Blob Blame History Raw
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "handle-inl.h"
#include "internal.h"
#include "req-inl.h"
#include "stream-inl.h"
#include "uv-common.h"
#include "uv.h"

#include <aclapi.h>
#include <accctrl.h>

/* A zero-size buffer for use by uv_pipe_read */
static char uv_zero_[] = "";

/* Null uv_buf_t */
static const uv_buf_t uv_null_buf_ = { 0, NULL };

/* The timeout that the pipe will wait for the remote end to write data when
 * the local ends wants to shut it down. */
static const int64_t eof_timeout = 50; /* ms */

static const int default_pending_pipe_instances = 4;

/* Pipe prefix */
static char pipe_prefix[] = "\\\\?\\pipe";
static const int pipe_prefix_len = sizeof(pipe_prefix) - 1;

/* IPC incoming xfer queue item. */
typedef struct {
  uv__ipc_socket_xfer_type_t xfer_type;
  uv__ipc_socket_xfer_info_t xfer_info;
  QUEUE member;
} uv__ipc_xfer_queue_item_t;

/* IPC frame header flags. */
/* clang-format off */
enum {
  UV__IPC_FRAME_HAS_DATA                = 0x01,
  UV__IPC_FRAME_HAS_SOCKET_XFER         = 0x02,
  UV__IPC_FRAME_XFER_IS_TCP_CONNECTION  = 0x04,
  /* These are combinations of the flags above. */
  UV__IPC_FRAME_XFER_FLAGS              = 0x06,
  UV__IPC_FRAME_VALID_FLAGS             = 0x07
};
/* clang-format on */

/* IPC frame header. */
typedef struct {
  uint32_t flags;
  uint32_t reserved1;   /* Ignored. */
  uint32_t data_length; /* Must be zero if there is no data. */
  uint32_t reserved2;   /* Must be zero. */
} uv__ipc_frame_header_t;

/* To implement the IPC protocol correctly, these structures must have exactly
 * the right size. */
STATIC_ASSERT(sizeof(uv__ipc_frame_header_t) == 16);
STATIC_ASSERT(sizeof(uv__ipc_socket_xfer_info_t) == 632);

/* Coalesced write request. */
typedef struct {
  uv_write_t req;       /* Internal heap-allocated write request. */
  uv_write_t* user_req; /* Pointer to user-specified uv_write_t. */
} uv__coalesced_write_t;


static void eof_timer_init(uv_pipe_t* pipe);
static void eof_timer_start(uv_pipe_t* pipe);
static void eof_timer_stop(uv_pipe_t* pipe);
static void eof_timer_cb(uv_timer_t* timer);
static void eof_timer_destroy(uv_pipe_t* pipe);
static void eof_timer_close_cb(uv_handle_t* handle);


static void uv_unique_pipe_name(char* ptr, char* name, size_t size) {
  snprintf(name, size, "\\\\?\\pipe\\uv\\%p-%lu", ptr, GetCurrentProcessId());
}


int uv_pipe_init(uv_loop_t* loop, uv_pipe_t* handle, int ipc) {
  uv_stream_init(loop, (uv_stream_t*)handle, UV_NAMED_PIPE);

  handle->reqs_pending = 0;
  handle->handle = INVALID_HANDLE_VALUE;
  handle->name = NULL;
  handle->pipe.conn.ipc_remote_pid = 0;
  handle->pipe.conn.ipc_data_frame.payload_remaining = 0;
  QUEUE_INIT(&handle->pipe.conn.ipc_xfer_queue);
  handle->pipe.conn.ipc_xfer_queue_length = 0;
  handle->ipc = ipc;
  handle->pipe.conn.non_overlapped_writes_tail = NULL;

  return 0;
}


static void uv_pipe_connection_init(uv_pipe_t* handle) {
  uv_connection_init((uv_stream_t*) handle);
  handle->read_req.data = handle;
  handle->pipe.conn.eof_timer = NULL;
  assert(!(handle->flags & UV_HANDLE_PIPESERVER));
  if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE) {
    handle->pipe.conn.readfile_thread_handle = NULL;
    InitializeCriticalSection(&handle->pipe.conn.readfile_thread_lock);
  }
}


static HANDLE open_named_pipe(const WCHAR* name, DWORD* duplex_flags) {
  HANDLE pipeHandle;

  /*
   * Assume that we have a duplex pipe first, so attempt to
   * connect with GENERIC_READ | GENERIC_WRITE.
   */
  pipeHandle = CreateFileW(name,
                           GENERIC_READ | GENERIC_WRITE,
                           0,
                           NULL,
                           OPEN_EXISTING,
                           FILE_FLAG_OVERLAPPED,
                           NULL);
  if (pipeHandle != INVALID_HANDLE_VALUE) {
    *duplex_flags = UV_HANDLE_READABLE | UV_HANDLE_WRITABLE;
    return pipeHandle;
  }

  /*
   * If the pipe is not duplex CreateFileW fails with
   * ERROR_ACCESS_DENIED.  In that case try to connect
   * as a read-only or write-only.
   */
  if (GetLastError() == ERROR_ACCESS_DENIED) {
    pipeHandle = CreateFileW(name,
                             GENERIC_READ | FILE_WRITE_ATTRIBUTES,
                             0,
                             NULL,
                             OPEN_EXISTING,
                             FILE_FLAG_OVERLAPPED,
                             NULL);

    if (pipeHandle != INVALID_HANDLE_VALUE) {
      *duplex_flags = UV_HANDLE_READABLE;
      return pipeHandle;
    }
  }

  if (GetLastError() == ERROR_ACCESS_DENIED) {
    pipeHandle = CreateFileW(name,
                             GENERIC_WRITE | FILE_READ_ATTRIBUTES,
                             0,
                             NULL,
                             OPEN_EXISTING,
                             FILE_FLAG_OVERLAPPED,
                             NULL);

    if (pipeHandle != INVALID_HANDLE_VALUE) {
      *duplex_flags = UV_HANDLE_WRITABLE;
      return pipeHandle;
    }
  }

  return INVALID_HANDLE_VALUE;
}


static void close_pipe(uv_pipe_t* pipe) {
  assert(pipe->u.fd == -1 || pipe->u.fd > 2);
  if (pipe->u.fd == -1)
    CloseHandle(pipe->handle);
  else
    close(pipe->u.fd);

  pipe->u.fd = -1;
  pipe->handle = INVALID_HANDLE_VALUE;
}


int uv_stdio_pipe_server(uv_loop_t* loop, uv_pipe_t* handle, DWORD access,
    char* name, size_t nameSize) {
  HANDLE pipeHandle;
  int err;
  char* ptr = (char*)handle;

  for (;;) {
    uv_unique_pipe_name(ptr, name, nameSize);

    pipeHandle = CreateNamedPipeA(name,
      access | FILE_FLAG_OVERLAPPED | FILE_FLAG_FIRST_PIPE_INSTANCE | WRITE_DAC,
      PIPE_TYPE_BYTE | PIPE_READMODE_BYTE | PIPE_WAIT, 1, 65536, 65536, 0,
      NULL);

    if (pipeHandle != INVALID_HANDLE_VALUE) {
      /* No name collisions.  We're done. */
      break;
    }

    err = GetLastError();
    if (err != ERROR_PIPE_BUSY && err != ERROR_ACCESS_DENIED) {
      goto error;
    }

    /* Pipe name collision.  Increment the pointer and try again. */
    ptr++;
  }

  if (CreateIoCompletionPort(pipeHandle,
                             loop->iocp,
                             (ULONG_PTR)handle,
                             0) == NULL) {
    err = GetLastError();
    goto error;
  }

  uv_pipe_connection_init(handle);
  handle->handle = pipeHandle;

  return 0;

 error:
  if (pipeHandle != INVALID_HANDLE_VALUE) {
    CloseHandle(pipeHandle);
  }

  return err;
}


static int uv_set_pipe_handle(uv_loop_t* loop,
                              uv_pipe_t* handle,
                              HANDLE pipeHandle,
                              int fd,
                              DWORD duplex_flags) {
  NTSTATUS nt_status;
  IO_STATUS_BLOCK io_status;
  FILE_MODE_INFORMATION mode_info;
  DWORD mode = PIPE_READMODE_BYTE | PIPE_WAIT;
  DWORD current_mode = 0;
  DWORD err = 0;

  if (!(handle->flags & UV_HANDLE_PIPESERVER) &&
      handle->handle != INVALID_HANDLE_VALUE)
    return UV_EBUSY;

  if (!SetNamedPipeHandleState(pipeHandle, &mode, NULL, NULL)) {
    err = GetLastError();
    if (err == ERROR_ACCESS_DENIED) {
      /*
       * SetNamedPipeHandleState can fail if the handle doesn't have either
       * GENERIC_WRITE  or FILE_WRITE_ATTRIBUTES.
       * But if the handle already has the desired wait and blocking modes
       * we can continue.
       */
      if (!GetNamedPipeHandleState(pipeHandle, &current_mode, NULL, NULL,
                                   NULL, NULL, 0)) {
        return -1;
      } else if (current_mode & PIPE_NOWAIT) {
        SetLastError(ERROR_ACCESS_DENIED);
        return -1;
      }
    } else {
      /* If this returns ERROR_INVALID_PARAMETER we probably opened
       * something that is not a pipe. */
      if (err == ERROR_INVALID_PARAMETER) {
        SetLastError(WSAENOTSOCK);
      }
      return -1;
    }
  }

  /* Check if the pipe was created with FILE_FLAG_OVERLAPPED. */
  nt_status = pNtQueryInformationFile(pipeHandle,
                                      &io_status,
                                      &mode_info,
                                      sizeof(mode_info),
                                      FileModeInformation);
  if (nt_status != STATUS_SUCCESS) {
    return -1;
  }

  if (mode_info.Mode & FILE_SYNCHRONOUS_IO_ALERT ||
      mode_info.Mode & FILE_SYNCHRONOUS_IO_NONALERT) {
    /* Non-overlapped pipe. */
    handle->flags |= UV_HANDLE_NON_OVERLAPPED_PIPE;
  } else {
    /* Overlapped pipe.  Try to associate with IOCP. */
    if (CreateIoCompletionPort(pipeHandle,
                               loop->iocp,
                               (ULONG_PTR)handle,
                               0) == NULL) {
      handle->flags |= UV_HANDLE_EMULATE_IOCP;
    }
  }

  handle->handle = pipeHandle;
  handle->u.fd = fd;
  handle->flags |= duplex_flags;

  return 0;
}


static DWORD WINAPI pipe_shutdown_thread_proc(void* parameter) {
  uv_loop_t* loop;
  uv_pipe_t* handle;
  uv_shutdown_t* req;

  req = (uv_shutdown_t*) parameter;
  assert(req);
  handle = (uv_pipe_t*) req->handle;
  assert(handle);
  loop = handle->loop;
  assert(loop);

  FlushFileBuffers(handle->handle);

  /* Post completed */
  POST_COMPLETION_FOR_REQ(loop, req);

  return 0;
}


void uv_pipe_endgame(uv_loop_t* loop, uv_pipe_t* handle) {
  int err;
  DWORD result;
  uv_shutdown_t* req;
  NTSTATUS nt_status;
  IO_STATUS_BLOCK io_status;
  FILE_PIPE_LOCAL_INFORMATION pipe_info;
  uv__ipc_xfer_queue_item_t* xfer_queue_item;

  if ((handle->flags & UV_HANDLE_CONNECTION) &&
      handle->stream.conn.shutdown_req != NULL &&
      handle->stream.conn.write_reqs_pending == 0) {
    req = handle->stream.conn.shutdown_req;

    /* Clear the shutdown_req field so we don't go here again. */
    handle->stream.conn.shutdown_req = NULL;

    if (handle->flags & UV_HANDLE_CLOSING) {
      UNREGISTER_HANDLE_REQ(loop, handle, req);

      /* Already closing. Cancel the shutdown. */
      if (req->cb) {
        req->cb(req, UV_ECANCELED);
      }

      DECREASE_PENDING_REQ_COUNT(handle);
      return;
    }

    /* Try to avoid flushing the pipe buffer in the thread pool. */
    nt_status = pNtQueryInformationFile(handle->handle,
                                        &io_status,
                                        &pipe_info,
                                        sizeof pipe_info,
                                        FilePipeLocalInformation);

    if (nt_status != STATUS_SUCCESS) {
      /* Failure */
      UNREGISTER_HANDLE_REQ(loop, handle, req);

      handle->flags |= UV_HANDLE_WRITABLE; /* Questionable */
      if (req->cb) {
        err = pRtlNtStatusToDosError(nt_status);
        req->cb(req, uv_translate_sys_error(err));
      }

      DECREASE_PENDING_REQ_COUNT(handle);
      return;
    }

    if (pipe_info.OutboundQuota == pipe_info.WriteQuotaAvailable) {
      /* Short-circuit, no need to call FlushFileBuffers. */
      uv_insert_pending_req(loop, (uv_req_t*) req);
      return;
    }

    /* Run FlushFileBuffers in the thread pool. */
    result = QueueUserWorkItem(pipe_shutdown_thread_proc,
                               req,
                               WT_EXECUTELONGFUNCTION);
    if (result) {
      return;

    } else {
      /* Failure. */
      UNREGISTER_HANDLE_REQ(loop, handle, req);

      handle->flags |= UV_HANDLE_WRITABLE; /* Questionable */
      if (req->cb) {
        err = GetLastError();
        req->cb(req, uv_translate_sys_error(err));
      }

      DECREASE_PENDING_REQ_COUNT(handle);
      return;
    }
  }

  if (handle->flags & UV_HANDLE_CLOSING &&
      handle->reqs_pending == 0) {
    assert(!(handle->flags & UV_HANDLE_CLOSED));

    if (handle->flags & UV_HANDLE_CONNECTION) {
      /* Free pending sockets */
      while (!QUEUE_EMPTY(&handle->pipe.conn.ipc_xfer_queue)) {
        QUEUE* q;
        SOCKET socket;

        q = QUEUE_HEAD(&handle->pipe.conn.ipc_xfer_queue);
        QUEUE_REMOVE(q);
        xfer_queue_item = QUEUE_DATA(q, uv__ipc_xfer_queue_item_t, member);

        /* Materialize socket and close it */
        socket = WSASocketW(FROM_PROTOCOL_INFO,
                            FROM_PROTOCOL_INFO,
                            FROM_PROTOCOL_INFO,
                            &xfer_queue_item->xfer_info.socket_info,
                            0,
                            WSA_FLAG_OVERLAPPED);
        uv__free(xfer_queue_item);

        if (socket != INVALID_SOCKET)
          closesocket(socket);
      }
      handle->pipe.conn.ipc_xfer_queue_length = 0;

      if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
        if (handle->read_req.wait_handle != INVALID_HANDLE_VALUE) {
          UnregisterWait(handle->read_req.wait_handle);
          handle->read_req.wait_handle = INVALID_HANDLE_VALUE;
        }
        if (handle->read_req.event_handle) {
          CloseHandle(handle->read_req.event_handle);
          handle->read_req.event_handle = NULL;
        }
      }

      if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE)
        DeleteCriticalSection(&handle->pipe.conn.readfile_thread_lock);
    }

    if (handle->flags & UV_HANDLE_PIPESERVER) {
      assert(handle->pipe.serv.accept_reqs);
      uv__free(handle->pipe.serv.accept_reqs);
      handle->pipe.serv.accept_reqs = NULL;
    }

    uv__handle_close(handle);
  }
}


void uv_pipe_pending_instances(uv_pipe_t* handle, int count) {
  if (handle->flags & UV_HANDLE_BOUND)
    return;
  handle->pipe.serv.pending_instances = count;
  handle->flags |= UV_HANDLE_PIPESERVER;
}


/* Creates a pipe server. */
int uv_pipe_bind(uv_pipe_t* handle, const char* name) {
  uv_loop_t* loop = handle->loop;
  int i, err, nameSize;
  uv_pipe_accept_t* req;

  if (handle->flags & UV_HANDLE_BOUND) {
    return UV_EINVAL;
  }

  if (!name) {
    return UV_EINVAL;
  }

  if (!(handle->flags & UV_HANDLE_PIPESERVER)) {
    handle->pipe.serv.pending_instances = default_pending_pipe_instances;
  }

  handle->pipe.serv.accept_reqs = (uv_pipe_accept_t*)
    uv__malloc(sizeof(uv_pipe_accept_t) * handle->pipe.serv.pending_instances);
  if (!handle->pipe.serv.accept_reqs) {
    uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
  }

  for (i = 0; i < handle->pipe.serv.pending_instances; i++) {
    req = &handle->pipe.serv.accept_reqs[i];
    UV_REQ_INIT(req, UV_ACCEPT);
    req->data = handle;
    req->pipeHandle = INVALID_HANDLE_VALUE;
    req->next_pending = NULL;
  }

  /* Convert name to UTF16. */
  nameSize = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0) * sizeof(WCHAR);
  handle->name = (WCHAR*)uv__malloc(nameSize);
  if (!handle->name) {
    uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
  }

  if (!MultiByteToWideChar(CP_UTF8,
                           0,
                           name,
                           -1,
                           handle->name,
                           nameSize / sizeof(WCHAR))) {
    err = GetLastError();
    goto error;
  }

  /*
   * Attempt to create the first pipe with FILE_FLAG_FIRST_PIPE_INSTANCE.
   * If this fails then there's already a pipe server for the given pipe name.
   */
  handle->pipe.serv.accept_reqs[0].pipeHandle = CreateNamedPipeW(handle->name,
      PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED |
      FILE_FLAG_FIRST_PIPE_INSTANCE | WRITE_DAC,
      PIPE_TYPE_BYTE | PIPE_READMODE_BYTE | PIPE_WAIT,
      PIPE_UNLIMITED_INSTANCES, 65536, 65536, 0, NULL);

  if (handle->pipe.serv.accept_reqs[0].pipeHandle == INVALID_HANDLE_VALUE) {
    err = GetLastError();
    if (err == ERROR_ACCESS_DENIED) {
      err = WSAEADDRINUSE;  /* Translates to UV_EADDRINUSE. */
    } else if (err == ERROR_PATH_NOT_FOUND || err == ERROR_INVALID_NAME) {
      err = WSAEACCES;  /* Translates to UV_EACCES. */
    }
    goto error;
  }

  if (uv_set_pipe_handle(loop,
                         handle,
                         handle->pipe.serv.accept_reqs[0].pipeHandle,
                         -1,
                         0)) {
    err = GetLastError();
    goto error;
  }

  handle->pipe.serv.pending_accepts = NULL;
  handle->flags |= UV_HANDLE_PIPESERVER;
  handle->flags |= UV_HANDLE_BOUND;

  return 0;

error:
  if (handle->name) {
    uv__free(handle->name);
    handle->name = NULL;
  }

  if (handle->pipe.serv.accept_reqs[0].pipeHandle != INVALID_HANDLE_VALUE) {
    CloseHandle(handle->pipe.serv.accept_reqs[0].pipeHandle);
    handle->pipe.serv.accept_reqs[0].pipeHandle = INVALID_HANDLE_VALUE;
  }

  return uv_translate_sys_error(err);
}


static DWORD WINAPI pipe_connect_thread_proc(void* parameter) {
  uv_loop_t* loop;
  uv_pipe_t* handle;
  uv_connect_t* req;
  HANDLE pipeHandle = INVALID_HANDLE_VALUE;
  DWORD duplex_flags;

  req = (uv_connect_t*) parameter;
  assert(req);
  handle = (uv_pipe_t*) req->handle;
  assert(handle);
  loop = handle->loop;
  assert(loop);

  /* We're here because CreateFile on a pipe returned ERROR_PIPE_BUSY. We wait
   * for the pipe to become available with WaitNamedPipe. */
  while (WaitNamedPipeW(handle->name, 30000)) {
    /* The pipe is now available, try to connect. */
    pipeHandle = open_named_pipe(handle->name, &duplex_flags);
    if (pipeHandle != INVALID_HANDLE_VALUE) {
      break;
    }

    SwitchToThread();
  }

  if (pipeHandle != INVALID_HANDLE_VALUE &&
      !uv_set_pipe_handle(loop, handle, pipeHandle, -1, duplex_flags)) {
    SET_REQ_SUCCESS(req);
  } else {
    SET_REQ_ERROR(req, GetLastError());
  }

  /* Post completed */
  POST_COMPLETION_FOR_REQ(loop, req);

  return 0;
}


void uv_pipe_connect(uv_connect_t* req, uv_pipe_t* handle,
    const char* name, uv_connect_cb cb) {
  uv_loop_t* loop = handle->loop;
  int err, nameSize;
  HANDLE pipeHandle = INVALID_HANDLE_VALUE;
  DWORD duplex_flags;

  UV_REQ_INIT(req, UV_CONNECT);
  req->handle = (uv_stream_t*) handle;
  req->cb = cb;

  /* Convert name to UTF16. */
  nameSize = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0) * sizeof(WCHAR);
  handle->name = (WCHAR*)uv__malloc(nameSize);
  if (!handle->name) {
    uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
  }

  if (!MultiByteToWideChar(CP_UTF8,
                           0,
                           name,
                           -1,
                           handle->name,
                           nameSize / sizeof(WCHAR))) {
    err = GetLastError();
    goto error;
  }

  pipeHandle = open_named_pipe(handle->name, &duplex_flags);
  if (pipeHandle == INVALID_HANDLE_VALUE) {
    if (GetLastError() == ERROR_PIPE_BUSY) {
      /* Wait for the server to make a pipe instance available. */
      if (!QueueUserWorkItem(&pipe_connect_thread_proc,
                             req,
                             WT_EXECUTELONGFUNCTION)) {
        err = GetLastError();
        goto error;
      }

      REGISTER_HANDLE_REQ(loop, handle, req);
      handle->reqs_pending++;

      return;
    }

    err = GetLastError();
    goto error;
  }

  assert(pipeHandle != INVALID_HANDLE_VALUE);

  if (uv_set_pipe_handle(loop,
                         (uv_pipe_t*) req->handle,
                         pipeHandle,
                         -1,
                         duplex_flags)) {
    err = GetLastError();
    goto error;
  }

  SET_REQ_SUCCESS(req);
  uv_insert_pending_req(loop, (uv_req_t*) req);
  handle->reqs_pending++;
  REGISTER_HANDLE_REQ(loop, handle, req);
  return;

error:
  if (handle->name) {
    uv__free(handle->name);
    handle->name = NULL;
  }

  if (pipeHandle != INVALID_HANDLE_VALUE) {
    CloseHandle(pipeHandle);
  }

  /* Make this req pending reporting an error. */
  SET_REQ_ERROR(req, err);
  uv_insert_pending_req(loop, (uv_req_t*) req);
  handle->reqs_pending++;
  REGISTER_HANDLE_REQ(loop, handle, req);
  return;
}


void uv__pipe_interrupt_read(uv_pipe_t* handle) {
  BOOL r;

  if (!(handle->flags & UV_HANDLE_READ_PENDING))
    return; /* No pending reads. */
  if (handle->flags & UV_HANDLE_CANCELLATION_PENDING)
    return; /* Already cancelled. */
  if (handle->handle == INVALID_HANDLE_VALUE)
    return; /* Pipe handle closed. */

  if (!(handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE)) {
    /* Cancel asynchronous read. */
    r = CancelIoEx(handle->handle, &handle->read_req.u.io.overlapped);
    assert(r || GetLastError() == ERROR_NOT_FOUND);

  } else {
    /* Cancel synchronous read (which is happening in the thread pool). */
    HANDLE thread;
    volatile HANDLE* thread_ptr = &handle->pipe.conn.readfile_thread_handle;

    EnterCriticalSection(&handle->pipe.conn.readfile_thread_lock);

    thread = *thread_ptr;
    if (thread == NULL) {
      /* The thread pool thread has not yet reached the point of blocking, we
       * can pre-empt it by setting thread_handle to INVALID_HANDLE_VALUE. */
      *thread_ptr = INVALID_HANDLE_VALUE;

    } else {
      /* Spin until the thread has acknowledged (by setting the thread to
       * INVALID_HANDLE_VALUE) that it is past the point of blocking. */
      while (thread != INVALID_HANDLE_VALUE) {
        r = CancelSynchronousIo(thread);
        assert(r || GetLastError() == ERROR_NOT_FOUND);
        SwitchToThread(); /* Yield thread. */
        thread = *thread_ptr;
      }
    }

    LeaveCriticalSection(&handle->pipe.conn.readfile_thread_lock);
  }

  /* Set flag to indicate that read has been cancelled. */
  handle->flags |= UV_HANDLE_CANCELLATION_PENDING;
}


void uv__pipe_read_stop(uv_pipe_t* handle) {
  handle->flags &= ~UV_HANDLE_READING;
  DECREASE_ACTIVE_COUNT(handle->loop, handle);

  uv__pipe_interrupt_read(handle);
}


/* Cleans up uv_pipe_t (server or connection) and all resources associated with
 * it. */
void uv_pipe_cleanup(uv_loop_t* loop, uv_pipe_t* handle) {
  int i;
  HANDLE pipeHandle;

  uv__pipe_interrupt_read(handle);

  if (handle->name) {
    uv__free(handle->name);
    handle->name = NULL;
  }

  if (handle->flags & UV_HANDLE_PIPESERVER) {
    for (i = 0; i < handle->pipe.serv.pending_instances; i++) {
      pipeHandle = handle->pipe.serv.accept_reqs[i].pipeHandle;
      if (pipeHandle != INVALID_HANDLE_VALUE) {
        CloseHandle(pipeHandle);
        handle->pipe.serv.accept_reqs[i].pipeHandle = INVALID_HANDLE_VALUE;
      }
    }
    handle->handle = INVALID_HANDLE_VALUE;
  }

  if (handle->flags & UV_HANDLE_CONNECTION) {
    handle->flags &= ~UV_HANDLE_WRITABLE;
    eof_timer_destroy(handle);
  }

  if ((handle->flags & UV_HANDLE_CONNECTION)
      && handle->handle != INVALID_HANDLE_VALUE)
    close_pipe(handle);
}


void uv_pipe_close(uv_loop_t* loop, uv_pipe_t* handle) {
  if (handle->flags & UV_HANDLE_READING) {
    handle->flags &= ~UV_HANDLE_READING;
    DECREASE_ACTIVE_COUNT(loop, handle);
  }

  if (handle->flags & UV_HANDLE_LISTENING) {
    handle->flags &= ~UV_HANDLE_LISTENING;
    DECREASE_ACTIVE_COUNT(loop, handle);
  }

  uv_pipe_cleanup(loop, handle);

  if (handle->reqs_pending == 0) {
    uv_want_endgame(loop, (uv_handle_t*) handle);
  }

  handle->flags &= ~(UV_HANDLE_READABLE | UV_HANDLE_WRITABLE);
  uv__handle_closing(handle);
}


static void uv_pipe_queue_accept(uv_loop_t* loop, uv_pipe_t* handle,
    uv_pipe_accept_t* req, BOOL firstInstance) {
  assert(handle->flags & UV_HANDLE_LISTENING);

  if (!firstInstance) {
    assert(req->pipeHandle == INVALID_HANDLE_VALUE);

    req->pipeHandle = CreateNamedPipeW(handle->name,
        PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED | WRITE_DAC,
        PIPE_TYPE_BYTE | PIPE_READMODE_BYTE | PIPE_WAIT,
        PIPE_UNLIMITED_INSTANCES, 65536, 65536, 0, NULL);

    if (req->pipeHandle == INVALID_HANDLE_VALUE) {
      SET_REQ_ERROR(req, GetLastError());
      uv_insert_pending_req(loop, (uv_req_t*) req);
      handle->reqs_pending++;
      return;
    }

    if (uv_set_pipe_handle(loop, handle, req->pipeHandle, -1, 0)) {
      CloseHandle(req->pipeHandle);
      req->pipeHandle = INVALID_HANDLE_VALUE;
      SET_REQ_ERROR(req, GetLastError());
      uv_insert_pending_req(loop, (uv_req_t*) req);
      handle->reqs_pending++;
      return;
    }
  }

  assert(req->pipeHandle != INVALID_HANDLE_VALUE);

  /* Prepare the overlapped structure. */
  memset(&(req->u.io.overlapped), 0, sizeof(req->u.io.overlapped));

  if (!ConnectNamedPipe(req->pipeHandle, &req->u.io.overlapped) &&
      GetLastError() != ERROR_IO_PENDING) {
    if (GetLastError() == ERROR_PIPE_CONNECTED) {
      SET_REQ_SUCCESS(req);
    } else {
      CloseHandle(req->pipeHandle);
      req->pipeHandle = INVALID_HANDLE_VALUE;
      /* Make this req pending reporting an error. */
      SET_REQ_ERROR(req, GetLastError());
    }
    uv_insert_pending_req(loop, (uv_req_t*) req);
    handle->reqs_pending++;
    return;
  }

  /* Wait for completion via IOCP */
  handle->reqs_pending++;
}


int uv_pipe_accept(uv_pipe_t* server, uv_stream_t* client) {
  uv_loop_t* loop = server->loop;
  uv_pipe_t* pipe_client;
  uv_pipe_accept_t* req;
  QUEUE* q;
  uv__ipc_xfer_queue_item_t* item;
  int err;

  if (server->ipc) {
    if (QUEUE_EMPTY(&server->pipe.conn.ipc_xfer_queue)) {
      /* No valid pending sockets. */
      return WSAEWOULDBLOCK;
    }

    q = QUEUE_HEAD(&server->pipe.conn.ipc_xfer_queue);
    QUEUE_REMOVE(q);
    server->pipe.conn.ipc_xfer_queue_length--;
    item = QUEUE_DATA(q, uv__ipc_xfer_queue_item_t, member);

    err = uv__tcp_xfer_import(
        (uv_tcp_t*) client, item->xfer_type, &item->xfer_info);
    if (err != 0)
      return err;

    uv__free(item);

  } else {
    pipe_client = (uv_pipe_t*)client;

    /* Find a connection instance that has been connected, but not yet
     * accepted. */
    req = server->pipe.serv.pending_accepts;

    if (!req) {
      /* No valid connections found, so we error out. */
      return WSAEWOULDBLOCK;
    }

    /* Initialize the client handle and copy the pipeHandle to the client */
    uv_pipe_connection_init(pipe_client);
    pipe_client->handle = req->pipeHandle;
    pipe_client->flags |= UV_HANDLE_READABLE | UV_HANDLE_WRITABLE;

    /* Prepare the req to pick up a new connection */
    server->pipe.serv.pending_accepts = req->next_pending;
    req->next_pending = NULL;
    req->pipeHandle = INVALID_HANDLE_VALUE;

    if (!(server->flags & UV_HANDLE_CLOSING)) {
      uv_pipe_queue_accept(loop, server, req, FALSE);
    }
  }

  return 0;
}


/* Starts listening for connections for the given pipe. */
int uv_pipe_listen(uv_pipe_t* handle, int backlog, uv_connection_cb cb) {
  uv_loop_t* loop = handle->loop;
  int i;

  if (handle->flags & UV_HANDLE_LISTENING) {
    handle->stream.serv.connection_cb = cb;
  }

  if (!(handle->flags & UV_HANDLE_BOUND)) {
    return WSAEINVAL;
  }

  if (handle->flags & UV_HANDLE_READING) {
    return WSAEISCONN;
  }

  if (!(handle->flags & UV_HANDLE_PIPESERVER)) {
    return ERROR_NOT_SUPPORTED;
  }

  handle->flags |= UV_HANDLE_LISTENING;
  INCREASE_ACTIVE_COUNT(loop, handle);
  handle->stream.serv.connection_cb = cb;

  /* First pipe handle should have already been created in uv_pipe_bind */
  assert(handle->pipe.serv.accept_reqs[0].pipeHandle != INVALID_HANDLE_VALUE);

  for (i = 0; i < handle->pipe.serv.pending_instances; i++) {
    uv_pipe_queue_accept(loop, handle, &handle->pipe.serv.accept_reqs[i], i == 0);
  }

  return 0;
}


static DWORD WINAPI uv_pipe_zero_readfile_thread_proc(void* arg) {
  uv_read_t* req = (uv_read_t*) arg;
  uv_pipe_t* handle = (uv_pipe_t*) req->data;
  uv_loop_t* loop = handle->loop;
  volatile HANDLE* thread_ptr = &handle->pipe.conn.readfile_thread_handle;
  CRITICAL_SECTION* lock = &handle->pipe.conn.readfile_thread_lock;
  HANDLE thread;
  DWORD bytes;
  DWORD err;

  assert(req->type == UV_READ);
  assert(handle->type == UV_NAMED_PIPE);

  err = 0;

  /* Create a handle to the current thread. */
  if (!DuplicateHandle(GetCurrentProcess(),
                       GetCurrentThread(),
                       GetCurrentProcess(),
                       &thread,
                       0,
                       FALSE,
                       DUPLICATE_SAME_ACCESS)) {
    err = GetLastError();
    goto out1;
  }

  /* The lock needs to be held when thread handle is modified. */
  EnterCriticalSection(lock);
  if (*thread_ptr == INVALID_HANDLE_VALUE) {
    /* uv__pipe_interrupt_read() cancelled reading before we got here. */
    err = ERROR_OPERATION_ABORTED;
  } else {
    /* Let main thread know which worker thread is doing the blocking read. */
    assert(*thread_ptr == NULL);
    *thread_ptr = thread;
  }
  LeaveCriticalSection(lock);

  if (err)
    goto out2;

  /* Block the thread until data is available on the pipe, or the read is
   * cancelled. */
  if (!ReadFile(handle->handle, &uv_zero_, 0, &bytes, NULL))
    err = GetLastError();

  /* Let the main thread know the worker is past the point of blocking. */
  assert(thread == *thread_ptr);
  *thread_ptr = INVALID_HANDLE_VALUE;

  /* Briefly acquire the mutex. Since the main thread holds the lock while it
   * is spinning trying to cancel this thread's I/O, we will block here until
   * it stops doing that. */
  EnterCriticalSection(lock);
  LeaveCriticalSection(lock);

out2:
  /* Close the handle to the current thread. */
  CloseHandle(thread);

out1:
  /* Set request status and post a completion record to the IOCP. */
  if (err)
    SET_REQ_ERROR(req, err);
  else
    SET_REQ_SUCCESS(req);
  POST_COMPLETION_FOR_REQ(loop, req);

  return 0;
}


static DWORD WINAPI uv_pipe_writefile_thread_proc(void* parameter) {
  int result;
  DWORD bytes;
  uv_write_t* req = (uv_write_t*) parameter;
  uv_pipe_t* handle = (uv_pipe_t*) req->handle;
  uv_loop_t* loop = handle->loop;

  assert(req != NULL);
  assert(req->type == UV_WRITE);
  assert(handle->type == UV_NAMED_PIPE);
  assert(req->write_buffer.base);

  result = WriteFile(handle->handle,
                     req->write_buffer.base,
                     req->write_buffer.len,
                     &bytes,
                     NULL);

  if (!result) {
    SET_REQ_ERROR(req, GetLastError());
  }

  POST_COMPLETION_FOR_REQ(loop, req);
  return 0;
}


static void CALLBACK post_completion_read_wait(void* context, BOOLEAN timed_out) {
  uv_read_t* req;
  uv_tcp_t* handle;

  req = (uv_read_t*) context;
  assert(req != NULL);
  handle = (uv_tcp_t*)req->data;
  assert(handle != NULL);
  assert(!timed_out);

  if (!PostQueuedCompletionStatus(handle->loop->iocp,
                                  req->u.io.overlapped.InternalHigh,
                                  0,
                                  &req->u.io.overlapped)) {
    uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
  }
}


static void CALLBACK post_completion_write_wait(void* context, BOOLEAN timed_out) {
  uv_write_t* req;
  uv_tcp_t* handle;

  req = (uv_write_t*) context;
  assert(req != NULL);
  handle = (uv_tcp_t*)req->handle;
  assert(handle != NULL);
  assert(!timed_out);

  if (!PostQueuedCompletionStatus(handle->loop->iocp,
                                  req->u.io.overlapped.InternalHigh,
                                  0,
                                  &req->u.io.overlapped)) {
    uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
  }
}


static void uv_pipe_queue_read(uv_loop_t* loop, uv_pipe_t* handle) {
  uv_read_t* req;
  int result;

  assert(handle->flags & UV_HANDLE_READING);
  assert(!(handle->flags & UV_HANDLE_READ_PENDING));

  assert(handle->handle != INVALID_HANDLE_VALUE);

  req = &handle->read_req;

  if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE) {
    handle->pipe.conn.readfile_thread_handle = NULL; /* Reset cancellation. */
    if (!QueueUserWorkItem(&uv_pipe_zero_readfile_thread_proc,
                           req,
                           WT_EXECUTELONGFUNCTION)) {
      /* Make this req pending reporting an error. */
      SET_REQ_ERROR(req, GetLastError());
      goto error;
    }
  } else {
    memset(&req->u.io.overlapped, 0, sizeof(req->u.io.overlapped));
    if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
      req->u.io.overlapped.hEvent = (HANDLE) ((uintptr_t) req->event_handle | 1);
    }

    /* Do 0-read */
    result = ReadFile(handle->handle,
                      &uv_zero_,
                      0,
                      NULL,
                      &req->u.io.overlapped);

    if (!result && GetLastError() != ERROR_IO_PENDING) {
      /* Make this req pending reporting an error. */
      SET_REQ_ERROR(req, GetLastError());
      goto error;
    }

    if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
      if (!req->event_handle) {
        req->event_handle = CreateEvent(NULL, 0, 0, NULL);
        if (!req->event_handle) {
          uv_fatal_error(GetLastError(), "CreateEvent");
        }
      }
      if (req->wait_handle == INVALID_HANDLE_VALUE) {
        if (!RegisterWaitForSingleObject(&req->wait_handle,
            req->u.io.overlapped.hEvent, post_completion_read_wait, (void*) req,
            INFINITE, WT_EXECUTEINWAITTHREAD)) {
          SET_REQ_ERROR(req, GetLastError());
          goto error;
        }
      }
    }
  }

  /* Start the eof timer if there is one */
  eof_timer_start(handle);
  handle->flags |= UV_HANDLE_READ_PENDING;
  handle->reqs_pending++;
  return;

error:
  uv_insert_pending_req(loop, (uv_req_t*)req);
  handle->flags |= UV_HANDLE_READ_PENDING;
  handle->reqs_pending++;
}


int uv_pipe_read_start(uv_pipe_t* handle,
                       uv_alloc_cb alloc_cb,
                       uv_read_cb read_cb) {
  uv_loop_t* loop = handle->loop;

  handle->flags |= UV_HANDLE_READING;
  INCREASE_ACTIVE_COUNT(loop, handle);
  handle->read_cb = read_cb;
  handle->alloc_cb = alloc_cb;

  /* If reading was stopped and then started again, there could still be a read
   * request pending. */
  if (!(handle->flags & UV_HANDLE_READ_PENDING))
    uv_pipe_queue_read(loop, handle);

  return 0;
}


static void uv_insert_non_overlapped_write_req(uv_pipe_t* handle,
    uv_write_t* req) {
  req->next_req = NULL;
  if (handle->pipe.conn.non_overlapped_writes_tail) {
    req->next_req =
      handle->pipe.conn.non_overlapped_writes_tail->next_req;
    handle->pipe.conn.non_overlapped_writes_tail->next_req = (uv_req_t*)req;
    handle->pipe.conn.non_overlapped_writes_tail = req;
  } else {
    req->next_req = (uv_req_t*)req;
    handle->pipe.conn.non_overlapped_writes_tail = req;
  }
}


static uv_write_t* uv_remove_non_overlapped_write_req(uv_pipe_t* handle) {
  uv_write_t* req;

  if (handle->pipe.conn.non_overlapped_writes_tail) {
    req = (uv_write_t*)handle->pipe.conn.non_overlapped_writes_tail->next_req;

    if (req == handle->pipe.conn.non_overlapped_writes_tail) {
      handle->pipe.conn.non_overlapped_writes_tail = NULL;
    } else {
      handle->pipe.conn.non_overlapped_writes_tail->next_req =
        req->next_req;
    }

    return req;
  } else {
    /* queue empty */
    return NULL;
  }
}


static void uv_queue_non_overlapped_write(uv_pipe_t* handle) {
  uv_write_t* req = uv_remove_non_overlapped_write_req(handle);
  if (req) {
    if (!QueueUserWorkItem(&uv_pipe_writefile_thread_proc,
                           req,
                           WT_EXECUTELONGFUNCTION)) {
      uv_fatal_error(GetLastError(), "QueueUserWorkItem");
    }
  }
}


static int uv__build_coalesced_write_req(uv_write_t* user_req,
                                         const uv_buf_t bufs[],
                                         size_t nbufs,
                                         uv_write_t** req_out,
                                         uv_buf_t* write_buf_out) {
  /* Pack into a single heap-allocated buffer:
   *   (a) a uv_write_t structure where libuv stores the actual state.
   *   (b) a pointer to the original uv_write_t.
   *   (c) data from all `bufs` entries.
   */
  char* heap_buffer;
  size_t heap_buffer_length, heap_buffer_offset;
  uv__coalesced_write_t* coalesced_write_req; /* (a) + (b) */
  char* data_start;                           /* (c) */
  size_t data_length;
  unsigned int i;

  /* Compute combined size of all combined buffers from `bufs`. */
  data_length = 0;
  for (i = 0; i < nbufs; i++)
    data_length += bufs[i].len;

  /* The total combined size of data buffers should not exceed UINT32_MAX,
   * because WriteFile() won't accept buffers larger than that. */
  if (data_length > UINT32_MAX)
    return WSAENOBUFS; /* Maps to UV_ENOBUFS. */

  /* Compute heap buffer size. */
  heap_buffer_length = sizeof *coalesced_write_req + /* (a) + (b) */
                       data_length;                  /* (c) */

  /* Allocate buffer. */
  heap_buffer = uv__malloc(heap_buffer_length);
  if (heap_buffer == NULL)
    return ERROR_NOT_ENOUGH_MEMORY; /* Maps to UV_ENOMEM. */

  /* Copy uv_write_t information to the buffer. */
  coalesced_write_req = (uv__coalesced_write_t*) heap_buffer;
  coalesced_write_req->req = *user_req; /* copy (a) */
  coalesced_write_req->req.coalesced = 1;
  coalesced_write_req->user_req = user_req;         /* copy (b) */
  heap_buffer_offset = sizeof *coalesced_write_req; /* offset (a) + (b) */

  /* Copy data buffers to the heap buffer. */
  data_start = &heap_buffer[heap_buffer_offset];
  for (i = 0; i < nbufs; i++) {
    memcpy(&heap_buffer[heap_buffer_offset],
           bufs[i].base,
           bufs[i].len);               /* copy (c) */
    heap_buffer_offset += bufs[i].len; /* offset (c) */
  }
  assert(heap_buffer_offset == heap_buffer_length);

  /* Set out arguments and return. */
  *req_out = &coalesced_write_req->req;
  *write_buf_out = uv_buf_init(data_start, (unsigned int) data_length);
  return 0;
}


static int uv__pipe_write_data(uv_loop_t* loop,
                               uv_write_t* req,
                               uv_pipe_t* handle,
                               const uv_buf_t bufs[],
                               size_t nbufs,
                               uv_stream_t* send_handle,
                               uv_write_cb cb,
                               int copy_always) {
  int err;
  int result;
  uv_buf_t write_buf;

  assert(handle->handle != INVALID_HANDLE_VALUE);

  UV_REQ_INIT(req, UV_WRITE);
  req->handle = (uv_stream_t*) handle;
  req->send_handle = send_handle;
  req->cb = cb;
  /* Private fields. */
  req->coalesced = 0;
  req->event_handle = NULL;
  req->wait_handle = INVALID_HANDLE_VALUE;
  memset(&req->u.io.overlapped, 0, sizeof(req->u.io.overlapped));
  req->write_buffer = uv_null_buf_;

  if (nbufs == 0) {
    /* Write empty buffer. */
    write_buf = uv_null_buf_;
  } else if (nbufs == 1 && !copy_always) {
    /* Write directly from bufs[0]. */
    write_buf = bufs[0];
  } else {
    /* Coalesce all `bufs` into one big buffer. This also creates a new
     * write-request structure that replaces the old one. */
    err = uv__build_coalesced_write_req(req, bufs, nbufs, &req, &write_buf);
    if (err != 0)
      return err;
  }

  if ((handle->flags &
      (UV_HANDLE_BLOCKING_WRITES | UV_HANDLE_NON_OVERLAPPED_PIPE)) ==
      (UV_HANDLE_BLOCKING_WRITES | UV_HANDLE_NON_OVERLAPPED_PIPE)) {
    DWORD bytes;
    result =
        WriteFile(handle->handle, write_buf.base, write_buf.len, &bytes, NULL);

    if (!result) {
      err = GetLastError();
      return err;
    } else {
      /* Request completed immediately. */
      req->u.io.queued_bytes = 0;
    }

    REGISTER_HANDLE_REQ(loop, handle, req);
    handle->reqs_pending++;
    handle->stream.conn.write_reqs_pending++;
    POST_COMPLETION_FOR_REQ(loop, req);
    return 0;
  } else if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE) {
    req->write_buffer = write_buf;
    uv_insert_non_overlapped_write_req(handle, req);
    if (handle->stream.conn.write_reqs_pending == 0) {
      uv_queue_non_overlapped_write(handle);
    }

    /* Request queued by the kernel. */
    req->u.io.queued_bytes = write_buf.len;
    handle->write_queue_size += req->u.io.queued_bytes;
  } else if (handle->flags & UV_HANDLE_BLOCKING_WRITES) {
    /* Using overlapped IO, but wait for completion before returning */
    req->u.io.overlapped.hEvent = CreateEvent(NULL, 1, 0, NULL);
    if (!req->u.io.overlapped.hEvent) {
      uv_fatal_error(GetLastError(), "CreateEvent");
    }

    result = WriteFile(handle->handle,
                       write_buf.base,
                       write_buf.len,
                       NULL,
                       &req->u.io.overlapped);

    if (!result && GetLastError() != ERROR_IO_PENDING) {
      err = GetLastError();
      CloseHandle(req->u.io.overlapped.hEvent);
      return err;
    }

    if (result) {
      /* Request completed immediately. */
      req->u.io.queued_bytes = 0;
    } else {
      /* Request queued by the kernel. */
      req->u.io.queued_bytes = write_buf.len;
      handle->write_queue_size += req->u.io.queued_bytes;
      if (WaitForSingleObject(req->u.io.overlapped.hEvent, INFINITE) !=
          WAIT_OBJECT_0) {
        err = GetLastError();
        CloseHandle(req->u.io.overlapped.hEvent);
        return err;
      }
    }
    CloseHandle(req->u.io.overlapped.hEvent);

    REGISTER_HANDLE_REQ(loop, handle, req);
    handle->reqs_pending++;
    handle->stream.conn.write_reqs_pending++;
    return 0;
  } else {
    result = WriteFile(handle->handle,
                       write_buf.base,
                       write_buf.len,
                       NULL,
                       &req->u.io.overlapped);

    if (!result && GetLastError() != ERROR_IO_PENDING) {
      return GetLastError();
    }

    if (result) {
      /* Request completed immediately. */
      req->u.io.queued_bytes = 0;
    } else {
      /* Request queued by the kernel. */
      req->u.io.queued_bytes = write_buf.len;
      handle->write_queue_size += req->u.io.queued_bytes;
    }

    if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
      req->event_handle = CreateEvent(NULL, 0, 0, NULL);
      if (!req->event_handle) {
        uv_fatal_error(GetLastError(), "CreateEvent");
      }
      if (!RegisterWaitForSingleObject(&req->wait_handle,
          req->u.io.overlapped.hEvent, post_completion_write_wait, (void*) req,
          INFINITE, WT_EXECUTEINWAITTHREAD)) {
        return GetLastError();
      }
    }
  }

  REGISTER_HANDLE_REQ(loop, handle, req);
  handle->reqs_pending++;
  handle->stream.conn.write_reqs_pending++;

  return 0;
}


static DWORD uv__pipe_get_ipc_remote_pid(uv_pipe_t* handle) {
  DWORD* pid = &handle->pipe.conn.ipc_remote_pid;

  /* If the both ends of the IPC pipe are owned by the same process,
   * the remote end pid may not yet be set. If so, do it here.
   * TODO: this is weird; it'd probably better to use a handshake. */
  if (*pid == 0)
    *pid = GetCurrentProcessId();

  return *pid;
}


int uv__pipe_write_ipc(uv_loop_t* loop,
                       uv_write_t* req,
                       uv_pipe_t* handle,
                       const uv_buf_t data_bufs[],
                       size_t data_buf_count,
                       uv_stream_t* send_handle,
                       uv_write_cb cb) {
  uv_buf_t stack_bufs[6];
  uv_buf_t* bufs;
  size_t buf_count, buf_index;
  uv__ipc_frame_header_t frame_header;
  uv__ipc_socket_xfer_type_t xfer_type = UV__IPC_SOCKET_XFER_NONE;
  uv__ipc_socket_xfer_info_t xfer_info;
  uint64_t data_length;
  size_t i;
  int err;

  /* Compute the combined size of data buffers. */
  data_length = 0;
  for (i = 0; i < data_buf_count; i++)
    data_length += data_bufs[i].len;
  if (data_length > UINT32_MAX)
    return WSAENOBUFS; /* Maps to UV_ENOBUFS. */

  /* Prepare the frame's socket xfer payload. */
  if (send_handle != NULL) {
    uv_tcp_t* send_tcp_handle = (uv_tcp_t*) send_handle;

    /* Verify that `send_handle` it is indeed a tcp handle. */
    if (send_tcp_handle->type != UV_TCP)
      return ERROR_NOT_SUPPORTED;

    /* Export the tcp handle. */
    err = uv__tcp_xfer_export(send_tcp_handle,
                              uv__pipe_get_ipc_remote_pid(handle),
                              &xfer_type,
                              &xfer_info);
    if (err != 0)
      return err;
  }

  /* Compute the number of uv_buf_t's required. */
  buf_count = 1 + data_buf_count; /* Frame header and data buffers. */
  if (send_handle != NULL)
    buf_count += 1; /* One extra for the socket xfer information. */

  /* Use the on-stack buffer array if it is big enough; otherwise allocate
   * space for it on the heap. */
  if (buf_count < ARRAY_SIZE(stack_bufs)) {
    /* Use on-stack buffer array. */
    bufs = stack_bufs;
  } else {
    /* Use heap-allocated buffer array. */
    bufs = uv__calloc(buf_count, sizeof(uv_buf_t));
    if (bufs == NULL)
      return ERROR_NOT_ENOUGH_MEMORY; /* Maps to UV_ENOMEM. */
  }
  buf_index = 0;

  /* Initialize frame header and add it to the buffers list. */
  memset(&frame_header, 0, sizeof frame_header);
  bufs[buf_index++] = uv_buf_init((char*) &frame_header, sizeof frame_header);

  if (send_handle != NULL) {
    /* Add frame header flags. */
    switch (xfer_type) {
      case UV__IPC_SOCKET_XFER_TCP_CONNECTION:
        frame_header.flags |= UV__IPC_FRAME_HAS_SOCKET_XFER |
                              UV__IPC_FRAME_XFER_IS_TCP_CONNECTION;
        break;
      case UV__IPC_SOCKET_XFER_TCP_SERVER:
        frame_header.flags |= UV__IPC_FRAME_HAS_SOCKET_XFER;
        break;
      default:
        assert(0);  // Unreachable.
    }
    /* Add xfer info buffer. */
    bufs[buf_index++] = uv_buf_init((char*) &xfer_info, sizeof xfer_info);
  }

  if (data_length > 0) {
    /* Update frame header. */
    frame_header.flags |= UV__IPC_FRAME_HAS_DATA;
    frame_header.data_length = (uint32_t) data_length;
    /* Add data buffers to buffers list. */
    for (i = 0; i < data_buf_count; i++)
      bufs[buf_index++] = data_bufs[i];
  }

  /* Write buffers. We set the `always_copy` flag, so it is not a problem that
   * some of the written data lives on the stack. */
  err = uv__pipe_write_data(
      loop, req, handle, bufs, buf_count, send_handle, cb, 1);

  /* If we had to heap-allocate the bufs array, free it now. */
  if (bufs != stack_bufs) {
    uv__free(bufs);
  }

  return err;
}


int uv__pipe_write(uv_loop_t* loop,
                   uv_write_t* req,
                   uv_pipe_t* handle,
                   const uv_buf_t bufs[],
                   size_t nbufs,
                   uv_stream_t* send_handle,
                   uv_write_cb cb) {
  if (handle->ipc) {
    /* IPC pipe write: use framing protocol. */
    return uv__pipe_write_ipc(loop, req, handle, bufs, nbufs, send_handle, cb);
  } else {
    /* Non-IPC pipe write: put data on the wire directly. */
    assert(send_handle == NULL);
    return uv__pipe_write_data(
        loop, req, handle, bufs, nbufs, NULL, cb, 0);
  }
}


static void uv_pipe_read_eof(uv_loop_t* loop, uv_pipe_t* handle,
    uv_buf_t buf) {
  /* If there is an eof timer running, we don't need it any more, so discard
   * it. */
  eof_timer_destroy(handle);

  handle->flags &= ~UV_HANDLE_READABLE;
  uv_read_stop((uv_stream_t*) handle);

  handle->read_cb((uv_stream_t*) handle, UV_EOF, &buf);
}


static void uv_pipe_read_error(uv_loop_t* loop, uv_pipe_t* handle, int error,
    uv_buf_t buf) {
  /* If there is an eof timer running, we don't need it any more, so discard
   * it. */
  eof_timer_destroy(handle);

  uv_read_stop((uv_stream_t*) handle);

  handle->read_cb((uv_stream_t*)handle, uv_translate_sys_error(error), &buf);
}


static void uv_pipe_read_error_or_eof(uv_loop_t* loop, uv_pipe_t* handle,
    int error, uv_buf_t buf) {
  if (error == ERROR_BROKEN_PIPE) {
    uv_pipe_read_eof(loop, handle, buf);
  } else {
    uv_pipe_read_error(loop, handle, error, buf);
  }
}


static void uv__pipe_queue_ipc_xfer_info(
    uv_pipe_t* handle,
    uv__ipc_socket_xfer_type_t xfer_type,
    uv__ipc_socket_xfer_info_t* xfer_info) {
  uv__ipc_xfer_queue_item_t* item;

  item = (uv__ipc_xfer_queue_item_t*) uv__malloc(sizeof(*item));
  if (item == NULL)
    uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");

  item->xfer_type = xfer_type;
  item->xfer_info = *xfer_info;

  QUEUE_INSERT_TAIL(&handle->pipe.conn.ipc_xfer_queue, &item->member);
  handle->pipe.conn.ipc_xfer_queue_length++;
}


/* Read an exact number of bytes from a pipe. If an error or end-of-file is
 * encountered before the requested number of bytes are read, an error is
 * returned. */
static int uv__pipe_read_exactly(HANDLE h, void* buffer, DWORD count) {
  DWORD bytes_read, bytes_read_now;

  bytes_read = 0;
  while (bytes_read < count) {
    if (!ReadFile(h,
                  (char*) buffer + bytes_read,
                  count - bytes_read,
                  &bytes_read_now,
                  NULL)) {
      return GetLastError();
    }

    bytes_read += bytes_read_now;
  }

  assert(bytes_read == count);
  return 0;
}


static DWORD uv__pipe_read_data(uv_loop_t* loop,
                                uv_pipe_t* handle,
                                DWORD suggested_bytes,
                                DWORD max_bytes) {
  DWORD bytes_read;
  uv_buf_t buf;

  /* Ask the user for a buffer to read data into. */
  buf = uv_buf_init(NULL, 0);
  handle->alloc_cb((uv_handle_t*) handle, suggested_bytes, &buf);
  if (buf.base == NULL || buf.len == 0) {
    handle->read_cb((uv_stream_t*) handle, UV_ENOBUFS, &buf);
    return 0; /* Break out of read loop. */
  }

  /* Ensure we read at most the smaller of:
   *   (a) the length of the user-allocated buffer.
   *   (b) the maximum data length as specified by the `max_bytes` argument.
   */
  if (max_bytes > buf.len)
    max_bytes = buf.len;

  /* Read into the user buffer. */
  if (!ReadFile(handle->handle, buf.base, max_bytes, &bytes_read, NULL)) {
    uv_pipe_read_error_or_eof(loop, handle, GetLastError(), buf);
    return 0; /* Break out of read loop. */
  }

  /* Call the read callback. */
  handle->read_cb((uv_stream_t*) handle, bytes_read, &buf);

  return bytes_read;
}


static DWORD uv__pipe_read_ipc(uv_loop_t* loop, uv_pipe_t* handle) {
  uint32_t* data_remaining = &handle->pipe.conn.ipc_data_frame.payload_remaining;
  int err;

  if (*data_remaining > 0) {
    /* Read frame data payload. */
    DWORD bytes_read =
        uv__pipe_read_data(loop, handle, *data_remaining, *data_remaining);
    *data_remaining -= bytes_read;
    return bytes_read;

  } else {
    /* Start of a new IPC frame. */
    uv__ipc_frame_header_t frame_header;
    uint32_t xfer_flags;
    uv__ipc_socket_xfer_type_t xfer_type;
    uv__ipc_socket_xfer_info_t xfer_info;

    /* Read the IPC frame header. */
    err = uv__pipe_read_exactly(
        handle->handle, &frame_header, sizeof frame_header);
    if (err)
      goto error;

    /* Validate that flags are valid. */
    if ((frame_header.flags & ~UV__IPC_FRAME_VALID_FLAGS) != 0)
      goto invalid;
    /* Validate that reserved2 is zero. */
    if (frame_header.reserved2 != 0)
      goto invalid;

    /* Parse xfer flags. */
    xfer_flags = frame_header.flags & UV__IPC_FRAME_XFER_FLAGS;
    if (xfer_flags & UV__IPC_FRAME_HAS_SOCKET_XFER) {
      /* Socket coming -- determine the type. */
      xfer_type = xfer_flags & UV__IPC_FRAME_XFER_IS_TCP_CONNECTION
                      ? UV__IPC_SOCKET_XFER_TCP_CONNECTION
                      : UV__IPC_SOCKET_XFER_TCP_SERVER;
    } else if (xfer_flags == 0) {
      /* No socket. */
      xfer_type = UV__IPC_SOCKET_XFER_NONE;
    } else {
      /* Invalid flags. */
      goto invalid;
    }

    /* Parse data frame information. */
    if (frame_header.flags & UV__IPC_FRAME_HAS_DATA) {
      *data_remaining = frame_header.data_length;
    } else if (frame_header.data_length != 0) {
      /* Data length greater than zero but data flag not set -- invalid. */
      goto invalid;
    }

    /* If no socket xfer info follows, return here. Data will be read in a
     * subsequent invocation of uv__pipe_read_ipc(). */
    if (xfer_type == UV__IPC_SOCKET_XFER_NONE)
      return sizeof frame_header; /* Number of bytes read. */

    /* Read transferred socket information. */
    err = uv__pipe_read_exactly(handle->handle, &xfer_info, sizeof xfer_info);
    if (err)
      goto error;

    /* Store the pending socket info. */
    uv__pipe_queue_ipc_xfer_info(handle, xfer_type, &xfer_info);

    /* Return number of bytes read. */
    return sizeof frame_header + sizeof xfer_info;
  }

invalid:
  /* Invalid frame. */
  err = WSAECONNABORTED; /* Maps to UV_ECONNABORTED. */

error:
  uv_pipe_read_error_or_eof(loop, handle, err, uv_null_buf_);
  return 0; /* Break out of read loop. */
}


void uv_process_pipe_read_req(uv_loop_t* loop,
                              uv_pipe_t* handle,
                              uv_req_t* req) {
  assert(handle->type == UV_NAMED_PIPE);

  handle->flags &= ~(UV_HANDLE_READ_PENDING | UV_HANDLE_CANCELLATION_PENDING);
  DECREASE_PENDING_REQ_COUNT(handle);
  eof_timer_stop(handle);

  /* At this point, we're done with bookkeeping. If the user has stopped
   * reading the pipe in the meantime, there is nothing left to do, since there
   * is no callback that we can call. */
  if (!(handle->flags & UV_HANDLE_READING))
    return;

  if (!REQ_SUCCESS(req)) {
    /* An error occurred doing the zero-read. */
    DWORD err = GET_REQ_ERROR(req);

    /* If the read was cancelled by uv__pipe_interrupt_read(), the request may
     * indicate an ERROR_OPERATION_ABORTED error. This error isn't relevant to
     * the user; we'll start a new zero-read at the end of this function. */
    if (err != ERROR_OPERATION_ABORTED)
      uv_pipe_read_error_or_eof(loop, handle, err, uv_null_buf_);

  } else {
    /* The zero-read completed without error, indicating there is data
     * available in the kernel buffer. */
    DWORD avail;

    /* Get the number of bytes available. */
    avail = 0;
    if (!PeekNamedPipe(handle->handle, NULL, 0, NULL, &avail, NULL))
      uv_pipe_read_error_or_eof(loop, handle, GetLastError(), uv_null_buf_);

    /* Read until we've either read all the bytes available, or the 'reading'
     * flag is cleared. */
    while (avail > 0 && handle->flags & UV_HANDLE_READING) {
      /* Depending on the type of pipe, read either IPC frames or raw data. */
      DWORD bytes_read =
          handle->ipc ? uv__pipe_read_ipc(loop, handle)
                      : uv__pipe_read_data(loop, handle, avail, (DWORD) -1);

      /* If no bytes were read, treat this as an indication that an error
       * occurred, and break out of the read loop. */
      if (bytes_read == 0)
        break;

      /* It is possible that more bytes were read than we thought were
       * available. To prevent `avail` from underflowing, break out of the loop
       * if this is the case. */
      if (bytes_read > avail)
        break;

      /* Recompute the number of bytes available. */
      avail -= bytes_read;
    }
  }

  /* Start another zero-read request if necessary. */
  if ((handle->flags & UV_HANDLE_READING) &&
      !(handle->flags & UV_HANDLE_READ_PENDING)) {
    uv_pipe_queue_read(loop, handle);
  }
}


void uv_process_pipe_write_req(uv_loop_t* loop, uv_pipe_t* handle,
    uv_write_t* req) {
  int err;

  assert(handle->type == UV_NAMED_PIPE);

  assert(handle->write_queue_size >= req->u.io.queued_bytes);
  handle->write_queue_size -= req->u.io.queued_bytes;

  UNREGISTER_HANDLE_REQ(loop, handle, req);

  if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
    if (req->wait_handle != INVALID_HANDLE_VALUE) {
      UnregisterWait(req->wait_handle);
      req->wait_handle = INVALID_HANDLE_VALUE;
    }
    if (req->event_handle) {
      CloseHandle(req->event_handle);
      req->event_handle = NULL;
    }
  }

  err = GET_REQ_ERROR(req);

  /* If this was a coalesced write, extract pointer to the user_provided
   * uv_write_t structure so we can pass the expected pointer to the callback,
   * then free the heap-allocated write req. */
  if (req->coalesced) {
    uv__coalesced_write_t* coalesced_write =
        container_of(req, uv__coalesced_write_t, req);
    req = coalesced_write->user_req;
    uv__free(coalesced_write);
  }
  if (req->cb) {
    req->cb(req, uv_translate_sys_error(err));
  }

  handle->stream.conn.write_reqs_pending--;

  if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE &&
      handle->pipe.conn.non_overlapped_writes_tail) {
    assert(handle->stream.conn.write_reqs_pending > 0);
    uv_queue_non_overlapped_write(handle);
  }

  if (handle->stream.conn.shutdown_req != NULL &&
      handle->stream.conn.write_reqs_pending == 0) {
    uv_want_endgame(loop, (uv_handle_t*)handle);
  }

  DECREASE_PENDING_REQ_COUNT(handle);
}


void uv_process_pipe_accept_req(uv_loop_t* loop, uv_pipe_t* handle,
    uv_req_t* raw_req) {
  uv_pipe_accept_t* req = (uv_pipe_accept_t*) raw_req;

  assert(handle->type == UV_NAMED_PIPE);

  if (handle->flags & UV_HANDLE_CLOSING) {
    /* The req->pipeHandle should be freed already in uv_pipe_cleanup(). */
    assert(req->pipeHandle == INVALID_HANDLE_VALUE);
    DECREASE_PENDING_REQ_COUNT(handle);
    return;
  }

  if (REQ_SUCCESS(req)) {
    assert(req->pipeHandle != INVALID_HANDLE_VALUE);
    req->next_pending = handle->pipe.serv.pending_accepts;
    handle->pipe.serv.pending_accepts = req;

    if (handle->stream.serv.connection_cb) {
      handle->stream.serv.connection_cb((uv_stream_t*)handle, 0);
    }
  } else {
    if (req->pipeHandle != INVALID_HANDLE_VALUE) {
      CloseHandle(req->pipeHandle);
      req->pipeHandle = INVALID_HANDLE_VALUE;
    }
    if (!(handle->flags & UV_HANDLE_CLOSING)) {
      uv_pipe_queue_accept(loop, handle, req, FALSE);
    }
  }

  DECREASE_PENDING_REQ_COUNT(handle);
}


void uv_process_pipe_connect_req(uv_loop_t* loop, uv_pipe_t* handle,
    uv_connect_t* req) {
  int err;

  assert(handle->type == UV_NAMED_PIPE);

  UNREGISTER_HANDLE_REQ(loop, handle, req);

  if (req->cb) {
    err = 0;
    if (REQ_SUCCESS(req)) {
      uv_pipe_connection_init(handle);
    } else {
      err = GET_REQ_ERROR(req);
    }
    req->cb(req, uv_translate_sys_error(err));
  }

  DECREASE_PENDING_REQ_COUNT(handle);
}


void uv_process_pipe_shutdown_req(uv_loop_t* loop, uv_pipe_t* handle,
    uv_shutdown_t* req) {
  assert(handle->type == UV_NAMED_PIPE);

  UNREGISTER_HANDLE_REQ(loop, handle, req);

  if (handle->flags & UV_HANDLE_READABLE) {
    /* Initialize and optionally start the eof timer. Only do this if the pipe
     * is readable and we haven't seen EOF come in ourselves. */
    eof_timer_init(handle);

    /* If reading start the timer right now. Otherwise uv_pipe_queue_read will
     * start it. */
    if (handle->flags & UV_HANDLE_READ_PENDING) {
      eof_timer_start(handle);
    }

  } else {
    /* This pipe is not readable. We can just close it to let the other end
     * know that we're done writing. */
    close_pipe(handle);
  }

  if (req->cb) {
    req->cb(req, 0);
  }

  DECREASE_PENDING_REQ_COUNT(handle);
}


static void eof_timer_init(uv_pipe_t* pipe) {
  int r;

  assert(pipe->pipe.conn.eof_timer == NULL);
  assert(pipe->flags & UV_HANDLE_CONNECTION);

  pipe->pipe.conn.eof_timer = (uv_timer_t*) uv__malloc(sizeof *pipe->pipe.conn.eof_timer);

  r = uv_timer_init(pipe->loop, pipe->pipe.conn.eof_timer);
  assert(r == 0); /* timers can't fail */
  pipe->pipe.conn.eof_timer->data = pipe;
  uv_unref((uv_handle_t*) pipe->pipe.conn.eof_timer);
}


static void eof_timer_start(uv_pipe_t* pipe) {
  assert(pipe->flags & UV_HANDLE_CONNECTION);

  if (pipe->pipe.conn.eof_timer != NULL) {
    uv_timer_start(pipe->pipe.conn.eof_timer, eof_timer_cb, eof_timeout, 0);
  }
}


static void eof_timer_stop(uv_pipe_t* pipe) {
  assert(pipe->flags & UV_HANDLE_CONNECTION);

  if (pipe->pipe.conn.eof_timer != NULL) {
    uv_timer_stop(pipe->pipe.conn.eof_timer);
  }
}


static void eof_timer_cb(uv_timer_t* timer) {
  uv_pipe_t* pipe = (uv_pipe_t*) timer->data;
  uv_loop_t* loop = timer->loop;

  assert(pipe->type == UV_NAMED_PIPE);

  /* This should always be true, since we start the timer only in
   * uv_pipe_queue_read after successfully calling ReadFile, or in
   * uv_process_pipe_shutdown_req if a read is pending, and we always
   * immediately stop the timer in uv_process_pipe_read_req. */
  assert(pipe->flags & UV_HANDLE_READ_PENDING);

  /* If there are many packets coming off the iocp then the timer callback may
   * be called before the read request is coming off the queue. Therefore we
   * check here if the read request has completed but will be processed later.
   */
  if ((pipe->flags & UV_HANDLE_READ_PENDING) &&
      HasOverlappedIoCompleted(&pipe->read_req.u.io.overlapped)) {
    return;
  }

  /* Force both ends off the pipe. */
  close_pipe(pipe);

  /* Stop reading, so the pending read that is going to fail will not be
   * reported to the user. */
  uv_read_stop((uv_stream_t*) pipe);

  /* Report the eof and update flags. This will get reported even if the user
   * stopped reading in the meantime. TODO: is that okay? */
  uv_pipe_read_eof(loop, pipe, uv_null_buf_);
}


static void eof_timer_destroy(uv_pipe_t* pipe) {
  assert(pipe->flags & UV_HANDLE_CONNECTION);

  if (pipe->pipe.conn.eof_timer) {
    uv_close((uv_handle_t*) pipe->pipe.conn.eof_timer, eof_timer_close_cb);
    pipe->pipe.conn.eof_timer = NULL;
  }
}


static void eof_timer_close_cb(uv_handle_t* handle) {
  assert(handle->type == UV_TIMER);
  uv__free(handle);
}


int uv_pipe_open(uv_pipe_t* pipe, uv_file file) {
  HANDLE os_handle = uv__get_osfhandle(file);
  NTSTATUS nt_status;
  IO_STATUS_BLOCK io_status;
  FILE_ACCESS_INFORMATION access;
  DWORD duplex_flags = 0;

  if (os_handle == INVALID_HANDLE_VALUE)
    return UV_EBADF;

  uv__once_init();
  /* In order to avoid closing a stdio file descriptor 0-2, duplicate the
   * underlying OS handle and forget about the original fd.
   * We could also opt to use the original OS handle and just never close it,
   * but then there would be no reliable way to cancel pending read operations
   * upon close.
   */
  if (file <= 2) {
    if (!DuplicateHandle(INVALID_HANDLE_VALUE,
                         os_handle,
                         INVALID_HANDLE_VALUE,
                         &os_handle,
                         0,
                         FALSE,
                         DUPLICATE_SAME_ACCESS))
      return uv_translate_sys_error(GetLastError());
    file = -1;
  }

  /* Determine what kind of permissions we have on this handle.
   * Cygwin opens the pipe in message mode, but we can support it,
   * just query the access flags and set the stream flags accordingly.
   */
  nt_status = pNtQueryInformationFile(os_handle,
                                      &io_status,
                                      &access,
                                      sizeof(access),
                                      FileAccessInformation);
  if (nt_status != STATUS_SUCCESS)
    return UV_EINVAL;

  if (pipe->ipc) {
    if (!(access.AccessFlags & FILE_WRITE_DATA) ||
        !(access.AccessFlags & FILE_READ_DATA)) {
      return UV_EINVAL;
    }
  }

  if (access.AccessFlags & FILE_WRITE_DATA)
    duplex_flags |= UV_HANDLE_WRITABLE;
  if (access.AccessFlags & FILE_READ_DATA)
    duplex_flags |= UV_HANDLE_READABLE;

  if (os_handle == INVALID_HANDLE_VALUE ||
      uv_set_pipe_handle(pipe->loop,
                         pipe,
                         os_handle,
                         file,
                         duplex_flags) == -1) {
    return UV_EINVAL;
  }

  uv_pipe_connection_init(pipe);

  if (pipe->ipc) {
    assert(!(pipe->flags & UV_HANDLE_NON_OVERLAPPED_PIPE));
    pipe->pipe.conn.ipc_remote_pid = uv_os_getppid();
    assert(pipe->pipe.conn.ipc_remote_pid != -1);
  }
  return 0;
}


static int uv__pipe_getname(const uv_pipe_t* handle, char* buffer, size_t* size) {
  NTSTATUS nt_status;
  IO_STATUS_BLOCK io_status;
  FILE_NAME_INFORMATION tmp_name_info;
  FILE_NAME_INFORMATION* name_info;
  WCHAR* name_buf;
  unsigned int addrlen;
  unsigned int name_size;
  unsigned int name_len;
  int err;

  uv__once_init();
  name_info = NULL;

  if (handle->handle == INVALID_HANDLE_VALUE) {
    *size = 0;
    return UV_EINVAL;
  }

  /* NtQueryInformationFile will block if another thread is performing a
   * blocking operation on the queried handle. If the pipe handle is
   * synchronous, there may be a worker thread currently calling ReadFile() on
   * the pipe handle, which could cause a deadlock. To avoid this, interrupt
   * the read. */
  if (handle->flags & UV_HANDLE_CONNECTION &&
      handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE) {
    uv__pipe_interrupt_read((uv_pipe_t*) handle); /* cast away const warning */
  }

  nt_status = pNtQueryInformationFile(handle->handle,
                                      &io_status,
                                      &tmp_name_info,
                                      sizeof tmp_name_info,
                                      FileNameInformation);
  if (nt_status == STATUS_BUFFER_OVERFLOW) {
    name_size = sizeof(*name_info) + tmp_name_info.FileNameLength;
    name_info = uv__malloc(name_size);
    if (!name_info) {
      *size = 0;
      err = UV_ENOMEM;
      goto cleanup;
    }

    nt_status = pNtQueryInformationFile(handle->handle,
                                        &io_status,
                                        name_info,
                                        name_size,
                                        FileNameInformation);
  }

  if (nt_status != STATUS_SUCCESS) {
    *size = 0;
    err = uv_translate_sys_error(pRtlNtStatusToDosError(nt_status));
    goto error;
  }

  if (!name_info) {
    /* the struct on stack was used */
    name_buf = tmp_name_info.FileName;
    name_len = tmp_name_info.FileNameLength;
  } else {
    name_buf = name_info->FileName;
    name_len = name_info->FileNameLength;
  }

  if (name_len == 0) {
    *size = 0;
    err = 0;
    goto error;
  }

  name_len /= sizeof(WCHAR);

  /* check how much space we need */
  addrlen = WideCharToMultiByte(CP_UTF8,
                                0,
                                name_buf,
                                name_len,
                                NULL,
                                0,
                                NULL,
                                NULL);
  if (!addrlen) {
    *size = 0;
    err = uv_translate_sys_error(GetLastError());
    goto error;
  } else if (pipe_prefix_len + addrlen >= *size) {
    /* "\\\\.\\pipe" + name */
    *size = pipe_prefix_len + addrlen + 1;
    err = UV_ENOBUFS;
    goto error;
  }

  memcpy(buffer, pipe_prefix, pipe_prefix_len);
  addrlen = WideCharToMultiByte(CP_UTF8,
                                0,
                                name_buf,
                                name_len,
                                buffer+pipe_prefix_len,
                                *size-pipe_prefix_len,
                                NULL,
                                NULL);
  if (!addrlen) {
    *size = 0;
    err = uv_translate_sys_error(GetLastError());
    goto error;
  }

  addrlen += pipe_prefix_len;
  *size = addrlen;
  buffer[addrlen] = '\0';

  err = 0;

error:
  uv__free(name_info);

cleanup:
  return err;
}


int uv_pipe_pending_count(uv_pipe_t* handle) {
  if (!handle->ipc)
    return 0;
  return handle->pipe.conn.ipc_xfer_queue_length;
}


int uv_pipe_getsockname(const uv_pipe_t* handle, char* buffer, size_t* size) {
  if (handle->flags & UV_HANDLE_BOUND)
    return uv__pipe_getname(handle, buffer, size);

  if (handle->flags & UV_HANDLE_CONNECTION ||
      handle->handle != INVALID_HANDLE_VALUE) {
    *size = 0;
    return 0;
  }

  return UV_EBADF;
}


int uv_pipe_getpeername(const uv_pipe_t* handle, char* buffer, size_t* size) {
  /* emulate unix behaviour */
  if (handle->flags & UV_HANDLE_BOUND)
    return UV_ENOTCONN;

  if (handle->handle != INVALID_HANDLE_VALUE)
    return uv__pipe_getname(handle, buffer, size);

  return UV_EBADF;
}


uv_handle_type uv_pipe_pending_type(uv_pipe_t* handle) {
  if (!handle->ipc)
    return UV_UNKNOWN_HANDLE;
  if (handle->pipe.conn.ipc_xfer_queue_length == 0)
    return UV_UNKNOWN_HANDLE;
  else
    return UV_TCP;
}

int uv_pipe_chmod(uv_pipe_t* handle, int mode) {
  SID_IDENTIFIER_AUTHORITY sid_world = SECURITY_WORLD_SID_AUTHORITY;
  PACL old_dacl, new_dacl;
  PSECURITY_DESCRIPTOR sd;
  EXPLICIT_ACCESS ea;
  PSID everyone;
  int error;

  if (handle == NULL || handle->handle == INVALID_HANDLE_VALUE)
    return UV_EBADF;

  if (mode != UV_READABLE &&
      mode != UV_WRITABLE &&
      mode != (UV_WRITABLE | UV_READABLE))
    return UV_EINVAL;

  if (!AllocateAndInitializeSid(&sid_world,
                                1,
                                SECURITY_WORLD_RID,
                                0, 0, 0, 0, 0, 0, 0,
                                &everyone)) {
    error = GetLastError();
    goto done;
  }

  if (GetSecurityInfo(handle->handle,
                      SE_KERNEL_OBJECT,
                      DACL_SECURITY_INFORMATION,
                      NULL,
                      NULL,
                      &old_dacl,
                      NULL,
                      &sd)) {
    error = GetLastError();
    goto clean_sid;
  }
 
  memset(&ea, 0, sizeof(EXPLICIT_ACCESS));
  if (mode & UV_READABLE)
    ea.grfAccessPermissions |= GENERIC_READ | FILE_WRITE_ATTRIBUTES;
  if (mode & UV_WRITABLE)
    ea.grfAccessPermissions |= GENERIC_WRITE | FILE_READ_ATTRIBUTES;
  ea.grfAccessPermissions |= SYNCHRONIZE;
  ea.grfAccessMode = SET_ACCESS;
  ea.grfInheritance = NO_INHERITANCE;
  ea.Trustee.TrusteeForm = TRUSTEE_IS_SID;
  ea.Trustee.TrusteeType = TRUSTEE_IS_WELL_KNOWN_GROUP;
  ea.Trustee.ptstrName = (LPTSTR)everyone;

  if (SetEntriesInAcl(1, &ea, old_dacl, &new_dacl)) {
    error = GetLastError();
    goto clean_sd;
  }

  if (SetSecurityInfo(handle->handle,
                      SE_KERNEL_OBJECT,
                      DACL_SECURITY_INFORMATION,
                      NULL,
                      NULL,
                      new_dacl,
                      NULL)) {
    error = GetLastError();
    goto clean_dacl;
  }

  error = 0;

clean_dacl:
  LocalFree((HLOCAL) new_dacl);
clean_sd:
  LocalFree((HLOCAL) sd);
clean_sid:
  FreeSid(everyone);
done:
  return uv_translate_sys_error(error);
}