/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "internal.h" #include #include #include #include #include #include #include #include #include /* VM_LOADAVG */ #include #include #include /* sysconf */ #include #ifndef CPUSTATES # define CPUSTATES 5U #endif #ifndef CP_USER # define CP_USER 0 # define CP_NICE 1 # define CP_SYS 2 # define CP_IDLE 3 # define CP_INTR 4 #endif int uv__platform_loop_init(uv_loop_t* loop) { return uv__kqueue_init(loop); } void uv__platform_loop_delete(uv_loop_t* loop) { } #ifdef __DragonFly__ int uv_exepath(char* buffer, size_t* size) { char abspath[PATH_MAX * 2 + 1]; ssize_t abspath_size; if (buffer == NULL || size == NULL || *size == 0) return UV_EINVAL; abspath_size = readlink("/proc/curproc/file", abspath, sizeof(abspath)); if (abspath_size < 0) return UV__ERR(errno); assert(abspath_size > 0); *size -= 1; if (*size > abspath_size) *size = abspath_size; memcpy(buffer, abspath, *size); buffer[*size] = '\0'; return 0; } #else int uv_exepath(char* buffer, size_t* size) { char abspath[PATH_MAX * 2 + 1]; int mib[4]; size_t abspath_size; if (buffer == NULL || size == NULL || *size == 0) return UV_EINVAL; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_PATHNAME; mib[3] = -1; abspath_size = sizeof abspath; if (sysctl(mib, ARRAY_SIZE(mib), abspath, &abspath_size, NULL, 0)) return UV__ERR(errno); assert(abspath_size > 0); abspath_size -= 1; *size -= 1; if (*size > abspath_size) *size = abspath_size; memcpy(buffer, abspath, *size); buffer[*size] = '\0'; return 0; } #endif uint64_t uv_get_free_memory(void) { int freecount; size_t size = sizeof(freecount); if (sysctlbyname("vm.stats.vm.v_free_count", &freecount, &size, NULL, 0)) return UV__ERR(errno); return (uint64_t) freecount * sysconf(_SC_PAGESIZE); } uint64_t uv_get_total_memory(void) { unsigned long info; int which[] = {CTL_HW, HW_PHYSMEM}; size_t size = sizeof(info); if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0)) return UV__ERR(errno); return (uint64_t) info; } uint64_t uv_get_constrained_memory(void) { return 0; /* Memory constraints are unknown. */ } void uv_loadavg(double avg[3]) { struct loadavg info; size_t size = sizeof(info); int which[] = {CTL_VM, VM_LOADAVG}; if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0) < 0) return; avg[0] = (double) info.ldavg[0] / info.fscale; avg[1] = (double) info.ldavg[1] / info.fscale; avg[2] = (double) info.ldavg[2] / info.fscale; } int uv_resident_set_memory(size_t* rss) { struct kinfo_proc kinfo; size_t page_size; size_t kinfo_size; int mib[4]; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_PID; mib[3] = getpid(); kinfo_size = sizeof(kinfo); if (sysctl(mib, ARRAY_SIZE(mib), &kinfo, &kinfo_size, NULL, 0)) return UV__ERR(errno); page_size = getpagesize(); #ifdef __DragonFly__ *rss = kinfo.kp_vm_rssize * page_size; #else *rss = kinfo.ki_rssize * page_size; #endif return 0; } int uv_uptime(double* uptime) { int r; struct timespec sp; r = clock_gettime(CLOCK_MONOTONIC, &sp); if (r) return UV__ERR(errno); *uptime = sp.tv_sec; return 0; } int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) { unsigned int ticks = (unsigned int)sysconf(_SC_CLK_TCK), multiplier = ((uint64_t)1000L / ticks), cpuspeed, maxcpus, cur = 0; uv_cpu_info_t* cpu_info; const char* maxcpus_key; const char* cptimes_key; const char* model_key; char model[512]; long* cp_times; int numcpus; size_t size; int i; #if defined(__DragonFly__) /* This is not quite correct but DragonFlyBSD doesn't seem to have anything * comparable to kern.smp.maxcpus or kern.cp_times (kern.cp_time is a total, * not per CPU). At least this stops uv_cpu_info() from failing completely. */ maxcpus_key = "hw.ncpu"; cptimes_key = "kern.cp_time"; #else maxcpus_key = "kern.smp.maxcpus"; cptimes_key = "kern.cp_times"; #endif #if defined(__arm__) || defined(__aarch64__) /* The key hw.model and hw.clockrate are not available on FreeBSD ARM. */ model_key = "hw.machine"; cpuspeed = 0; #else model_key = "hw.model"; size = sizeof(cpuspeed); if (sysctlbyname("hw.clockrate", &cpuspeed, &size, NULL, 0)) return -errno; #endif size = sizeof(model); if (sysctlbyname(model_key, &model, &size, NULL, 0)) return UV__ERR(errno); size = sizeof(numcpus); if (sysctlbyname("hw.ncpu", &numcpus, &size, NULL, 0)) return UV__ERR(errno); *cpu_infos = uv__malloc(numcpus * sizeof(**cpu_infos)); if (!(*cpu_infos)) return UV_ENOMEM; *count = numcpus; /* kern.cp_times on FreeBSD i386 gives an array up to maxcpus instead of * ncpu. */ size = sizeof(maxcpus); if (sysctlbyname(maxcpus_key, &maxcpus, &size, NULL, 0)) { uv__free(*cpu_infos); return UV__ERR(errno); } size = maxcpus * CPUSTATES * sizeof(long); cp_times = uv__malloc(size); if (cp_times == NULL) { uv__free(*cpu_infos); return UV_ENOMEM; } if (sysctlbyname(cptimes_key, cp_times, &size, NULL, 0)) { uv__free(cp_times); uv__free(*cpu_infos); return UV__ERR(errno); } for (i = 0; i < numcpus; i++) { cpu_info = &(*cpu_infos)[i]; cpu_info->cpu_times.user = (uint64_t)(cp_times[CP_USER+cur]) * multiplier; cpu_info->cpu_times.nice = (uint64_t)(cp_times[CP_NICE+cur]) * multiplier; cpu_info->cpu_times.sys = (uint64_t)(cp_times[CP_SYS+cur]) * multiplier; cpu_info->cpu_times.idle = (uint64_t)(cp_times[CP_IDLE+cur]) * multiplier; cpu_info->cpu_times.irq = (uint64_t)(cp_times[CP_INTR+cur]) * multiplier; cpu_info->model = uv__strdup(model); cpu_info->speed = cpuspeed; cur+=CPUSTATES; } uv__free(cp_times); return 0; } int uv__sendmmsg(int fd, struct uv__mmsghdr* mmsg, unsigned int vlen, unsigned int flags) { #if __FreeBSD__ >= 11 return sendmmsg(fd, mmsg, vlen, flags); #else return errno = ENOSYS, -1; #endif } int uv__recvmmsg(int fd, struct uv__mmsghdr* mmsg, unsigned int vlen, unsigned int flags, struct timespec* timeout) { #if __FreeBSD__ >= 11 return recvmmsg(fd, mmsg, vlen, flags, timeout); #else return errno = ENOSYS, -1; #endif }