of all the alpha[] values. The final // value is not 0xff if any of the alpha[] is not equal to 0xff. uint32_t alpha_and = 0xff; int i, j; const __m128i zero = _mm_setzero_si128(); const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); __m128i all_alphas = all_0xff; // We must be able to access 3 extra bytes after the last written byte // 'dst[4 * width - 4]', because we don't know if alpha is the first or the // last byte of the quadruplet. const int limit = (width - 1) & ~7; for (j = 0; j < height; ++j) { __m128i* out = (__m128i*)dst; for (i = 0; i < limit; i += 8) { // load 8 alpha bytes const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]); const __m128i a1 = _mm_unpacklo_epi8(a0, zero); const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); // load 8 dst pixels (32 bytes) const __m128i b0_lo = _mm_loadu_si128(out + 0); const __m128i b0_hi = _mm_loadu_si128(out + 1); // mask dst alpha values const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask); const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask); // combine const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo); const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi); // store _mm_storeu_si128(out + 0, b2_lo); _mm_storeu_si128(out + 1, b2_hi); // accumulate eight alpha 'and' in parallel all_alphas = _mm_and_si128(all_alphas, a0); out += 2; } for (; i < width; ++i) { const uint32_t alpha_value = alpha[i]; dst[4 * i] = alpha_value; alpha_and &= alpha_value; } alpha += alpha_stride; dst += dst_stride; } // Combine the eight alpha 'and' into a 8-bit mask. alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); return (alpha_and != 0xff); } static void DispatchAlphaToGreen_SSE2(const uint8_t* alpha, int alpha_stride, int width, int height, uint32_t* dst, int dst_stride) { int i, j; const __m128i zero = _mm_setzero_si128(); const int limit = width & ~15; for (j = 0; j < height; ++j) { for (i = 0; i < limit; i += 16) { // process 16 alpha bytes const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]); const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first! const __m128i b1 = _mm_unpackhi_epi8(zero, a0); const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero); const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero); _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo); _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi); _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo); _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi); } for (; i < width; ++i) dst[i] = alpha[i] << 8; alpha += alpha_stride; dst += dst_stride; } } static int ExtractAlpha_SSE2(const uint8_t* argb, int argb_stride, int width, int height, uint8_t* alpha, int alpha_stride) { // alpha_and stores an 'and' operation of all the alpha[] values. The final // value is not 0xff if any of the alpha[] is not equal to 0xff. uint32_t alpha_and = 0xff; int i, j; const __m128i a_mask = _mm_set1_epi32(0xffu); // to preserve alpha const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); __m128i all_alphas = all_0xff; // We must be able to access 3 extra bytes after the last written byte // 'src[4 * width - 4]', because we don't know if alpha is the first or the // last byte of the quadruplet. const int limit = (width - 1) & ~7; for (j = 0; j < height; ++j) { const __m128i* src = (const __m128i*)argb; for (i = 0; i < limit; i += 8) { // load 32 argb bytes const __m128i a0 = _mm_loadu_si128(src + 0); const __m128i a1 = _mm_loadu_si128(src + 1); const __m128i b0 = _mm_and_si128(a0, a_mask); const __m128i b1 = _mm_and_si128(a1, a_mask); const __m128i c0 = _mm_packs_epi32(b0, b1); const __m128i d0 = _mm_packus_epi16(c0, c0); // store _mm_storel_epi64((__m128i*)&alpha[i], d0); // accumulate eight alpha 'and' in parallel all_alphas = _mm_and_si128(all_alphas, d0); src += 2; } for (; i < width; ++i) { const uint32_t alpha_value = argb[4 * i]; alpha[i] = alpha_value; alpha_and &= alpha_value; } argb += argb_stride; alpha += alpha_stride; } // Combine the eight alpha 'and' into a 8-bit mask. alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); return (alpha_and == 0xff); } //------------------------------------------------------------------------------ // Non-dither premultiplied modes #define MULTIPLIER(a) ((a) * 0x8081) #define PREMULTIPLY(x, m) (((x) * (m)) >> 23) // We can't use a 'const int' for the SHUFFLE value, because it has to be an // immediate in the _mm_shufflexx_epi16() instruction. We really need a macro. // We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit // value. #define APPLY_ALPHA(RGBX, SHUFFLE) do { \ const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \ const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \ const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \ const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \ const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \ const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \ const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \ const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \ const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \ /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \ const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \ const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \ const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \ const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \ const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \ const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \ const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \ _mm_storeu_si128((__m128i*)&(RGBX), A3); \ } while (0) static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first, int w, int h, int stride) { const __m128i zero = _mm_setzero_si128(); const __m128i kMult = _mm_set1_epi16(0x8081u); const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0); const int kSpan = 4; while (h-- > 0) { uint32_t* const rgbx = (uint32_t*)rgba; int i; if (!alpha_first) { for (i = 0; i + kSpan <= w; i += kSpan) { APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3)); } } else { for (i = 0; i + kSpan <= w; i += kSpan) { APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1)); } } // Finish with left-overs. for (; i < w; ++i) { uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); const uint32_t a = alpha[4 * i]; if (a != 0xff) { const uint32_t mult = MULTIPLIER(a); rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); } } rgba += stride; } } #undef MULTIPLIER #undef PREMULTIPLY //------------------------------------------------------------------------------ // Alpha detection static int HasAlpha8b_SSE2(const uint8_t* src, int length) { const __m128i all_0xff = _mm_set1_epi8(0xff); int i = 0; for (; i + 16 <= length; i += 16) { const __m128i v = _mm_loadu_si128((const __m128i*)(src + i)); const __m128i bits = _mm_cmpeq_epi8(v, all_0xff); const int mask = _mm_movemask_epi8(bits); if (mask != 0xffff) return 1; } for (; i < length; ++i) if (src[i] != 0xff) return 1; return 0; } static int HasAlpha32b_SSE2(const uint8_t* src, int length) { const __m128i alpha_mask = _mm_set1_epi32(0xff); const __m128i all_0xff = _mm_set1_epi8(0xff); int i = 0; // We don't know if we can access the last 3 bytes after the last alpha // value 'src[4 * length - 4]' (because we don't know if alpha is the first // or the last byte of the quadruplet). Hence the '-3' protection below. length = length * 4 - 3; // size in bytes for (; i + 64 <= length; i += 64) { const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); const __m128i a2 = _mm_loadu_si128((const __m128i*)(src + i + 32)); const __m128i a3 = _mm_loadu_si128((const __m128i*)(src + i + 48)); const __m128i b0 = _mm_and_si128(a0, alpha_mask); const __m128i b1 = _mm_and_si128(a1, alpha_mask); const __m128i b2 = _mm_and_si128(a2, alpha_mask); const __m128i b3 = _mm_and_si128(a3, alpha_mask); const __m128i c0 = _mm_packs_epi32(b0, b1); const __m128i c1 = _mm_packs_epi32(b2, b3); const __m128i d = _mm_packus_epi16(c0, c1); const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); const int mask = _mm_movemask_epi8(bits); if (mask != 0xffff) return 1; } for (; i + 32 <= length; i += 32) { const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); const __m128i b0 = _mm_and_si128(a0, alpha_mask); const __m128i b1 = _mm_and_si128(a1, alpha_mask); const __m128i c = _mm_packs_epi32(b0, b1); const __m128i d = _mm_packus_epi16(c, c); const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); const int mask = _mm_movemask_epi8(bits); if (mask != 0xffff) return 1; } for (; i <= length; i += 4) if (src[i] != 0xff) return 1; return 0; } // ----------------------------------------------------------------------------- // Apply alpha value to rows static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) { int x = 0; if (!inverse) { const int kSpan = 2; const __m128i zero = _mm_setzero_si128(); const __m128i k128 = _mm_set1_epi16(128); const __m128i kMult = _mm_set1_epi16(0x0101); const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0); for (x = 0; x + kSpan <= width; x += kSpan) { // To compute 'result = (int)(a * x / 255. + .5)', we use: // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16 const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]); const __m128i A1 = _mm_unpacklo_epi8(A0, zero); const __m128i A2 = _mm_or_si128(A1, kMask); const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3)); const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3)); // here, A4 = [ff a0 a0 a0][ff a1 a1 a1] const __m128i A5 = _mm_mullo_epi16(A4, A1); const __m128i A6 = _mm_add_epi16(A5, k128); const __m128i A7 = _mm_mulhi_epu16(A6, kMult); const __m128i A10 = _mm_packus_epi16(A7, zero); _mm_storel_epi64((__m128i*)&ptr[x], A10); } } width -= x; if (width > 0) WebPMultARGBRow_C(ptr + x, width, inverse); } static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha, int width, int inverse) { int x = 0; if (!inverse) { const __m128i zero = _mm_setzero_si128(); const __m128i k128 = _mm_set1_epi16(128); const __m128i kMult = _mm_set1_epi16(0x0101); for (x = 0; x + 8 <= width; x += 8) { const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]); const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]); const __m128i v1 = _mm_unpacklo_epi8(v0, zero); const __m128i a1 = _mm_unpacklo_epi8(a0, zero); const __m128i v2 = _mm_mullo_epi16(v1, a1); const __m128i v3 = _mm_add_epi16(v2, k128); const __m128i v4 = _mm_mulhi_epu16(v3, kMult); const __m128i v5 = _mm_packus_epi16(v4, zero); _mm_storel_epi64((__m128i*)&ptr[x], v5); } } width -= x; if (width > 0) WebPMultRow_C(ptr + x, alpha + x, width, inverse); } //------------------------------------------------------------------------------ // Entry point extern void WebPInitAlphaProcessingSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) { WebPMultARGBRow = MultARGBRow_SSE2; WebPMultRow = MultRow_SSE2; WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2; WebPDispatchAlpha = DispatchAlpha_SSE2; WebPDispatchAlphaToGreen = DispatchAlphaToGreen_SSE2; WebPExtractAlpha = ExtractAlpha_SSE2; WebPHasAlpha8b = HasAlpha8b_SSE2; WebPHasAlpha32b = HasAlpha32b_SSE2; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2) #endif // WEBP_USE_SSE2