Blame src/utils/quant_levels_dec_utils.c

Packit 9c6abc
// Copyright 2013 Google Inc. All Rights Reserved.
Packit 9c6abc
//
Packit 9c6abc
// Use of this source code is governed by a BSD-style license
Packit 9c6abc
// that can be found in the COPYING file in the root of the source
Packit 9c6abc
// tree. An additional intellectual property rights grant can be found
Packit 9c6abc
// in the file PATENTS. All contributing project authors may
Packit 9c6abc
// be found in the AUTHORS file in the root of the source tree.
Packit 9c6abc
// -----------------------------------------------------------------------------
Packit 9c6abc
//
Packit 9c6abc
// Implement gradient smoothing: we replace a current alpha value by its
Packit 9c6abc
// surrounding average if it's close enough (that is: the change will be less
Packit 9c6abc
// than the minimum distance between two quantized level).
Packit 9c6abc
// We use sliding window for computing the 2d moving average.
Packit 9c6abc
//
Packit 9c6abc
// Author: Skal (pascal.massimino@gmail.com)
Packit 9c6abc
Packit 9c6abc
#include "src/utils/quant_levels_dec_utils.h"
Packit 9c6abc
Packit 9c6abc
#include <string.h>   // for memset
Packit 9c6abc
Packit 9c6abc
#include "src/utils/utils.h"
Packit 9c6abc
Packit 9c6abc
// #define USE_DITHERING   // uncomment to enable ordered dithering (not vital)
Packit 9c6abc
Packit 9c6abc
#define FIX 16     // fix-point precision for averaging
Packit 9c6abc
#define LFIX 2     // extra precision for look-up table
Packit 9c6abc
#define LUT_SIZE ((1 << (8 + LFIX)) - 1)  // look-up table size
Packit 9c6abc
Packit 9c6abc
#if defined(USE_DITHERING)
Packit 9c6abc
Packit 9c6abc
#define DFIX 4           // extra precision for ordered dithering
Packit 9c6abc
#define DSIZE 4          // dithering size (must be a power of two)
Packit 9c6abc
// cf. http://en.wikipedia.org/wiki/Ordered_dithering
Packit 9c6abc
static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
Packit 9c6abc
  {  0,  8,  2, 10 },     // coefficients are in DFIX fixed-point precision
Packit 9c6abc
  { 12,  4, 14,  6 },
Packit 9c6abc
  {  3, 11,  1,  9 },
Packit 9c6abc
  { 15,  7, 13,  5 }
Packit 9c6abc
};
Packit 9c6abc
Packit 9c6abc
#else
Packit 9c6abc
#define DFIX 0
Packit 9c6abc
#endif
Packit 9c6abc
Packit 9c6abc
typedef struct {
Packit 9c6abc
  int width_, height_;  // dimension
Packit 9c6abc
  int stride_;          // stride in bytes
Packit 9c6abc
  int row_;             // current input row being processed
Packit 9c6abc
  uint8_t* src_;        // input pointer
Packit 9c6abc
  uint8_t* dst_;        // output pointer
Packit 9c6abc
Packit 9c6abc
  int radius_;          // filter radius (=delay)
Packit 9c6abc
  int scale_;           // normalization factor, in FIX bits precision
Packit 9c6abc
Packit 9c6abc
  void* mem_;           // all memory
Packit 9c6abc
Packit 9c6abc
  // various scratch buffers
Packit 9c6abc
  uint16_t* start_;
Packit 9c6abc
  uint16_t* cur_;
Packit 9c6abc
  uint16_t* end_;
Packit 9c6abc
  uint16_t* top_;
Packit 9c6abc
  uint16_t* average_;
Packit 9c6abc
Packit 9c6abc
  // input levels distribution
Packit 9c6abc
  int num_levels_;       // number of quantized levels
Packit 9c6abc
  int min_, max_;        // min and max level values
Packit 9c6abc
  int min_level_dist_;   // smallest distance between two consecutive levels
Packit 9c6abc
Packit 9c6abc
  int16_t* correction_;  // size = 1 + 2*LUT_SIZE  -> ~4k memory
Packit 9c6abc
} SmoothParams;
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
Packit 9c6abc
#define CLIP_8b_MASK (int)(~0U << (8 + DFIX))
Packit 9c6abc
static WEBP_INLINE uint8_t clip_8b(int v) {
Packit 9c6abc
  return (!(v & CLIP_8b_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
Packit 9c6abc
}
Packit 9c6abc
#undef CLIP_8b_MASK
Packit 9c6abc
Packit 9c6abc
// vertical accumulation
Packit 9c6abc
static void VFilter(SmoothParams* const p) {
Packit 9c6abc
  const uint8_t* src = p->src_;
Packit 9c6abc
  const int w = p->width_;
Packit 9c6abc
  uint16_t* const cur = p->cur_;
Packit 9c6abc
  const uint16_t* const top = p->top_;
Packit 9c6abc
  uint16_t* const out = p->end_;
Packit 9c6abc
  uint16_t sum = 0;               // all arithmetic is modulo 16bit
Packit 9c6abc
  int x;
Packit 9c6abc
Packit 9c6abc
  for (x = 0; x < w; ++x) {
Packit 9c6abc
    uint16_t new_value;
Packit 9c6abc
    sum += src[x];
Packit 9c6abc
    new_value = top[x] + sum;
Packit 9c6abc
    out[x] = new_value - cur[x];  // vertical sum of 'r' pixels.
Packit 9c6abc
    cur[x] = new_value;
Packit 9c6abc
  }
Packit 9c6abc
  // move input pointers one row down
Packit 9c6abc
  p->top_ = p->cur_;
Packit 9c6abc
  p->cur_ += w;
Packit 9c6abc
  if (p->cur_ == p->end_) p->cur_ = p->start_;  // roll-over
Packit 9c6abc
  // We replicate edges, as it's somewhat easier as a boundary condition.
Packit 9c6abc
  // That's why we don't update the 'src' pointer on top/bottom area:
Packit 9c6abc
  if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
Packit 9c6abc
    p->src_ += p->stride_;
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// horizontal accumulation. We use mirror replication of missing pixels, as it's
Packit 9c6abc
// a little easier to implement (surprisingly).
Packit 9c6abc
static void HFilter(SmoothParams* const p) {
Packit 9c6abc
  const uint16_t* const in = p->end_;
Packit 9c6abc
  uint16_t* const out = p->average_;
Packit 9c6abc
  const uint32_t scale = p->scale_;
Packit 9c6abc
  const int w = p->width_;
Packit 9c6abc
  const int r = p->radius_;
Packit 9c6abc
Packit 9c6abc
  int x;
Packit 9c6abc
  for (x = 0; x <= r; ++x) {   // left mirroring
Packit 9c6abc
    const uint16_t delta = in[x + r - 1] + in[r - x];
Packit 9c6abc
    out[x] = (delta * scale) >> FIX;
Packit 9c6abc
  }
Packit 9c6abc
  for (; x < w - r; ++x) {     // bulk middle run
Packit 9c6abc
    const uint16_t delta = in[x + r] - in[x - r - 1];
Packit 9c6abc
    out[x] = (delta * scale) >> FIX;
Packit 9c6abc
  }
Packit 9c6abc
  for (; x < w; ++x) {         // right mirroring
Packit 9c6abc
    const uint16_t delta =
Packit 9c6abc
        2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
Packit 9c6abc
    out[x] = (delta * scale) >> FIX;
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// emit one filtered output row
Packit 9c6abc
static void ApplyFilter(SmoothParams* const p) {
Packit 9c6abc
  const uint16_t* const average = p->average_;
Packit 9c6abc
  const int w = p->width_;
Packit 9c6abc
  const int16_t* const correction = p->correction_;
Packit 9c6abc
#if defined(USE_DITHERING)
Packit 9c6abc
  const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
Packit 9c6abc
#endif
Packit 9c6abc
  uint8_t* const dst = p->dst_;
Packit 9c6abc
  int x;
Packit 9c6abc
  for (x = 0; x < w; ++x) {
Packit 9c6abc
    const int v = dst[x];
Packit 9c6abc
    if (v < p->max_ && v > p->min_) {
Packit 9c6abc
      const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
Packit 9c6abc
#if defined(USE_DITHERING)
Packit 9c6abc
      dst[x] = clip_8b(c + dither[x % DSIZE]);
Packit 9c6abc
#else
Packit 9c6abc
      dst[x] = clip_8b(c);
Packit 9c6abc
#endif
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  p->dst_ += p->stride_;  // advance output pointer
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Initialize correction table
Packit 9c6abc
Packit 9c6abc
static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
Packit 9c6abc
  // The correction curve is:
Packit 9c6abc
  //   f(x) = x for x <= threshold2
Packit 9c6abc
  //   f(x) = 0 for x >= threshold1
Packit 9c6abc
  // and a linear interpolation for range x=[threshold2, threshold1]
Packit 9c6abc
  // (along with f(-x) = -f(x) symmetry).
Packit 9c6abc
  // Note that: threshold2 = 3/4 * threshold1
Packit 9c6abc
  const int threshold1 = min_dist << LFIX;
Packit 9c6abc
  const int threshold2 = (3 * threshold1) >> 2;
Packit 9c6abc
  const int max_threshold = threshold2 << DFIX;
Packit 9c6abc
  const int delta = threshold1 - threshold2;
Packit 9c6abc
  int i;
Packit 9c6abc
  for (i = 1; i <= LUT_SIZE; ++i) {
Packit 9c6abc
    int c = (i <= threshold2) ? (i << DFIX)
Packit 9c6abc
          : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
Packit 9c6abc
          : 0;
Packit 9c6abc
    c >>= LFIX;
Packit 9c6abc
    lut[+i] = +c;
Packit 9c6abc
    lut[-i] = -c;
Packit 9c6abc
  }
Packit 9c6abc
  lut[0] = 0;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void CountLevels(SmoothParams* const p) {
Packit 9c6abc
  int i, j, last_level;
Packit 9c6abc
  uint8_t used_levels[256] = { 0 };
Packit 9c6abc
  const uint8_t* data = p->src_;
Packit 9c6abc
  p->min_ = 255;
Packit 9c6abc
  p->max_ = 0;
Packit 9c6abc
  for (j = 0; j < p->height_; ++j) {
Packit 9c6abc
    for (i = 0; i < p->width_; ++i) {
Packit 9c6abc
      const int v = data[i];
Packit 9c6abc
      if (v < p->min_) p->min_ = v;
Packit 9c6abc
      if (v > p->max_) p->max_ = v;
Packit 9c6abc
      used_levels[v] = 1;
Packit 9c6abc
    }
Packit 9c6abc
    data += p->stride_;
Packit 9c6abc
  }
Packit 9c6abc
  // Compute the mininum distance between two non-zero levels.
Packit 9c6abc
  p->min_level_dist_ = p->max_ - p->min_;
Packit 9c6abc
  last_level = -1;
Packit 9c6abc
  for (i = 0; i < 256; ++i) {
Packit 9c6abc
    if (used_levels[i]) {
Packit 9c6abc
      ++p->num_levels_;
Packit 9c6abc
      if (last_level >= 0) {
Packit 9c6abc
        const int level_dist = i - last_level;
Packit 9c6abc
        if (level_dist < p->min_level_dist_) {
Packit 9c6abc
          p->min_level_dist_ = level_dist;
Packit 9c6abc
        }
Packit 9c6abc
      }
Packit 9c6abc
      last_level = i;
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// Initialize all params.
Packit 9c6abc
static int InitParams(uint8_t* const data, int width, int height, int stride,
Packit 9c6abc
                      int radius, SmoothParams* const p) {
Packit 9c6abc
  const int R = 2 * radius + 1;  // total size of the kernel
Packit 9c6abc
Packit 9c6abc
  const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
Packit 9c6abc
  const size_t size_m =  width * sizeof(*p->average_);
Packit 9c6abc
  const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
Packit 9c6abc
  const size_t total_size = size_scratch_m + size_m + size_lut;
Packit 9c6abc
  uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
Packit 9c6abc
Packit 9c6abc
  if (mem == NULL) return 0;
Packit 9c6abc
  p->mem_ = (void*)mem;
Packit 9c6abc
Packit 9c6abc
  p->start_ = (uint16_t*)mem;
Packit 9c6abc
  p->cur_ = p->start_;
Packit 9c6abc
  p->end_ = p->start_ + R * width;
Packit 9c6abc
  p->top_ = p->end_ - width;
Packit 9c6abc
  memset(p->top_, 0, width * sizeof(*p->top_));
Packit 9c6abc
  mem += size_scratch_m;
Packit 9c6abc
Packit 9c6abc
  p->average_ = (uint16_t*)mem;
Packit 9c6abc
  mem += size_m;
Packit 9c6abc
Packit 9c6abc
  p->width_ = width;
Packit 9c6abc
  p->height_ = height;
Packit 9c6abc
  p->stride_ = stride;
Packit 9c6abc
  p->src_ = data;
Packit 9c6abc
  p->dst_ = data;
Packit 9c6abc
  p->radius_ = radius;
Packit 9c6abc
  p->scale_ = (1 << (FIX + LFIX)) / (R * R);  // normalization constant
Packit 9c6abc
  p->row_ = -radius;
Packit 9c6abc
Packit 9c6abc
  // analyze the input distribution so we can best-fit the threshold
Packit 9c6abc
  CountLevels(p);
Packit 9c6abc
Packit 9c6abc
  // correction table
Packit 9c6abc
  p->correction_ = ((int16_t*)mem) + LUT_SIZE;
Packit 9c6abc
  InitCorrectionLUT(p->correction_, p->min_level_dist_);
Packit 9c6abc
Packit 9c6abc
  return 1;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void CleanupParams(SmoothParams* const p) {
Packit 9c6abc
  WebPSafeFree(p->mem_);
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
Packit 9c6abc
                         int strength) {
Packit 9c6abc
  const int radius = 4 * strength / 100;
Packit 9c6abc
  if (strength < 0 || strength > 100) return 0;
Packit 9c6abc
  if (data == NULL || width <= 0 || height <= 0) return 0;  // bad params
Packit 9c6abc
  if (radius > 0) {
Packit 9c6abc
    SmoothParams p;
Packit 9c6abc
    memset(&p, 0, sizeof(p));
Packit 9c6abc
    if (!InitParams(data, width, height, stride, radius, &p)) return 0;
Packit 9c6abc
    if (p.num_levels_ > 2) {
Packit 9c6abc
      for (; p.row_ < p.height_; ++p.row_) {
Packit 9c6abc
        VFilter(&p);  // accumulate average of input
Packit 9c6abc
        // Need to wait few rows in order to prime the filter,
Packit 9c6abc
        // before emitting some output.
Packit 9c6abc
        if (p.row_ >= p.radius_) {
Packit 9c6abc
          HFilter(&p);
Packit 9c6abc
          ApplyFilter(&p);
Packit 9c6abc
        }
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    CleanupParams(&p);
Packit 9c6abc
  }
Packit 9c6abc
  return 1;
Packit 9c6abc
}