Blame src/dec/frame_dec.c

Packit 9c6abc
// Copyright 2010 Google Inc. All Rights Reserved.
Packit 9c6abc
//
Packit 9c6abc
// Use of this source code is governed by a BSD-style license
Packit 9c6abc
// that can be found in the COPYING file in the root of the source
Packit 9c6abc
// tree. An additional intellectual property rights grant can be found
Packit 9c6abc
// in the file PATENTS. All contributing project authors may
Packit 9c6abc
// be found in the AUTHORS file in the root of the source tree.
Packit 9c6abc
// -----------------------------------------------------------------------------
Packit 9c6abc
//
Packit 9c6abc
// Frame-reconstruction function. Memory allocation.
Packit 9c6abc
//
Packit 9c6abc
// Author: Skal (pascal.massimino@gmail.com)
Packit 9c6abc
Packit 9c6abc
#include <stdlib.h>
Packit 9c6abc
#include "src/dec/vp8i_dec.h"
Packit 9c6abc
#include "src/utils/utils.h"
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Main reconstruction function.
Packit 9c6abc
Packit 9c6abc
static const uint16_t kScan[16] = {
Packit 9c6abc
  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
Packit 9c6abc
  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
Packit 9c6abc
  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
Packit 9c6abc
  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
Packit 9c6abc
};
Packit 9c6abc
Packit 9c6abc
static int CheckMode(int mb_x, int mb_y, int mode) {
Packit 9c6abc
  if (mode == B_DC_PRED) {
Packit 9c6abc
    if (mb_x == 0) {
Packit 9c6abc
      return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
Packit 9c6abc
    } else {
Packit 9c6abc
      return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  return mode;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void Copy32b(uint8_t* const dst, const uint8_t* const src) {
Packit 9c6abc
  memcpy(dst, src, 4);
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
Packit 9c6abc
                                    uint8_t* const dst) {
Packit 9c6abc
  switch (bits >> 30) {
Packit 9c6abc
    case 3:
Packit 9c6abc
      VP8Transform(src, dst, 0);
Packit 9c6abc
      break;
Packit 9c6abc
    case 2:
Packit 9c6abc
      VP8TransformAC3(src, dst);
Packit 9c6abc
      break;
Packit 9c6abc
    case 1:
Packit 9c6abc
      VP8TransformDC(src, dst);
Packit 9c6abc
      break;
Packit 9c6abc
    default:
Packit 9c6abc
      break;
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void DoUVTransform(uint32_t bits, const int16_t* const src,
Packit 9c6abc
                          uint8_t* const dst) {
Packit 9c6abc
  if (bits & 0xff) {    // any non-zero coeff at all?
Packit 9c6abc
    if (bits & 0xaa) {  // any non-zero AC coefficient?
Packit 9c6abc
      VP8TransformUV(src, dst);   // note we don't use the AC3 variant for U/V
Packit 9c6abc
    } else {
Packit 9c6abc
      VP8TransformDCUV(src, dst);
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void ReconstructRow(const VP8Decoder* const dec,
Packit 9c6abc
                           const VP8ThreadContext* ctx) {
Packit 9c6abc
  int j;
Packit 9c6abc
  int mb_x;
Packit 9c6abc
  const int mb_y = ctx->mb_y_;
Packit 9c6abc
  const int cache_id = ctx->id_;
Packit 9c6abc
  uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
Packit 9c6abc
  uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
Packit 9c6abc
  uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
Packit 9c6abc
Packit 9c6abc
  // Initialize left-most block.
Packit 9c6abc
  for (j = 0; j < 16; ++j) {
Packit 9c6abc
    y_dst[j * BPS - 1] = 129;
Packit 9c6abc
  }
Packit 9c6abc
  for (j = 0; j < 8; ++j) {
Packit 9c6abc
    u_dst[j * BPS - 1] = 129;
Packit 9c6abc
    v_dst[j * BPS - 1] = 129;
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  // Init top-left sample on left column too.
Packit 9c6abc
  if (mb_y > 0) {
Packit 9c6abc
    y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
Packit 9c6abc
  } else {
Packit 9c6abc
    // we only need to do this init once at block (0,0).
Packit 9c6abc
    // Afterward, it remains valid for the whole topmost row.
Packit 9c6abc
    memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
Packit 9c6abc
    memset(u_dst - BPS - 1, 127, 8 + 1);
Packit 9c6abc
    memset(v_dst - BPS - 1, 127, 8 + 1);
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  // Reconstruct one row.
Packit 9c6abc
  for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
Packit 9c6abc
    const VP8MBData* const block = ctx->mb_data_ + mb_x;
Packit 9c6abc
Packit 9c6abc
    // Rotate in the left samples from previously decoded block. We move four
Packit 9c6abc
    // pixels at a time for alignment reason, and because of in-loop filter.
Packit 9c6abc
    if (mb_x > 0) {
Packit 9c6abc
      for (j = -1; j < 16; ++j) {
Packit 9c6abc
        Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
Packit 9c6abc
      }
Packit 9c6abc
      for (j = -1; j < 8; ++j) {
Packit 9c6abc
        Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
Packit 9c6abc
        Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    {
Packit 9c6abc
      // bring top samples into the cache
Packit 9c6abc
      VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
Packit 9c6abc
      const int16_t* const coeffs = block->coeffs_;
Packit 9c6abc
      uint32_t bits = block->non_zero_y_;
Packit 9c6abc
      int n;
Packit 9c6abc
Packit 9c6abc
      if (mb_y > 0) {
Packit 9c6abc
        memcpy(y_dst - BPS, top_yuv[0].y, 16);
Packit 9c6abc
        memcpy(u_dst - BPS, top_yuv[0].u, 8);
Packit 9c6abc
        memcpy(v_dst - BPS, top_yuv[0].v, 8);
Packit 9c6abc
      }
Packit 9c6abc
Packit 9c6abc
      // predict and add residuals
Packit 9c6abc
      if (block->is_i4x4_) {   // 4x4
Packit 9c6abc
        uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
Packit 9c6abc
Packit 9c6abc
        if (mb_y > 0) {
Packit 9c6abc
          if (mb_x >= dec->mb_w_ - 1) {    // on rightmost border
Packit 9c6abc
            memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
Packit 9c6abc
          } else {
Packit 9c6abc
            memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
Packit 9c6abc
          }
Packit 9c6abc
        }
Packit 9c6abc
        // replicate the top-right pixels below
Packit 9c6abc
        top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
Packit 9c6abc
Packit 9c6abc
        // predict and add residuals for all 4x4 blocks in turn.
Packit 9c6abc
        for (n = 0; n < 16; ++n, bits <<= 2) {
Packit 9c6abc
          uint8_t* const dst = y_dst + kScan[n];
Packit 9c6abc
          VP8PredLuma4[block->imodes_[n]](dst);
Packit 9c6abc
          DoTransform(bits, coeffs + n * 16, dst);
Packit 9c6abc
        }
Packit 9c6abc
      } else {    // 16x16
Packit 9c6abc
        const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]);
Packit 9c6abc
        VP8PredLuma16[pred_func](y_dst);
Packit 9c6abc
        if (bits != 0) {
Packit 9c6abc
          for (n = 0; n < 16; ++n, bits <<= 2) {
Packit 9c6abc
            DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
Packit 9c6abc
          }
Packit 9c6abc
        }
Packit 9c6abc
      }
Packit 9c6abc
      {
Packit 9c6abc
        // Chroma
Packit 9c6abc
        const uint32_t bits_uv = block->non_zero_uv_;
Packit 9c6abc
        const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
Packit 9c6abc
        VP8PredChroma8[pred_func](u_dst);
Packit 9c6abc
        VP8PredChroma8[pred_func](v_dst);
Packit 9c6abc
        DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
Packit 9c6abc
        DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
Packit 9c6abc
      }
Packit 9c6abc
Packit 9c6abc
      // stash away top samples for next block
Packit 9c6abc
      if (mb_y < dec->mb_h_ - 1) {
Packit 9c6abc
        memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
Packit 9c6abc
        memcpy(top_yuv[0].u, u_dst +  7 * BPS,  8);
Packit 9c6abc
        memcpy(top_yuv[0].v, v_dst +  7 * BPS,  8);
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    // Transfer reconstructed samples from yuv_b_ cache to final destination.
Packit 9c6abc
    {
Packit 9c6abc
      const int y_offset = cache_id * 16 * dec->cache_y_stride_;
Packit 9c6abc
      const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
Packit 9c6abc
      uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
Packit 9c6abc
      uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
Packit 9c6abc
      uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
Packit 9c6abc
      for (j = 0; j < 16; ++j) {
Packit 9c6abc
        memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
Packit 9c6abc
      }
Packit 9c6abc
      for (j = 0; j < 8; ++j) {
Packit 9c6abc
        memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
Packit 9c6abc
        memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Filtering
Packit 9c6abc
Packit 9c6abc
// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
Packit 9c6abc
// for caching, given a filtering level.
Packit 9c6abc
// Simple filter:  up to 2 luma samples are read and 1 is written.
Packit 9c6abc
// Complex filter: up to 4 luma samples are read and 3 are written. Same for
Packit 9c6abc
//                 U/V, so it's 8 samples total (because of the 2x upsampling).
Packit 9c6abc
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
Packit 9c6abc
Packit 9c6abc
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
Packit 9c6abc
  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
Packit 9c6abc
  const int cache_id = ctx->id_;
Packit 9c6abc
  const int y_bps = dec->cache_y_stride_;
Packit 9c6abc
  const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
Packit 9c6abc
  uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
Packit 9c6abc
  const int ilevel = f_info->f_ilevel_;
Packit 9c6abc
  const int limit = f_info->f_limit_;
Packit 9c6abc
  if (limit == 0) {
Packit 9c6abc
    return;
Packit 9c6abc
  }
Packit 9c6abc
  assert(limit >= 3);
Packit 9c6abc
  if (dec->filter_type_ == 1) {   // simple
Packit 9c6abc
    if (mb_x > 0) {
Packit 9c6abc
      VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
Packit 9c6abc
    }
Packit 9c6abc
    if (f_info->f_inner_) {
Packit 9c6abc
      VP8SimpleHFilter16i(y_dst, y_bps, limit);
Packit 9c6abc
    }
Packit 9c6abc
    if (mb_y > 0) {
Packit 9c6abc
      VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
Packit 9c6abc
    }
Packit 9c6abc
    if (f_info->f_inner_) {
Packit 9c6abc
      VP8SimpleVFilter16i(y_dst, y_bps, limit);
Packit 9c6abc
    }
Packit 9c6abc
  } else {    // complex
Packit 9c6abc
    const int uv_bps = dec->cache_uv_stride_;
Packit 9c6abc
    uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
Packit 9c6abc
    uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
Packit 9c6abc
    const int hev_thresh = f_info->hev_thresh_;
Packit 9c6abc
    if (mb_x > 0) {
Packit 9c6abc
      VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
Packit 9c6abc
      VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
Packit 9c6abc
    }
Packit 9c6abc
    if (f_info->f_inner_) {
Packit 9c6abc
      VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
Packit 9c6abc
      VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
Packit 9c6abc
    }
Packit 9c6abc
    if (mb_y > 0) {
Packit 9c6abc
      VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
Packit 9c6abc
      VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
Packit 9c6abc
    }
Packit 9c6abc
    if (f_info->f_inner_) {
Packit 9c6abc
      VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
Packit 9c6abc
      VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// Filter the decoded macroblock row (if needed)
Packit 9c6abc
static void FilterRow(const VP8Decoder* const dec) {
Packit 9c6abc
  int mb_x;
Packit 9c6abc
  const int mb_y = dec->thread_ctx_.mb_y_;
Packit 9c6abc
  assert(dec->thread_ctx_.filter_row_);
Packit 9c6abc
  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
Packit 9c6abc
    DoFilter(dec, mb_x, mb_y);
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
Packit 9c6abc
Packit 9c6abc
static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
Packit 9c6abc
  if (dec->filter_type_ > 0) {
Packit 9c6abc
    int s;
Packit 9c6abc
    const VP8FilterHeader* const hdr = &dec->filter_hdr_;
Packit 9c6abc
    for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
Packit 9c6abc
      int i4x4;
Packit 9c6abc
      // First, compute the initial level
Packit 9c6abc
      int base_level;
Packit 9c6abc
      if (dec->segment_hdr_.use_segment_) {
Packit 9c6abc
        base_level = dec->segment_hdr_.filter_strength_[s];
Packit 9c6abc
        if (!dec->segment_hdr_.absolute_delta_) {
Packit 9c6abc
          base_level += hdr->level_;
Packit 9c6abc
        }
Packit 9c6abc
      } else {
Packit 9c6abc
        base_level = hdr->level_;
Packit 9c6abc
      }
Packit 9c6abc
      for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
Packit 9c6abc
        VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
Packit 9c6abc
        int level = base_level;
Packit 9c6abc
        if (hdr->use_lf_delta_) {
Packit 9c6abc
          level += hdr->ref_lf_delta_[0];
Packit 9c6abc
          if (i4x4) {
Packit 9c6abc
            level += hdr->mode_lf_delta_[0];
Packit 9c6abc
          }
Packit 9c6abc
        }
Packit 9c6abc
        level = (level < 0) ? 0 : (level > 63) ? 63 : level;
Packit 9c6abc
        if (level > 0) {
Packit 9c6abc
          int ilevel = level;
Packit 9c6abc
          if (hdr->sharpness_ > 0) {
Packit 9c6abc
            if (hdr->sharpness_ > 4) {
Packit 9c6abc
              ilevel >>= 2;
Packit 9c6abc
            } else {
Packit 9c6abc
              ilevel >>= 1;
Packit 9c6abc
            }
Packit 9c6abc
            if (ilevel > 9 - hdr->sharpness_) {
Packit 9c6abc
              ilevel = 9 - hdr->sharpness_;
Packit 9c6abc
            }
Packit 9c6abc
          }
Packit 9c6abc
          if (ilevel < 1) ilevel = 1;
Packit 9c6abc
          info->f_ilevel_ = ilevel;
Packit 9c6abc
          info->f_limit_ = 2 * level + ilevel;
Packit 9c6abc
          info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
Packit 9c6abc
        } else {
Packit 9c6abc
          info->f_limit_ = 0;  // no filtering
Packit 9c6abc
        }
Packit 9c6abc
        info->f_inner_ = i4x4;
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Dithering
Packit 9c6abc
Packit 9c6abc
// minimal amp that will provide a non-zero dithering effect
Packit 9c6abc
#define MIN_DITHER_AMP 4
Packit 9c6abc
Packit 9c6abc
#define DITHER_AMP_TAB_SIZE 12
Packit 9c6abc
static const uint8_t kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
Packit 9c6abc
  // roughly, it's dqm->uv_mat_[1]
Packit 9c6abc
  8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
Packit 9c6abc
};
Packit 9c6abc
Packit 9c6abc
void VP8InitDithering(const WebPDecoderOptions* const options,
Packit 9c6abc
                      VP8Decoder* const dec) {
Packit 9c6abc
  assert(dec != NULL);
Packit 9c6abc
  if (options != NULL) {
Packit 9c6abc
    const int d = options->dithering_strength;
Packit 9c6abc
    const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
Packit 9c6abc
    const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
Packit 9c6abc
    if (f > 0) {
Packit 9c6abc
      int s;
Packit 9c6abc
      int all_amp = 0;
Packit 9c6abc
      for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
Packit 9c6abc
        VP8QuantMatrix* const dqm = &dec->dqm_[s];
Packit 9c6abc
        if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
Packit 9c6abc
          // TODO(skal): should we specially dither more for uv_quant_ < 0?
Packit 9c6abc
          const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
Packit 9c6abc
          dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
Packit 9c6abc
        }
Packit 9c6abc
        all_amp |= dqm->dither_;
Packit 9c6abc
      }
Packit 9c6abc
      if (all_amp != 0) {
Packit 9c6abc
        VP8InitRandom(&dec->dithering_rg_, 1.0f);
Packit 9c6abc
        dec->dither_ = 1;
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    // potentially allow alpha dithering
Packit 9c6abc
    dec->alpha_dithering_ = options->alpha_dithering_strength;
Packit 9c6abc
    if (dec->alpha_dithering_ > 100) {
Packit 9c6abc
      dec->alpha_dithering_ = 100;
Packit 9c6abc
    } else if (dec->alpha_dithering_ < 0) {
Packit 9c6abc
      dec->alpha_dithering_ = 0;
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
// Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
Packit 9c6abc
static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
Packit 9c6abc
  uint8_t dither[64];
Packit 9c6abc
  int i;
Packit 9c6abc
  for (i = 0; i < 8 * 8; ++i) {
Packit 9c6abc
    dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp);
Packit 9c6abc
  }
Packit 9c6abc
  VP8DitherCombine8x8(dither, dst, bps);
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void DitherRow(VP8Decoder* const dec) {
Packit 9c6abc
  int mb_x;
Packit 9c6abc
  assert(dec->dither_);
Packit 9c6abc
  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
Packit 9c6abc
    const VP8ThreadContext* const ctx = &dec->thread_ctx_;
Packit 9c6abc
    const VP8MBData* const data = ctx->mb_data_ + mb_x;
Packit 9c6abc
    const int cache_id = ctx->id_;
Packit 9c6abc
    const int uv_bps = dec->cache_uv_stride_;
Packit 9c6abc
    if (data->dither_ >= MIN_DITHER_AMP) {
Packit 9c6abc
      uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
Packit 9c6abc
      uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
Packit 9c6abc
      Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
Packit 9c6abc
      Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// This function is called after a row of macroblocks is finished decoding.
Packit 9c6abc
// It also takes into account the following restrictions:
Packit 9c6abc
//  * In case of in-loop filtering, we must hold off sending some of the bottom
Packit 9c6abc
//    pixels as they are yet unfiltered. They will be when the next macroblock
Packit 9c6abc
//    row is decoded. Meanwhile, we must preserve them by rotating them in the
Packit 9c6abc
//    cache area. This doesn't hold for the very bottom row of the uncropped
Packit 9c6abc
//    picture of course.
Packit 9c6abc
//  * we must clip the remaining pixels against the cropping area. The VP8Io
Packit 9c6abc
//    struct must have the following fields set correctly before calling put():
Packit 9c6abc
Packit 9c6abc
#define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB
Packit 9c6abc
Packit 9c6abc
// Finalize and transmit a complete row. Return false in case of user-abort.
Packit 9c6abc
static int FinishRow(void* arg1, void* arg2) {
Packit 9c6abc
  VP8Decoder* const dec = (VP8Decoder*)arg1;
Packit 9c6abc
  VP8Io* const io = (VP8Io*)arg2;
Packit 9c6abc
  int ok = 1;
Packit 9c6abc
  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
Packit 9c6abc
  const int cache_id = ctx->id_;
Packit 9c6abc
  const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
Packit 9c6abc
  const int ysize = extra_y_rows * dec->cache_y_stride_;
Packit 9c6abc
  const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
Packit 9c6abc
  const int y_offset = cache_id * 16 * dec->cache_y_stride_;
Packit 9c6abc
  const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
Packit 9c6abc
  uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
Packit 9c6abc
  uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
Packit 9c6abc
  uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
Packit 9c6abc
  const int mb_y = ctx->mb_y_;
Packit 9c6abc
  const int is_first_row = (mb_y == 0);
Packit 9c6abc
  const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
Packit 9c6abc
Packit 9c6abc
  if (dec->mt_method_ == 2) {
Packit 9c6abc
    ReconstructRow(dec, ctx);
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  if (ctx->filter_row_) {
Packit 9c6abc
    FilterRow(dec);
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  if (dec->dither_) {
Packit 9c6abc
    DitherRow(dec);
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  if (io->put != NULL) {
Packit 9c6abc
    int y_start = MACROBLOCK_VPOS(mb_y);
Packit 9c6abc
    int y_end = MACROBLOCK_VPOS(mb_y + 1);
Packit 9c6abc
    if (!is_first_row) {
Packit 9c6abc
      y_start -= extra_y_rows;
Packit 9c6abc
      io->y = ydst;
Packit 9c6abc
      io->u = udst;
Packit 9c6abc
      io->v = vdst;
Packit 9c6abc
    } else {
Packit 9c6abc
      io->y = dec->cache_y_ + y_offset;
Packit 9c6abc
      io->u = dec->cache_u_ + uv_offset;
Packit 9c6abc
      io->v = dec->cache_v_ + uv_offset;
Packit 9c6abc
    }
Packit 9c6abc
Packit 9c6abc
    if (!is_last_row) {
Packit 9c6abc
      y_end -= extra_y_rows;
Packit 9c6abc
    }
Packit 9c6abc
    if (y_end > io->crop_bottom) {
Packit 9c6abc
      y_end = io->crop_bottom;    // make sure we don't overflow on last row.
Packit 9c6abc
    }
Packit 9c6abc
    // If dec->alpha_data_ is not NULL, we have some alpha plane present.
Packit 9c6abc
    io->a = NULL;
Packit 9c6abc
    if (dec->alpha_data_ != NULL && y_start < y_end) {
Packit 9c6abc
      io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start);
Packit 9c6abc
      if (io->a == NULL) {
Packit 9c6abc
        return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
Packit 9c6abc
                           "Could not decode alpha data.");
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    if (y_start < io->crop_top) {
Packit 9c6abc
      const int delta_y = io->crop_top - y_start;
Packit 9c6abc
      y_start = io->crop_top;
Packit 9c6abc
      assert(!(delta_y & 1));
Packit 9c6abc
      io->y += dec->cache_y_stride_ * delta_y;
Packit 9c6abc
      io->u += dec->cache_uv_stride_ * (delta_y >> 1);
Packit 9c6abc
      io->v += dec->cache_uv_stride_ * (delta_y >> 1);
Packit 9c6abc
      if (io->a != NULL) {
Packit 9c6abc
        io->a += io->width * delta_y;
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
    if (y_start < y_end) {
Packit 9c6abc
      io->y += io->crop_left;
Packit 9c6abc
      io->u += io->crop_left >> 1;
Packit 9c6abc
      io->v += io->crop_left >> 1;
Packit 9c6abc
      if (io->a != NULL) {
Packit 9c6abc
        io->a += io->crop_left;
Packit 9c6abc
      }
Packit 9c6abc
      io->mb_y = y_start - io->crop_top;
Packit 9c6abc
      io->mb_w = io->crop_right - io->crop_left;
Packit 9c6abc
      io->mb_h = y_end - y_start;
Packit 9c6abc
      ok = io->put(io);
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  // rotate top samples if needed
Packit 9c6abc
  if (cache_id + 1 == dec->num_caches_) {
Packit 9c6abc
    if (!is_last_row) {
Packit 9c6abc
      memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
Packit 9c6abc
      memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
Packit 9c6abc
      memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  return ok;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
#undef MACROBLOCK_VPOS
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
Packit 9c6abc
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
Packit 9c6abc
  int ok = 1;
Packit 9c6abc
  VP8ThreadContext* const ctx = &dec->thread_ctx_;
Packit 9c6abc
  const int filter_row =
Packit 9c6abc
      (dec->filter_type_ > 0) &&
Packit 9c6abc
      (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
Packit 9c6abc
  if (dec->mt_method_ == 0) {
Packit 9c6abc
    // ctx->id_ and ctx->f_info_ are already set
Packit 9c6abc
    ctx->mb_y_ = dec->mb_y_;
Packit 9c6abc
    ctx->filter_row_ = filter_row;
Packit 9c6abc
    ReconstructRow(dec, ctx);
Packit 9c6abc
    ok = FinishRow(dec, io);
Packit 9c6abc
  } else {
Packit 9c6abc
    WebPWorker* const worker = &dec->worker_;
Packit 9c6abc
    // Finish previous job *before* updating context
Packit 9c6abc
    ok &= WebPGetWorkerInterface()->Sync(worker);
Packit 9c6abc
    assert(worker->status_ == OK);
Packit 9c6abc
    if (ok) {   // spawn a new deblocking/output job
Packit 9c6abc
      ctx->io_ = *io;
Packit 9c6abc
      ctx->id_ = dec->cache_id_;
Packit 9c6abc
      ctx->mb_y_ = dec->mb_y_;
Packit 9c6abc
      ctx->filter_row_ = filter_row;
Packit 9c6abc
      if (dec->mt_method_ == 2) {  // swap macroblock data
Packit 9c6abc
        VP8MBData* const tmp = ctx->mb_data_;
Packit 9c6abc
        ctx->mb_data_ = dec->mb_data_;
Packit 9c6abc
        dec->mb_data_ = tmp;
Packit 9c6abc
      } else {
Packit 9c6abc
        // perform reconstruction directly in main thread
Packit 9c6abc
        ReconstructRow(dec, ctx);
Packit 9c6abc
      }
Packit 9c6abc
      if (filter_row) {            // swap filter info
Packit 9c6abc
        VP8FInfo* const tmp = ctx->f_info_;
Packit 9c6abc
        ctx->f_info_ = dec->f_info_;
Packit 9c6abc
        dec->f_info_ = tmp;
Packit 9c6abc
      }
Packit 9c6abc
      // (reconstruct)+filter in parallel
Packit 9c6abc
      WebPGetWorkerInterface()->Launch(worker);
Packit 9c6abc
      if (++dec->cache_id_ == dec->num_caches_) {
Packit 9c6abc
        dec->cache_id_ = 0;
Packit 9c6abc
      }
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  return ok;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Finish setting up the decoding parameter once user's setup() is called.
Packit 9c6abc
Packit 9c6abc
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
Packit 9c6abc
  // Call setup() first. This may trigger additional decoding features on 'io'.
Packit 9c6abc
  // Note: Afterward, we must call teardown() no matter what.
Packit 9c6abc
  if (io->setup != NULL && !io->setup(io)) {
Packit 9c6abc
    VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
Packit 9c6abc
    return dec->status_;
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  // Disable filtering per user request
Packit 9c6abc
  if (io->bypass_filtering) {
Packit 9c6abc
    dec->filter_type_ = 0;
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  // Define the area where we can skip in-loop filtering, in case of cropping.
Packit 9c6abc
  //
Packit 9c6abc
  // 'Simple' filter reads two luma samples outside of the macroblock
Packit 9c6abc
  // and filters one. It doesn't filter the chroma samples. Hence, we can
Packit 9c6abc
  // avoid doing the in-loop filtering before crop_top/crop_left position.
Packit 9c6abc
  // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
Packit 9c6abc
  // Means: there's a dependency chain that goes all the way up to the
Packit 9c6abc
  // top-left corner of the picture (MB #0). We must filter all the previous
Packit 9c6abc
  // macroblocks.
Packit 9c6abc
  {
Packit 9c6abc
    const int extra_pixels = kFilterExtraRows[dec->filter_type_];
Packit 9c6abc
    if (dec->filter_type_ == 2) {
Packit 9c6abc
      // For complex filter, we need to preserve the dependency chain.
Packit 9c6abc
      dec->tl_mb_x_ = 0;
Packit 9c6abc
      dec->tl_mb_y_ = 0;
Packit 9c6abc
    } else {
Packit 9c6abc
      // For simple filter, we can filter only the cropped region.
Packit 9c6abc
      // We include 'extra_pixels' on the other side of the boundary, since
Packit 9c6abc
      // vertical or horizontal filtering of the previous macroblock can
Packit 9c6abc
      // modify some abutting pixels.
Packit 9c6abc
      dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
Packit 9c6abc
      dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
Packit 9c6abc
      if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
Packit 9c6abc
      if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
Packit 9c6abc
    }
Packit 9c6abc
    // We need some 'extra' pixels on the right/bottom.
Packit 9c6abc
    dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
Packit 9c6abc
    dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
Packit 9c6abc
    if (dec->br_mb_x_ > dec->mb_w_) {
Packit 9c6abc
      dec->br_mb_x_ = dec->mb_w_;
Packit 9c6abc
    }
Packit 9c6abc
    if (dec->br_mb_y_ > dec->mb_h_) {
Packit 9c6abc
      dec->br_mb_y_ = dec->mb_h_;
Packit 9c6abc
    }
Packit 9c6abc
  }
Packit 9c6abc
  PrecomputeFilterStrengths(dec);
Packit 9c6abc
  return VP8_STATUS_OK;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
Packit 9c6abc
  int ok = 1;
Packit 9c6abc
  if (dec->mt_method_ > 0) {
Packit 9c6abc
    ok = WebPGetWorkerInterface()->Sync(&dec->worker_);
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  if (io->teardown != NULL) {
Packit 9c6abc
    io->teardown(io);
Packit 9c6abc
  }
Packit 9c6abc
  return ok;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
Packit 9c6abc
//
Packit 9c6abc
// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
Packit 9c6abc
// immediately, and needs to wait for first few rows of the next macroblock to
Packit 9c6abc
// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
Packit 9c6abc
// on strength).
Packit 9c6abc
// With two threads, the vertical positions of the rows being decoded are:
Packit 9c6abc
// Decode:  [ 0..15][16..31][32..47][48..63][64..79][...
Packit 9c6abc
// Deblock:         [ 0..11][12..27][28..43][44..59][...
Packit 9c6abc
// If we use two threads and two caches of 16 pixels, the sequence would be:
Packit 9c6abc
// Decode:  [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
Packit 9c6abc
// Deblock:         [ 0..11][12..27!!][-4..11][12..27][...
Packit 9c6abc
// The problem occurs during row [12..15!!] that both the decoding and
Packit 9c6abc
// deblocking threads are writing simultaneously.
Packit 9c6abc
// With 3 cache lines, one get a safe write pattern:
Packit 9c6abc
// Decode:  [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
Packit 9c6abc
// Deblock:         [ 0..11][12..27][28..43][-4..11][12..27][28...
Packit 9c6abc
// Note that multi-threaded output _without_ deblocking can make use of two
Packit 9c6abc
// cache lines of 16 pixels only, since there's no lagging behind. The decoding
Packit 9c6abc
// and output process have non-concurrent writing:
Packit 9c6abc
// Decode:  [ 0..15][16..31][ 0..15][16..31][...
Packit 9c6abc
// io->put:         [ 0..15][16..31][ 0..15][...
Packit 9c6abc
Packit 9c6abc
#define MT_CACHE_LINES 3
Packit 9c6abc
#define ST_CACHE_LINES 1   // 1 cache row only for single-threaded case
Packit 9c6abc
Packit 9c6abc
// Initialize multi/single-thread worker
Packit 9c6abc
static int InitThreadContext(VP8Decoder* const dec) {
Packit 9c6abc
  dec->cache_id_ = 0;
Packit 9c6abc
  if (dec->mt_method_ > 0) {
Packit 9c6abc
    WebPWorker* const worker = &dec->worker_;
Packit 9c6abc
    if (!WebPGetWorkerInterface()->Reset(worker)) {
Packit 9c6abc
      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
Packit 9c6abc
                         "thread initialization failed.");
Packit 9c6abc
    }
Packit 9c6abc
    worker->data1 = dec;
Packit 9c6abc
    worker->data2 = (void*)&dec->thread_ctx_.io_;
Packit 9c6abc
    worker->hook = FinishRow;
Packit 9c6abc
    dec->num_caches_ =
Packit 9c6abc
      (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
Packit 9c6abc
  } else {
Packit 9c6abc
    dec->num_caches_ = ST_CACHE_LINES;
Packit 9c6abc
  }
Packit 9c6abc
  return 1;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
int VP8GetThreadMethod(const WebPDecoderOptions* const options,
Packit 9c6abc
                       const WebPHeaderStructure* const headers,
Packit 9c6abc
                       int width, int height) {
Packit 9c6abc
  if (options == NULL || options->use_threads == 0) {
Packit 9c6abc
    return 0;
Packit 9c6abc
  }
Packit 9c6abc
  (void)headers;
Packit 9c6abc
  (void)width;
Packit 9c6abc
  (void)height;
Packit 9c6abc
  assert(headers == NULL || !headers->is_lossless);
Packit 9c6abc
#if defined(WEBP_USE_THREAD)
Packit 9c6abc
  if (width < MIN_WIDTH_FOR_THREADS) return 0;
Packit 9c6abc
  // TODO(skal): tune the heuristic further
Packit 9c6abc
#if 0
Packit 9c6abc
  if (height < 2 * width) return 2;
Packit 9c6abc
#endif
Packit 9c6abc
  return 2;
Packit 9c6abc
#else   // !WEBP_USE_THREAD
Packit 9c6abc
  return 0;
Packit 9c6abc
#endif
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
#undef MT_CACHE_LINES
Packit 9c6abc
#undef ST_CACHE_LINES
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------
Packit 9c6abc
// Memory setup
Packit 9c6abc
Packit 9c6abc
static int AllocateMemory(VP8Decoder* const dec) {
Packit 9c6abc
  const int num_caches = dec->num_caches_;
Packit 9c6abc
  const int mb_w = dec->mb_w_;
Packit 9c6abc
  // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
Packit 9c6abc
  const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
Packit 9c6abc
  const size_t top_size = sizeof(VP8TopSamples) * mb_w;
Packit 9c6abc
  const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
Packit 9c6abc
  const size_t f_info_size =
Packit 9c6abc
      (dec->filter_type_ > 0) ?
Packit 9c6abc
          mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
Packit 9c6abc
        : 0;
Packit 9c6abc
  const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
Packit 9c6abc
  const size_t mb_data_size =
Packit 9c6abc
      (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
Packit 9c6abc
  const size_t cache_height = (16 * num_caches
Packit 9c6abc
                            + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
Packit 9c6abc
  const size_t cache_size = top_size * cache_height;
Packit 9c6abc
  // alpha_size is the only one that scales as width x height.
Packit 9c6abc
  const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
Packit 9c6abc
      (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
Packit 9c6abc
  const uint64_t needed = (uint64_t)intra_pred_mode_size
Packit 9c6abc
                        + top_size + mb_info_size + f_info_size
Packit 9c6abc
                        + yuv_size + mb_data_size
Packit 9c6abc
                        + cache_size + alpha_size + WEBP_ALIGN_CST;
Packit 9c6abc
  uint8_t* mem;
Packit 9c6abc
Packit 9c6abc
  if (needed != (size_t)needed) return 0;  // check for overflow
Packit 9c6abc
  if (needed > dec->mem_size_) {
Packit 9c6abc
    WebPSafeFree(dec->mem_);
Packit 9c6abc
    dec->mem_size_ = 0;
Packit 9c6abc
    dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
Packit 9c6abc
    if (dec->mem_ == NULL) {
Packit 9c6abc
      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
Packit 9c6abc
                         "no memory during frame initialization.");
Packit 9c6abc
    }
Packit 9c6abc
    // down-cast is ok, thanks to WebPSafeMalloc() above.
Packit 9c6abc
    dec->mem_size_ = (size_t)needed;
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  mem = (uint8_t*)dec->mem_;
Packit 9c6abc
  dec->intra_t_ = mem;
Packit 9c6abc
  mem += intra_pred_mode_size;
Packit 9c6abc
Packit 9c6abc
  dec->yuv_t_ = (VP8TopSamples*)mem;
Packit 9c6abc
  mem += top_size;
Packit 9c6abc
Packit 9c6abc
  dec->mb_info_ = ((VP8MB*)mem) + 1;
Packit 9c6abc
  mem += mb_info_size;
Packit 9c6abc
Packit 9c6abc
  dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
Packit 9c6abc
  mem += f_info_size;
Packit 9c6abc
  dec->thread_ctx_.id_ = 0;
Packit 9c6abc
  dec->thread_ctx_.f_info_ = dec->f_info_;
Packit 9c6abc
  if (dec->mt_method_ > 0) {
Packit 9c6abc
    // secondary cache line. The deblocking process need to make use of the
Packit 9c6abc
    // filtering strength from previous macroblock row, while the new ones
Packit 9c6abc
    // are being decoded in parallel. We'll just swap the pointers.
Packit 9c6abc
    dec->thread_ctx_.f_info_ += mb_w;
Packit 9c6abc
  }
Packit 9c6abc
Packit 9c6abc
  mem = (uint8_t*)WEBP_ALIGN(mem);
Packit 9c6abc
  assert((yuv_size & WEBP_ALIGN_CST) == 0);
Packit 9c6abc
  dec->yuv_b_ = mem;
Packit 9c6abc
  mem += yuv_size;
Packit 9c6abc
Packit 9c6abc
  dec->mb_data_ = (VP8MBData*)mem;
Packit 9c6abc
  dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
Packit 9c6abc
  if (dec->mt_method_ == 2) {
Packit 9c6abc
    dec->thread_ctx_.mb_data_ += mb_w;
Packit 9c6abc
  }
Packit 9c6abc
  mem += mb_data_size;
Packit 9c6abc
Packit 9c6abc
  dec->cache_y_stride_ = 16 * mb_w;
Packit 9c6abc
  dec->cache_uv_stride_ = 8 * mb_w;
Packit 9c6abc
  {
Packit 9c6abc
    const int extra_rows = kFilterExtraRows[dec->filter_type_];
Packit 9c6abc
    const int extra_y = extra_rows * dec->cache_y_stride_;
Packit 9c6abc
    const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
Packit 9c6abc
    dec->cache_y_ = mem + extra_y;
Packit 9c6abc
    dec->cache_u_ = dec->cache_y_
Packit 9c6abc
                  + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
Packit 9c6abc
    dec->cache_v_ = dec->cache_u_
Packit 9c6abc
                  + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
Packit 9c6abc
    dec->cache_id_ = 0;
Packit 9c6abc
  }
Packit 9c6abc
  mem += cache_size;
Packit 9c6abc
Packit 9c6abc
  // alpha plane
Packit 9c6abc
  dec->alpha_plane_ = alpha_size ? mem : NULL;
Packit 9c6abc
  mem += alpha_size;
Packit 9c6abc
  assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
Packit 9c6abc
Packit 9c6abc
  // note: left/top-info is initialized once for all.
Packit 9c6abc
  memset(dec->mb_info_ - 1, 0, mb_info_size);
Packit 9c6abc
  VP8InitScanline(dec);   // initialize left too.
Packit 9c6abc
Packit 9c6abc
  // initialize top
Packit 9c6abc
  memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
Packit 9c6abc
Packit 9c6abc
  return 1;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
static void InitIo(VP8Decoder* const dec, VP8Io* io) {
Packit 9c6abc
  // prepare 'io'
Packit 9c6abc
  io->mb_y = 0;
Packit 9c6abc
  io->y = dec->cache_y_;
Packit 9c6abc
  io->u = dec->cache_u_;
Packit 9c6abc
  io->v = dec->cache_v_;
Packit 9c6abc
  io->y_stride = dec->cache_y_stride_;
Packit 9c6abc
  io->uv_stride = dec->cache_uv_stride_;
Packit 9c6abc
  io->a = NULL;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) {
Packit 9c6abc
  if (!InitThreadContext(dec)) return 0;  // call first. Sets dec->num_caches_.
Packit 9c6abc
  if (!AllocateMemory(dec)) return 0;
Packit 9c6abc
  InitIo(dec, io);
Packit 9c6abc
  VP8DspInit();  // Init critical function pointers and look-up tables.
Packit 9c6abc
  return 1;
Packit 9c6abc
}
Packit 9c6abc
Packit 9c6abc
//------------------------------------------------------------------------------