Blame src/enc/analysis_enc.c

Packit 9c6abc
// Copyright 2011 Google Inc. All Rights Reserved.
Packit 9c6abc
//
Packit 9c6abc
// Use of this source code is governed by a BSD-style license
Packit 9c6abc
// that can be found in the COPYING file in the root of the source
Packit 9c6abc
// tree. An additional intellectual property rights grant can be found
Packit 9c6abc
// in the file PATENTS. All contributing project authors may
Packit 9c6abc
// be found in the AUTHORS file in the root of the source tree.
Packit 9c6abc
// -----------------------------------------------------------------------------
Packit 9c6abc
//
Packit 9c6abc
// Macroblock analysis
Packit 9c6abc
//
Packit 9c6abc
// Author: Skal (pascal.massimino@gmail.com)
Packit 9c6abc
Packit 9c6abc
#include <stdlib.h>
Packit 9c6abc
#include <string.h>
Packit 9c6abc
#include <assert.h>
Packit 9c6abc
Packit 9c6abc
#include "src/enc/vp8i_enc.h"
Packit 9c6abc
#include "src/enc/cost_enc.h"
Packit 9c6abc
#include "src/utils/utils.h"
Packit 9c6abc
Packit 9c6abc
#define MAX_ITERS_K_MEANS  6
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Smooth the segment map by replacing isolated block by the majority of its
Packit 9c6abc
// neighbours.
Packit 9c6abc
Packit 9c6abc
static void SmoothSegmentMap(VP8Encoder* const enc) {
Packit 9c6abc
  int n, x, y;
Packit 9c6abc
  const int w = enc->mb_w_;
Packit 9c6abc
  const int h = enc->mb_h_;
Packit 9c6abc
  const int majority_cnt_3_x_3_grid = 5;
Packit 9c6abc
  uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
Packit 9c6abc
  assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
Packit 9c6abc
Packit 9c6abc
  if (tmp == NULL) return;
Packit 9c6abc
  for (y = 1; y < h - 1; ++y) {
Packit 9c6abc
    for (x = 1; x < w - 1; ++x) {
Packit 9c6abc
      int cnt[NUM_MB_SEGMENTS] = { 0 };
Packit 9c6abc
      const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
Packit 9c6abc
      int majority_seg = mb->segment_;
Packit 9c6abc
      // Check the 8 neighbouring segment values.
Packit 9c6abc
      cnt[mb[-w - 1].segment_]++;  // top-left
Packit 9c6abc
      cnt[mb[-w + 0].segment_]++;  // top
Packit 9c6abc
      cnt[mb[-w + 1].segment_]++;  // top-right
Packit 9c6abc
      cnt[mb[   - 1].segment_]++;  // left
Packit 9c6abc
      cnt[mb[   + 1].segment_]++;  // right
Packit 9c6abc
      cnt[mb[ w - 1].segment_]++;  // bottom-left
Packit 9c6abc
      cnt[mb[ w + 0].segment_]++;  // bottom
Packit 9c6abc
      cnt[mb[ w + 1].segment_]++;  // bottom-right
Packit 9c6abc
      for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
Packit 9c6abc
        if (cnt[n] >= majority_cnt_3_x_3_grid) {
Packit 9c6abc
          majority_seg = n;
Packit 9c6abc
          break;
Packit 9c6abc
        }
Packit 9c6abc
      }
Packit 9c6abc
      tmp[x + y * w] = majority_seg;
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  for (y = 1; y < h - 1; ++y) {
Packit 9c6abc
    for (x = 1; x < w - 1; ++x) {
Packit 9c6abc
      VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
Packit 9c6abc
      mb->segment_ = tmp[x + y * w];
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  WebPSafeFree(tmp);
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// set segment susceptibility alpha_ / beta_
Packit 9c6abc
Packit 9c6abc
static WEBP_INLINE int clip(int v, int m, int M) {
Packit 9c6abc
  return (v < m) ? m : (v > M) ? M : v;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void SetSegmentAlphas(VP8Encoder* const enc,
Packit 9c6abc
                             const int centers[NUM_MB_SEGMENTS],
Packit 9c6abc
                             int mid) {
Packit 9c6abc
  const int nb = enc->segment_hdr_.num_segments_;
Packit 9c6abc
  int min = centers[0], max = centers[0];
Packit 9c6abc
  int n;
Packit 9c6abc
Packit 9c6abc
  if (nb > 1) {
Packit 9c6abc
    for (n = 0; n < nb; ++n) {
Packit 9c6abc
      if (min > centers[n]) min = centers[n];
Packit 9c6abc
      if (max < centers[n]) max = centers[n];
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  if (max == min) max = min + 1;
Packit 9c6abc
  assert(mid <= max && mid >= min);
Packit 9c6abc
  for (n = 0; n < nb; ++n) {
Packit 9c6abc
    const int alpha = 255 * (centers[n] - mid) / (max - min);
Packit 9c6abc
    const int beta = 255 * (centers[n] - min) / (max - min);
Packit 9c6abc
    enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
Packit 9c6abc
    enc->dqm_[n].beta_ = clip(beta, 0, 255);
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Compute susceptibility based on DCT-coeff histograms:
Packit 9c6abc
// the higher, the "easier" the macroblock is to compress.
Packit 9c6abc
Packit 9c6abc
#define MAX_ALPHA 255                // 8b of precision for susceptibilities.
Packit 9c6abc
#define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
Packit 9c6abc
#define DEFAULT_ALPHA (-1)
Packit 9c6abc
#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
Packit 9c6abc
Packit 9c6abc
static int FinalAlphaValue(int alpha) {
Packit 9c6abc
  alpha = MAX_ALPHA - alpha;
Packit 9c6abc
  return clip(alpha, 0, MAX_ALPHA);
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static int GetAlpha(const VP8Histogram* const histo) {
Packit 9c6abc
  // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
Packit 9c6abc
  // values which happen to be mostly noise. This leaves the maximum precision
Packit 9c6abc
  // for handling the useful small values which contribute most.
Packit 9c6abc
  const int max_value = histo->max_value;
Packit 9c6abc
  const int last_non_zero = histo->last_non_zero;
Packit 9c6abc
  const int alpha =
Packit 9c6abc
      (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
Packit 9c6abc
  return alpha;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void InitHistogram(VP8Histogram* const histo) {
Packit 9c6abc
  histo->max_value = 0;
Packit 9c6abc
  histo->last_non_zero = 1;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void MergeHistograms(const VP8Histogram* const in,
Packit 9c6abc
                            VP8Histogram* const out) {
Packit 9c6abc
  if (in->max_value > out->max_value) {
Packit 9c6abc
    out->max_value = in->max_value;
Packit 9c6abc
  }
Packit 9c6abc
  if (in->last_non_zero > out->last_non_zero) {
Packit 9c6abc
    out->last_non_zero = in->last_non_zero;
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Simplified k-Means, to assign Nb segments based on alpha-histogram
Packit 9c6abc
Packit 9c6abc
static void AssignSegments(VP8Encoder* const enc,
Packit 9c6abc
                           const int alphas[MAX_ALPHA + 1]) {
Packit 9c6abc
  // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
Packit 9c6abc
  // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
Packit 9c6abc
  // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
Packit 9c6abc
  const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
Packit 9c6abc
                 enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
Packit 9c6abc
  int centers[NUM_MB_SEGMENTS];
Packit 9c6abc
  int weighted_average = 0;
Packit 9c6abc
  int map[MAX_ALPHA + 1];
Packit 9c6abc
  int a, n, k;
Packit 9c6abc
  int min_a = 0, max_a = MAX_ALPHA, range_a;
Packit 9c6abc
  // 'int' type is ok for histo, and won't overflow
Packit 9c6abc
  int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
Packit 9c6abc
Packit 9c6abc
  assert(nb >= 1);
Packit 9c6abc
  assert(nb <= NUM_MB_SEGMENTS);
Packit 9c6abc
Packit 9c6abc
  // bracket the input
Packit 9c6abc
  for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
Packit 9c6abc
  min_a = n;
Packit 9c6abc
  for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
Packit 9c6abc
  max_a = n;
Packit 9c6abc
  range_a = max_a - min_a;
Packit 9c6abc
Packit 9c6abc
  // Spread initial centers evenly
Packit 9c6abc
  for (k = 0, n = 1; k < nb; ++k, n += 2) {
Packit 9c6abc
    assert(n < 2 * nb);
Packit 9c6abc
    centers[k] = min_a + (n * range_a) / (2 * nb);
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
Packit 9c6abc
    int total_weight;
Packit 9c6abc
    int displaced;
Packit 9c6abc
    // Reset stats
Packit 9c6abc
    for (n = 0; n < nb; ++n) {
Packit 9c6abc
      accum[n] = 0;
Packit 9c6abc
      dist_accum[n] = 0;
Packit 9c6abc
    }
Packit 9c6abc
    // Assign nearest center for each 'a'
Packit 9c6abc
    n = 0;    // track the nearest center for current 'a'
Packit 9c6abc
    for (a = min_a; a <= max_a; ++a) {
Packit 9c6abc
      if (alphas[a]) {
Packit 9c6abc
        while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
Packit 9c6abc
          n++;
Packit 9c6abc
        }
Packit 9c6abc
        map[a] = n;
Packit 9c6abc
        // accumulate contribution into best centroid
Packit 9c6abc
        dist_accum[n] += a * alphas[a];
Packit 9c6abc
        accum[n] += alphas[a];
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    // All point are classified. Move the centroids to the
Packit 9c6abc
    // center of their respective cloud.
Packit 9c6abc
    displaced = 0;
Packit 9c6abc
    weighted_average = 0;
Packit 9c6abc
    total_weight = 0;
Packit 9c6abc
    for (n = 0; n < nb; ++n) {
Packit 9c6abc
      if (accum[n]) {
Packit 9c6abc
        const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
Packit 9c6abc
        displaced += abs(centers[n] - new_center);
Packit 9c6abc
        centers[n] = new_center;
Packit 9c6abc
        weighted_average += new_center * accum[n];
Packit 9c6abc
        total_weight += accum[n];
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    weighted_average = (weighted_average + total_weight / 2) / total_weight;
Packit 9c6abc
    if (displaced < 5) break;   // no need to keep on looping...
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  // Map each original value to the closest centroid
Packit 9c6abc
  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
Packit 9c6abc
    VP8MBInfo* const mb = &enc->mb_info_[n];
Packit 9c6abc
    const int alpha = mb->alpha_;
Packit 9c6abc
    mb->segment_ = map[alpha];
Packit 9c6abc
    mb->alpha_ = centers[map[alpha]];  // for the record.
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  if (nb > 1) {
Packit 9c6abc
    const int smooth = (enc->config_->preprocessing & 1);
Packit 9c6abc
    if (smooth) SmoothSegmentMap(enc);
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Macroblock analysis: collect histogram for each mode, deduce the maximal
Packit 9c6abc
// susceptibility and set best modes for this macroblock.
Packit 9c6abc
// Segment assignment is done later.
Packit 9c6abc
Packit 9c6abc
// Number of modes to inspect for alpha_ evaluation. We don't need to test all
Packit 9c6abc
// the possible modes during the analysis phase: we risk falling into a local
Packit 9c6abc
// optimum, or be subject to boundary effect
Packit 9c6abc
#define MAX_INTRA16_MODE 2
Packit 9c6abc
#define MAX_INTRA4_MODE  2
Packit 9c6abc
#define MAX_UV_MODE      2
Packit 9c6abc
Packit 9c6abc
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
Packit 9c6abc
  const int max_mode = MAX_INTRA16_MODE;
Packit 9c6abc
  int mode;
Packit 9c6abc
  int best_alpha = DEFAULT_ALPHA;
Packit 9c6abc
  int best_mode = 0;
Packit 9c6abc
Packit 9c6abc
  VP8MakeLuma16Preds(it);
Packit 9c6abc
  for (mode = 0; mode < max_mode; ++mode) {
Packit 9c6abc
    VP8Histogram histo;
Packit 9c6abc
    int alpha;
Packit 9c6abc
Packit 9c6abc
    InitHistogram(&histo);
Packit 9c6abc
    VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
Packit 9c6abc
                        it->yuv_p_ + VP8I16ModeOffsets[mode],
Packit 9c6abc
                        0, 16, &histo);
Packit 9c6abc
    alpha = GetAlpha(&histo);
Packit 9c6abc
    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
Packit 9c6abc
      best_alpha = alpha;
Packit 9c6abc
      best_mode = mode;
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  VP8SetIntra16Mode(it, best_mode);
Packit 9c6abc
  return best_alpha;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static int FastMBAnalyze(VP8EncIterator* const it) {
Packit 9c6abc
  // Empirical cut-off value, should be around 16 (~=block size). We use the
Packit 9c6abc
  // [8-17] range and favor intra4 at high quality, intra16 for low quality.
Packit 9c6abc
  const int q = (int)it->enc_->config_->quality;
Packit 9c6abc
  const uint32_t kThreshold = 8 + (17 - 8) * q / 100;
Packit 9c6abc
  int k;
Packit 9c6abc
  uint32_t dc[16], m, m2;
Packit 9c6abc
  for (k = 0; k < 16; k += 4) {
Packit 9c6abc
    VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]);
Packit 9c6abc
  }
Packit 9c6abc
  for (m = 0, m2 = 0, k = 0; k < 16; ++k) {
Packit 9c6abc
    m += dc[k];
Packit 9c6abc
    m2 += dc[k] * dc[k];
Packit 9c6abc
  }
Packit 9c6abc
  if (kThreshold * m2 < m * m) {
Packit 9c6abc
    VP8SetIntra16Mode(it, 0);   // DC16
Packit 9c6abc
  } else {
Packit 9c6abc
    const uint8_t modes[16] = { 0 };  // DC4
Packit 9c6abc
    VP8SetIntra4Mode(it, modes);
Packit 9c6abc
  }
Packit 9c6abc
  return 0;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
Packit 9c6abc
                                   int best_alpha) {
Packit 9c6abc
  uint8_t modes[16];
Packit 9c6abc
  const int max_mode = MAX_INTRA4_MODE;
Packit 9c6abc
  int i4_alpha;
Packit 9c6abc
  VP8Histogram total_histo;
Packit 9c6abc
  int cur_histo = 0;
Packit 9c6abc
  InitHistogram(&total_histo);
Packit 9c6abc
Packit 9c6abc
  VP8IteratorStartI4(it);
Packit 9c6abc
  do {
Packit 9c6abc
    int mode;
Packit 9c6abc
    int best_mode_alpha = DEFAULT_ALPHA;
Packit 9c6abc
    VP8Histogram histos[2];
Packit 9c6abc
    const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_];
Packit 9c6abc
Packit 9c6abc
    VP8MakeIntra4Preds(it);
Packit 9c6abc
    for (mode = 0; mode < max_mode; ++mode) {
Packit 9c6abc
      int alpha;
Packit 9c6abc
Packit 9c6abc
      InitHistogram(&histos[cur_histo]);
Packit 9c6abc
      VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
Packit 9c6abc
                          0, 1, &histos[cur_histo]);
Packit 9c6abc
      alpha = GetAlpha(&histos[cur_histo]);
Packit 9c6abc
      if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
Packit 9c6abc
        best_mode_alpha = alpha;
Packit 9c6abc
        modes[it->i4_] = mode;
Packit 9c6abc
        cur_histo ^= 1;   // keep track of best histo so far.
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    // accumulate best histogram
Packit 9c6abc
    MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
Packit 9c6abc
    // Note: we reuse the original samples for predictors
Packit 9c6abc
  } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC));
Packit 9c6abc
Packit 9c6abc
  i4_alpha = GetAlpha(&total_histo);
Packit 9c6abc
  if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
Packit 9c6abc
    VP8SetIntra4Mode(it, modes);
Packit 9c6abc
    best_alpha = i4_alpha;
Packit 9c6abc
  }
Packit 9c6abc
  return best_alpha;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
Packit 9c6abc
  int best_alpha = DEFAULT_ALPHA;
Packit 9c6abc
  int smallest_alpha = 0;
Packit 9c6abc
  int best_mode = 0;
Packit 9c6abc
  const int max_mode = MAX_UV_MODE;
Packit 9c6abc
  int mode;
Packit 9c6abc
Packit 9c6abc
  VP8MakeChroma8Preds(it);
Packit 9c6abc
  for (mode = 0; mode < max_mode; ++mode) {
Packit 9c6abc
    VP8Histogram histo;
Packit 9c6abc
    int alpha;
Packit 9c6abc
    InitHistogram(&histo);
Packit 9c6abc
    VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
Packit 9c6abc
                        it->yuv_p_ + VP8UVModeOffsets[mode],
Packit 9c6abc
                        16, 16 + 4 + 4, &histo);
Packit 9c6abc
    alpha = GetAlpha(&histo);
Packit 9c6abc
    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
Packit 9c6abc
      best_alpha = alpha;
Packit 9c6abc
    }
Packit 9c6abc
    // The best prediction mode tends to be the one with the smallest alpha.
Packit 9c6abc
    if (mode == 0 || alpha < smallest_alpha) {
Packit 9c6abc
      smallest_alpha = alpha;
Packit 9c6abc
      best_mode = mode;
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  VP8SetIntraUVMode(it, best_mode);
Packit 9c6abc
  return best_alpha;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void MBAnalyze(VP8EncIterator* const it,
Packit 9c6abc
                      int alphas[MAX_ALPHA + 1],
Packit 9c6abc
                      int* const alpha, int* const uv_alpha) {
Packit 9c6abc
  const VP8Encoder* const enc = it->enc_;
Packit 9c6abc
  int best_alpha, best_uv_alpha;
Packit 9c6abc
Packit 9c6abc
  VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
Packit 9c6abc
  VP8SetSkip(it, 0);         // not skipped
Packit 9c6abc
  VP8SetSegment(it, 0);      // default segment, spec-wise.
Packit 9c6abc
Packit 9c6abc
  if (enc->method_ <= 1) {
Packit 9c6abc
    best_alpha = FastMBAnalyze(it);
Packit 9c6abc
  } else {
Packit 9c6abc
    best_alpha = MBAnalyzeBestIntra16Mode(it);
Packit 9c6abc
    if (enc->method_ >= 5) {
Packit 9c6abc
      // We go and make a fast decision for intra4/intra16.
Packit 9c6abc
      // It's usually not a good and definitive pick, but helps seeding the
Packit 9c6abc
      // stats about level bit-cost.
Packit 9c6abc
      // TODO(skal): improve criterion.
Packit 9c6abc
      best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  best_uv_alpha = MBAnalyzeBestUVMode(it);
Packit 9c6abc
Packit 9c6abc
  // Final susceptibility mix
Packit 9c6abc
  best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
Packit 9c6abc
  best_alpha = FinalAlphaValue(best_alpha);
Packit 9c6abc
  alphas[best_alpha]++;
Packit 9c6abc
  it->mb_->alpha_ = best_alpha;   // for later remapping.
Packit 9c6abc
Packit 9c6abc
  // Accumulate for later complexity analysis.
Packit 9c6abc
  *alpha += best_alpha;   // mixed susceptibility (not just luma)
Packit 9c6abc
  *uv_alpha += best_uv_alpha;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void DefaultMBInfo(VP8MBInfo* const mb) {
Packit 9c6abc
  mb->type_ = 1;     // I16x16
Packit 9c6abc
  mb->uv_mode_ = 0;
Packit 9c6abc
  mb->skip_ = 0;     // not skipped
Packit 9c6abc
  mb->segment_ = 0;  // default segment
Packit 9c6abc
  mb->alpha_ = 0;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Main analysis loop:
Packit 9c6abc
// Collect all susceptibilities for each macroblock and record their
Packit 9c6abc
// distribution in alphas[]. Segments is assigned a-posteriori, based on
Packit 9c6abc
// this histogram.
Packit 9c6abc
// We also pick an intra16 prediction mode, which shouldn't be considered
Packit 9c6abc
// final except for fast-encode settings. We can also pick some intra4 modes
Packit 9c6abc
// and decide intra4/intra16, but that's usually almost always a bad choice at
Packit 9c6abc
// this stage.
Packit 9c6abc
Packit 9c6abc
static void ResetAllMBInfo(VP8Encoder* const enc) {
Packit 9c6abc
  int n;
Packit 9c6abc
  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
Packit 9c6abc
    DefaultMBInfo(&enc->mb_info_[n]);
Packit 9c6abc
  }
Packit 9c6abc
  // Default susceptibilities.
Packit 9c6abc
  enc->dqm_[0].alpha_ = 0;
Packit 9c6abc
  enc->dqm_[0].beta_ = 0;
Packit 9c6abc
  // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
Packit 9c6abc
  enc->alpha_ = 0;
Packit 9c6abc
  enc->uv_alpha_ = 0;
Packit 9c6abc
  WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// struct used to collect job result
Packit 9c6abc
typedef struct {
Packit 9c6abc
  WebPWorker worker;
Packit 9c6abc
  int alphas[MAX_ALPHA + 1];
Packit 9c6abc
  int alpha, uv_alpha;
Packit 9c6abc
  VP8EncIterator it;
Packit 9c6abc
  int delta_progress;
Packit 9c6abc
} SegmentJob;
Packit 9c6abc
Packit 9c6abc
// main work call
Packit 9c6abc
static int DoSegmentsJob(void* arg1, void* arg2) {
Packit 9c6abc
  SegmentJob* const job = (SegmentJob*)arg1;
Packit 9c6abc
  VP8EncIterator* const it = (VP8EncIterator*)arg2;
Packit 9c6abc
  int ok = 1;
Packit 9c6abc
  if (!VP8IteratorIsDone(it)) {
Packit 9c6abc
    uint8_t tmp[32 + WEBP_ALIGN_CST];
Packit 9c6abc
    uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
Packit 9c6abc
    do {
Packit 9c6abc
      // Let's pretend we have perfect lossless reconstruction.
Packit 9c6abc
      VP8IteratorImport(it, scratch);
Packit 9c6abc
      MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
Packit 9c6abc
      ok = VP8IteratorProgress(it, job->delta_progress);
Packit 9c6abc
    } while (ok && VP8IteratorNext(it));
Packit 9c6abc
  }
Packit 9c6abc
  return ok;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
Packit 9c6abc
  int i;
Packit 9c6abc
  for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
Packit 9c6abc
  dst->alpha += src->alpha;
Packit 9c6abc
  dst->uv_alpha += src->uv_alpha;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// initialize the job struct with some TODOs
Packit 9c6abc
static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
Packit 9c6abc
                           int start_row, int end_row) {
Packit 9c6abc
  WebPGetWorkerInterface()->Init(&job->worker);
Packit 9c6abc
  job->worker.data1 = job;
Packit 9c6abc
  job->worker.data2 = &job->it;
Packit 9c6abc
  job->worker.hook = DoSegmentsJob;
Packit 9c6abc
  VP8IteratorInit(enc, &job->it);
Packit 9c6abc
  VP8IteratorSetRow(&job->it, start_row);
Packit 9c6abc
  VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
Packit 9c6abc
  memset(job->alphas, 0, sizeof(job->alphas));
Packit 9c6abc
  job->alpha = 0;
Packit 9c6abc
  job->uv_alpha = 0;
Packit 9c6abc
  // only one of both jobs can record the progress, since we don't
Packit 9c6abc
  // expect the user's hook to be multi-thread safe
Packit 9c6abc
  job->delta_progress = (start_row == 0) ? 20 : 0;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// main entry point
Packit 9c6abc
int VP8EncAnalyze(VP8Encoder* const enc) {
Packit 9c6abc
  int ok = 1;
Packit 9c6abc
  const int do_segments =
Packit 9c6abc
      enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
Packit 9c6abc
      (enc->segment_hdr_.num_segments_ > 1) ||
Packit 9c6abc
      (enc->method_ <= 1);  // for method 0 - 1, we need preds_[] to be filled.
Packit 9c6abc
  if (do_segments) {
Packit 9c6abc
    const int last_row = enc->mb_h_;
Packit 9c6abc
    // We give a little more than a half work to the main thread.
Packit 9c6abc
    const int split_row = (9 * last_row + 15) >> 4;
Packit 9c6abc
    const int total_mb = last_row * enc->mb_w_;
Packit 9c6abc
#ifdef WEBP_USE_THREAD
Packit 9c6abc
    const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
Packit 9c6abc
    const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
Packit 9c6abc
#else
Packit 9c6abc
    const int do_mt = 0;
Packit 9c6abc
#endif
Packit 9c6abc
    const WebPWorkerInterface* const worker_interface =
Packit 9c6abc
        WebPGetWorkerInterface();
Packit 9c6abc
    SegmentJob main_job;
Packit 9c6abc
    if (do_mt) {
Packit 9c6abc
      SegmentJob side_job;
Packit 9c6abc
      // Note the use of '&' instead of '&&' because we must call the functions
Packit 9c6abc
      // no matter what.
Packit 9c6abc
      InitSegmentJob(enc, &main_job, 0, split_row);
Packit 9c6abc
      InitSegmentJob(enc, &side_job, split_row, last_row);
Packit 9c6abc
      // we don't need to call Reset() on main_job.worker, since we're calling
Packit 9c6abc
      // WebPWorkerExecute() on it
Packit 9c6abc
      ok &= worker_interface->Reset(&side_job.worker);
Packit 9c6abc
      // launch the two jobs in parallel
Packit 9c6abc
      if (ok) {
Packit 9c6abc
        worker_interface->Launch(&side_job.worker);
Packit 9c6abc
        worker_interface->Execute(&main_job.worker);
Packit 9c6abc
        ok &= worker_interface->Sync(&side_job.worker);
Packit 9c6abc
        ok &= worker_interface->Sync(&main_job.worker);
Packit 9c6abc
      }
Packit 9c6abc
      worker_interface->End(&side_job.worker);
Packit 9c6abc
      if (ok) MergeJobs(&side_job, &main_job);  // merge results together
Packit 9c6abc
    } else {
Packit 9c6abc
      // Even for single-thread case, we use the generic Worker tools.
Packit 9c6abc
      InitSegmentJob(enc, &main_job, 0, last_row);
Packit 9c6abc
      worker_interface->Execute(&main_job.worker);
Packit 9c6abc
      ok &= worker_interface->Sync(&main_job.worker);
Packit 9c6abc
    }
Packit 9c6abc
    worker_interface->End(&main_job.worker);
Packit 9c6abc
    if (ok) {
Packit 9c6abc
      enc->alpha_ = main_job.alpha / total_mb;
Packit 9c6abc
      enc->uv_alpha_ = main_job.uv_alpha / total_mb;
Packit 9c6abc
      AssignSegments(enc, main_job.alphas);
Packit 9c6abc
    }
Packit 9c6abc
  } else {   // Use only one default segment.
Packit 9c6abc
    ResetAllMBInfo(enc);
Packit 9c6abc
  }
Packit 9c6abc
  return ok;
Packit 9c6abc
}
Packit 9c6abc