Blame common/lock.c

rpm-build ca8475
 /*
rpm-build ca8475
   Unix SMB/CIFS implementation.
rpm-build ca8475
rpm-build ca8475
   trivial database library
rpm-build ca8475
rpm-build ca8475
   Copyright (C) Andrew Tridgell              1999-2005
rpm-build ca8475
   Copyright (C) Paul `Rusty' Russell		   2000
rpm-build ca8475
   Copyright (C) Jeremy Allison			   2000-2003
rpm-build ca8475
rpm-build ca8475
     ** NOTE! The following LGPL license applies to the tdb
rpm-build ca8475
     ** library. This does NOT imply that all of Samba is released
rpm-build ca8475
     ** under the LGPL
rpm-build ca8475
rpm-build ca8475
   This library is free software; you can redistribute it and/or
rpm-build ca8475
   modify it under the terms of the GNU Lesser General Public
rpm-build ca8475
   License as published by the Free Software Foundation; either
rpm-build ca8475
   version 3 of the License, or (at your option) any later version.
rpm-build ca8475
rpm-build ca8475
   This library is distributed in the hope that it will be useful,
rpm-build ca8475
   but WITHOUT ANY WARRANTY; without even the implied warranty of
rpm-build ca8475
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
rpm-build ca8475
   Lesser General Public License for more details.
rpm-build ca8475
rpm-build ca8475
   You should have received a copy of the GNU Lesser General Public
rpm-build ca8475
   License along with this library; if not, see <http://www.gnu.org/licenses/>.
rpm-build ca8475
*/
rpm-build ca8475
rpm-build ca8475
#include "tdb_private.h"
rpm-build ca8475
rpm-build ca8475
_PUBLIC_ void tdb_setalarm_sigptr(struct tdb_context *tdb, volatile sig_atomic_t *ptr)
rpm-build ca8475
{
rpm-build ca8475
	tdb->interrupt_sig_ptr = ptr;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
static int fcntl_lock(struct tdb_context *tdb,
rpm-build ca8475
		      int rw, off_t off, off_t len, bool waitflag)
rpm-build ca8475
{
rpm-build ca8475
	struct flock fl;
rpm-build ca8475
	int cmd;
rpm-build ca8475
rpm-build ca8475
#ifdef USE_TDB_MUTEX_LOCKING
rpm-build ca8475
	{
rpm-build ca8475
		int ret;
rpm-build ca8475
		if (tdb_mutex_lock(tdb, rw, off, len, waitflag, &ret)) {
rpm-build ca8475
			return ret;
rpm-build ca8475
		}
rpm-build ca8475
	}
rpm-build ca8475
#endif
rpm-build ca8475
rpm-build ca8475
	fl.l_type = rw;
rpm-build ca8475
	fl.l_whence = SEEK_SET;
rpm-build ca8475
	fl.l_start = off;
rpm-build ca8475
	fl.l_len = len;
rpm-build ca8475
	fl.l_pid = 0;
rpm-build ca8475
rpm-build ca8475
	cmd = waitflag ? F_SETLKW : F_SETLK;
rpm-build ca8475
rpm-build ca8475
	return fcntl(tdb->fd, cmd, &fl);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
static int fcntl_unlock(struct tdb_context *tdb, int rw, off_t off, off_t len)
rpm-build ca8475
{
rpm-build ca8475
	struct flock fl;
rpm-build ca8475
#if 0 /* Check they matched up locks and unlocks correctly. */
rpm-build ca8475
	char line[80];
rpm-build ca8475
	FILE *locks;
rpm-build ca8475
	bool found = false;
rpm-build ca8475
rpm-build ca8475
	locks = fopen("/proc/locks", "r");
rpm-build ca8475
rpm-build ca8475
	while (fgets(line, 80, locks)) {
rpm-build ca8475
		char *p;
rpm-build ca8475
		int type, start, l;
rpm-build ca8475
rpm-build ca8475
		/* eg. 1: FLOCK  ADVISORY  WRITE 2440 08:01:2180826 0 EOF */
rpm-build ca8475
		p = strchr(line, ':') + 1;
rpm-build ca8475
		if (strncmp(p, " POSIX  ADVISORY  ", strlen(" POSIX  ADVISORY  ")))
rpm-build ca8475
			continue;
rpm-build ca8475
		p += strlen(" FLOCK  ADVISORY  ");
rpm-build ca8475
		if (strncmp(p, "READ  ", strlen("READ  ")) == 0)
rpm-build ca8475
			type = F_RDLCK;
rpm-build ca8475
		else if (strncmp(p, "WRITE ", strlen("WRITE ")) == 0)
rpm-build ca8475
			type = F_WRLCK;
rpm-build ca8475
		else
rpm-build ca8475
			abort();
rpm-build ca8475
		p += 6;
rpm-build ca8475
		if (atoi(p) != getpid())
rpm-build ca8475
			continue;
rpm-build ca8475
		p = strchr(strchr(p, ' ') + 1, ' ') + 1;
rpm-build ca8475
		start = atoi(p);
rpm-build ca8475
		p = strchr(p, ' ') + 1;
rpm-build ca8475
		if (strncmp(p, "EOF", 3) == 0)
rpm-build ca8475
			l = 0;
rpm-build ca8475
		else
rpm-build ca8475
			l = atoi(p) - start + 1;
rpm-build ca8475
rpm-build ca8475
		if (off == start) {
rpm-build ca8475
			if (len != l) {
rpm-build ca8475
				fprintf(stderr, "Len %u should be %u: %s",
rpm-build ca8475
					(int)len, l, line);
rpm-build ca8475
				abort();
rpm-build ca8475
			}
rpm-build ca8475
			if (type != rw) {
rpm-build ca8475
				fprintf(stderr, "Type %s wrong: %s",
rpm-build ca8475
					rw == F_RDLCK ? "READ" : "WRITE", line);
rpm-build ca8475
				abort();
rpm-build ca8475
			}
rpm-build ca8475
			found = true;
rpm-build ca8475
			break;
rpm-build ca8475
		}
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (!found) {
rpm-build ca8475
		fprintf(stderr, "Unlock on %u@%u not found!\n",
rpm-build ca8475
			(int)off, (int)len);
rpm-build ca8475
		abort();
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	fclose(locks);
rpm-build ca8475
#endif
rpm-build ca8475
rpm-build ca8475
#ifdef USE_TDB_MUTEX_LOCKING
rpm-build ca8475
	{
rpm-build ca8475
		int ret;
rpm-build ca8475
		if (tdb_mutex_unlock(tdb, rw, off, len, &ret)) {
rpm-build ca8475
			return ret;
rpm-build ca8475
		}
rpm-build ca8475
	}
rpm-build ca8475
#endif
rpm-build ca8475
rpm-build ca8475
	fl.l_type = F_UNLCK;
rpm-build ca8475
	fl.l_whence = SEEK_SET;
rpm-build ca8475
	fl.l_start = off;
rpm-build ca8475
	fl.l_len = len;
rpm-build ca8475
	fl.l_pid = 0;
rpm-build ca8475
rpm-build ca8475
	return fcntl(tdb->fd, F_SETLKW, &fl);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/*
rpm-build ca8475
 * Calculate the lock offset for a list
rpm-build ca8475
 *
rpm-build ca8475
 * list -1 is the freelist, otherwise a hash chain.
rpm-build ca8475
 *
rpm-build ca8475
 * Note that we consistently (but without real reason) lock hash chains at an
rpm-build ca8475
 * offset that is 4 bytes below the real offset of the corresponding list head
rpm-build ca8475
 * in the db.
rpm-build ca8475
 *
rpm-build ca8475
 * This is the memory layout of the hashchain array:
rpm-build ca8475
 *
rpm-build ca8475
 * FREELIST_TOP + 0 = freelist
rpm-build ca8475
 * FREELIST_TOP + 4 = hashtable list 0
rpm-build ca8475
 * FREELIST_TOP + 8 = hashtable list 1
rpm-build ca8475
 * ...
rpm-build ca8475
 *
rpm-build ca8475
 * Otoh lock_offset computes:
rpm-build ca8475
 *
rpm-build ca8475
 * freelist = FREELIST_TOP - 4
rpm-build ca8475
 * list 0   = FREELIST_TOP + 0
rpm-build ca8475
 * list 1   = FREELIST_TOP + 4
rpm-build ca8475
 * ...
rpm-build ca8475
 *
rpm-build ca8475
 * Unfortunately we can't change this calculation in order to align the locking
rpm-build ca8475
 * offset with the memory layout, as that would make the locking incompatible
rpm-build ca8475
 * between different tdb versions.
rpm-build ca8475
 */
rpm-build ca8475
static tdb_off_t lock_offset(int list)
rpm-build ca8475
{
rpm-build ca8475
	return FREELIST_TOP + 4*list;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* a byte range locking function - return 0 on success
rpm-build ca8475
   this functions locks/unlocks "len" byte at the specified offset.
rpm-build ca8475
rpm-build ca8475
   On error, errno is also set so that errors are passed back properly
rpm-build ca8475
   through tdb_open().
rpm-build ca8475
rpm-build ca8475
   note that a len of zero means lock to end of file
rpm-build ca8475
*/
rpm-build ca8475
int tdb_brlock(struct tdb_context *tdb,
rpm-build ca8475
	       int rw_type, tdb_off_t offset, size_t len,
rpm-build ca8475
	       enum tdb_lock_flags flags)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
rpm-build ca8475
	if (tdb->flags & TDB_NOLOCK) {
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (flags & TDB_LOCK_MARK_ONLY) {
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if ((rw_type == F_WRLCK) && (tdb->read_only || tdb->traverse_read)) {
rpm-build ca8475
		tdb->ecode = TDB_ERR_RDONLY;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	do {
rpm-build ca8475
		ret = fcntl_lock(tdb, rw_type, offset, len,
rpm-build ca8475
				 flags & TDB_LOCK_WAIT);
rpm-build ca8475
		/* Check for a sigalarm break. */
rpm-build ca8475
		if (ret == -1 && errno == EINTR &&
rpm-build ca8475
				tdb->interrupt_sig_ptr &&
rpm-build ca8475
				*tdb->interrupt_sig_ptr) {
rpm-build ca8475
			break;
rpm-build ca8475
		}
rpm-build ca8475
	} while (ret == -1 && errno == EINTR);
rpm-build ca8475
rpm-build ca8475
	if (ret == -1) {
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		/* Generic lock error. errno set by fcntl.
rpm-build ca8475
		 * EAGAIN is an expected return from non-blocking
rpm-build ca8475
		 * locks. */
rpm-build ca8475
		if (!(flags & TDB_LOCK_PROBE) && errno != EAGAIN) {
rpm-build ca8475
			TDB_LOG((tdb, TDB_DEBUG_TRACE,"tdb_brlock failed (fd=%d) at offset %u rw_type=%d flags=%d len=%zu\n",
rpm-build ca8475
				 tdb->fd, offset, rw_type, flags, len));
rpm-build ca8475
		}
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
	return 0;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
int tdb_brunlock(struct tdb_context *tdb,
rpm-build ca8475
		 int rw_type, tdb_off_t offset, size_t len)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
rpm-build ca8475
	if (tdb->flags & TDB_NOLOCK) {
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	do {
rpm-build ca8475
		ret = fcntl_unlock(tdb, rw_type, offset, len);
rpm-build ca8475
	} while (ret == -1 && errno == EINTR);
rpm-build ca8475
rpm-build ca8475
	if (ret == -1) {
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_TRACE,"tdb_brunlock failed (fd=%d) at offset %u rw_type=%u len=%zu\n",
rpm-build ca8475
			 tdb->fd, offset, rw_type, len));
rpm-build ca8475
	}
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/*
rpm-build ca8475
 * Do a tdb_brlock in a loop. Some OSes (such as solaris) have too
rpm-build ca8475
 * conservative deadlock detection and claim a deadlock when progress can be
rpm-build ca8475
 * made. For those OSes we may loop for a while.
rpm-build ca8475
 */
rpm-build ca8475
rpm-build ca8475
static int tdb_brlock_retry(struct tdb_context *tdb,
rpm-build ca8475
			    int rw_type, tdb_off_t offset, size_t len,
rpm-build ca8475
			    enum tdb_lock_flags flags)
rpm-build ca8475
{
rpm-build ca8475
	int count = 1000;
rpm-build ca8475
rpm-build ca8475
	while (count--) {
rpm-build ca8475
		struct timeval tv;
rpm-build ca8475
		int ret;
rpm-build ca8475
rpm-build ca8475
		ret = tdb_brlock(tdb, rw_type, offset, len, flags);
rpm-build ca8475
		if (ret == 0) {
rpm-build ca8475
			return 0;
rpm-build ca8475
		}
rpm-build ca8475
		if (errno != EDEADLK) {
rpm-build ca8475
			break;
rpm-build ca8475
		}
rpm-build ca8475
		/* sleep for as short a time as we can - more portable than usleep() */
rpm-build ca8475
		tv.tv_sec = 0;
rpm-build ca8475
		tv.tv_usec = 1;
rpm-build ca8475
		select(0, NULL, NULL, NULL, &tv;;
rpm-build ca8475
	}
rpm-build ca8475
	return -1;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/*
rpm-build ca8475
  upgrade a read lock to a write lock.
rpm-build ca8475
*/
rpm-build ca8475
int tdb_allrecord_upgrade(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count != 1) {
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_ERROR,
rpm-build ca8475
			 "tdb_allrecord_upgrade failed: count %u too high\n",
rpm-build ca8475
			 tdb->allrecord_lock.count));
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.off != 1) {
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_ERROR,
rpm-build ca8475
			 "tdb_allrecord_upgrade failed: already upgraded?\n"));
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb_have_mutexes(tdb)) {
rpm-build ca8475
		ret = tdb_mutex_allrecord_upgrade(tdb);
rpm-build ca8475
		if (ret == -1) {
rpm-build ca8475
			goto fail;
rpm-build ca8475
		}
rpm-build ca8475
		ret = tdb_brlock_retry(tdb, F_WRLCK, lock_offset(tdb->hash_size),
rpm-build ca8475
				       0, TDB_LOCK_WAIT|TDB_LOCK_PROBE);
rpm-build ca8475
		if (ret == -1) {
rpm-build ca8475
			tdb_mutex_allrecord_downgrade(tdb);
rpm-build ca8475
		}
rpm-build ca8475
	} else {
rpm-build ca8475
		ret = tdb_brlock_retry(tdb, F_WRLCK, FREELIST_TOP, 0,
rpm-build ca8475
				       TDB_LOCK_WAIT|TDB_LOCK_PROBE);
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (ret == 0) {
rpm-build ca8475
		tdb->allrecord_lock.ltype = F_WRLCK;
rpm-build ca8475
		tdb->allrecord_lock.off = 0;
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
fail:
rpm-build ca8475
	TDB_LOG((tdb, TDB_DEBUG_TRACE,"tdb_allrecord_upgrade failed\n"));
rpm-build ca8475
	return -1;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
static struct tdb_lock_type *find_nestlock(struct tdb_context *tdb,
rpm-build ca8475
					   tdb_off_t offset)
rpm-build ca8475
{
rpm-build ca8475
	int i;
rpm-build ca8475
rpm-build ca8475
	for (i=0; i<tdb->num_lockrecs; i++) {
rpm-build ca8475
		if (tdb->lockrecs[i].off == offset) {
rpm-build ca8475
			return &tdb->lockrecs[i];
rpm-build ca8475
		}
rpm-build ca8475
	}
rpm-build ca8475
	return NULL;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock an offset in the database. */
rpm-build ca8475
int tdb_nest_lock(struct tdb_context *tdb, uint32_t offset, int ltype,
rpm-build ca8475
		  enum tdb_lock_flags flags)
rpm-build ca8475
{
rpm-build ca8475
	struct tdb_lock_type *new_lck;
rpm-build ca8475
rpm-build ca8475
	if (offset >= lock_offset(tdb->hash_size)) {
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_ERROR,"tdb_lock: invalid offset %u for ltype=%d\n",
rpm-build ca8475
			 offset, ltype));
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
	if (tdb->flags & TDB_NOLOCK)
rpm-build ca8475
		return 0;
rpm-build ca8475
rpm-build ca8475
	new_lck = find_nestlock(tdb, offset);
rpm-build ca8475
	if (new_lck) {
rpm-build ca8475
		if ((new_lck->ltype == F_RDLCK) && (ltype == F_WRLCK)) {
rpm-build ca8475
			if (!tdb_have_mutexes(tdb)) {
rpm-build ca8475
				int ret;
rpm-build ca8475
				/*
rpm-build ca8475
				 * Upgrade the underlying fcntl
rpm-build ca8475
				 * lock. Mutexes don't do readlocks,
rpm-build ca8475
				 * so this only applies to fcntl
rpm-build ca8475
				 * locking.
rpm-build ca8475
				 */
rpm-build ca8475
				ret = tdb_brlock(tdb, ltype, offset, 1, flags);
rpm-build ca8475
				if (ret != 0) {
rpm-build ca8475
					return ret;
rpm-build ca8475
				}
rpm-build ca8475
			}
rpm-build ca8475
			new_lck->ltype = F_WRLCK;
rpm-build ca8475
		}
rpm-build ca8475
		/*
rpm-build ca8475
		 * Just increment the in-memory struct, posix locks
rpm-build ca8475
		 * don't stack.
rpm-build ca8475
		 */
rpm-build ca8475
		new_lck->count++;
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb->num_lockrecs == tdb->lockrecs_array_length) {
rpm-build ca8475
		new_lck = (struct tdb_lock_type *)realloc(
rpm-build ca8475
			tdb->lockrecs,
rpm-build ca8475
			sizeof(*tdb->lockrecs) * (tdb->num_lockrecs+1));
rpm-build ca8475
		if (new_lck == NULL) {
rpm-build ca8475
			errno = ENOMEM;
rpm-build ca8475
			return -1;
rpm-build ca8475
		}
rpm-build ca8475
		tdb->lockrecs_array_length = tdb->num_lockrecs+1;
rpm-build ca8475
		tdb->lockrecs = new_lck;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* Since fcntl locks don't nest, we do a lock for the first one,
rpm-build ca8475
	   and simply bump the count for future ones */
rpm-build ca8475
	if (tdb_brlock(tdb, ltype, offset, 1, flags)) {
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	new_lck = &tdb->lockrecs[tdb->num_lockrecs];
rpm-build ca8475
rpm-build ca8475
	new_lck->off = offset;
rpm-build ca8475
	new_lck->count = 1;
rpm-build ca8475
	new_lck->ltype = ltype;
rpm-build ca8475
	tdb->num_lockrecs++;
rpm-build ca8475
rpm-build ca8475
	return 0;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
static int tdb_lock_and_recover(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
rpm-build ca8475
	/* We need to match locking order in transaction commit. */
rpm-build ca8475
	if (tdb_brlock(tdb, F_WRLCK, FREELIST_TOP, 0, TDB_LOCK_WAIT)) {
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb_brlock(tdb, F_WRLCK, OPEN_LOCK, 1, TDB_LOCK_WAIT)) {
rpm-build ca8475
		tdb_brunlock(tdb, F_WRLCK, FREELIST_TOP, 0);
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	ret = tdb_transaction_recover(tdb);
rpm-build ca8475
rpm-build ca8475
	tdb_brunlock(tdb, F_WRLCK, OPEN_LOCK, 1);
rpm-build ca8475
	tdb_brunlock(tdb, F_WRLCK, FREELIST_TOP, 0);
rpm-build ca8475
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
static bool have_data_locks(const struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	int i;
rpm-build ca8475
rpm-build ca8475
	for (i = 0; i < tdb->num_lockrecs; i++) {
rpm-build ca8475
		if (tdb->lockrecs[i].off >= lock_offset(-1))
rpm-build ca8475
			return true;
rpm-build ca8475
	}
rpm-build ca8475
	return false;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/*
rpm-build ca8475
 * A allrecord lock allows us to avoid per chain locks. Check if the allrecord
rpm-build ca8475
 * lock is strong enough.
rpm-build ca8475
 */
rpm-build ca8475
static int tdb_lock_covered_by_allrecord_lock(struct tdb_context *tdb,
rpm-build ca8475
					      int ltype)
rpm-build ca8475
{
rpm-build ca8475
	if (ltype == F_RDLCK) {
rpm-build ca8475
		/*
rpm-build ca8475
		 * The allrecord_lock is equal (F_RDLCK) or stronger
rpm-build ca8475
		 * (F_WRLCK). Pass.
rpm-build ca8475
		 */
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.ltype == F_RDLCK) {
rpm-build ca8475
		/*
rpm-build ca8475
		 * We ask for ltype==F_WRLCK, but the allrecord_lock
rpm-build ca8475
		 * is too weak. We can't upgrade here, so fail.
rpm-build ca8475
		 */
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/*
rpm-build ca8475
	 * Asking for F_WRLCK, allrecord is F_WRLCK as well. Pass.
rpm-build ca8475
	 */
rpm-build ca8475
	return 0;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
static int tdb_lock_list(struct tdb_context *tdb, int list, int ltype,
rpm-build ca8475
			 enum tdb_lock_flags waitflag)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
	bool check = false;
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count) {
rpm-build ca8475
		return tdb_lock_covered_by_allrecord_lock(tdb, ltype);
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/*
rpm-build ca8475
	 * Check for recoveries: Someone might have kill -9'ed a process
rpm-build ca8475
	 * during a commit.
rpm-build ca8475
	 */
rpm-build ca8475
	check = !have_data_locks(tdb);
rpm-build ca8475
	ret = tdb_nest_lock(tdb, lock_offset(list), ltype, waitflag);
rpm-build ca8475
rpm-build ca8475
	if (ret == 0 && check && tdb_needs_recovery(tdb)) {
rpm-build ca8475
		tdb_nest_unlock(tdb, lock_offset(list), ltype, false);
rpm-build ca8475
rpm-build ca8475
		if (tdb_lock_and_recover(tdb) == -1) {
rpm-build ca8475
			return -1;
rpm-build ca8475
		}
rpm-build ca8475
		return tdb_lock_list(tdb, list, ltype, waitflag);
rpm-build ca8475
	}
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock a list in the database. list -1 is the alloc list */
rpm-build ca8475
int tdb_lock(struct tdb_context *tdb, int list, int ltype)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
rpm-build ca8475
	ret = tdb_lock_list(tdb, list, ltype, TDB_LOCK_WAIT);
rpm-build ca8475
	if (ret) {
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_ERROR, "tdb_lock failed on list %d "
rpm-build ca8475
			 "ltype=%d (%s)\n",  list, ltype, strerror(errno)));
rpm-build ca8475
	}
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock a list in the database. list -1 is the alloc list. non-blocking lock */
rpm-build ca8475
_PUBLIC_ int tdb_lock_nonblock(struct tdb_context *tdb, int list, int ltype)
rpm-build ca8475
{
rpm-build ca8475
	return tdb_lock_list(tdb, list, ltype, TDB_LOCK_NOWAIT);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
rpm-build ca8475
int tdb_nest_unlock(struct tdb_context *tdb, uint32_t offset, int ltype,
rpm-build ca8475
		    bool mark_lock)
rpm-build ca8475
{
rpm-build ca8475
	int ret = -1;
rpm-build ca8475
	struct tdb_lock_type *lck;
rpm-build ca8475
rpm-build ca8475
	if (tdb->flags & TDB_NOLOCK)
rpm-build ca8475
		return 0;
rpm-build ca8475
rpm-build ca8475
	/* Sanity checks */
rpm-build ca8475
	if (offset >= lock_offset(tdb->hash_size)) {
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_ERROR, "tdb_unlock: offset %u invalid (%d)\n", offset, tdb->hash_size));
rpm-build ca8475
		return ret;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	lck = find_nestlock(tdb, offset);
rpm-build ca8475
	if ((lck == NULL) || (lck->count == 0)) {
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_ERROR, "tdb_unlock: count is 0\n"));
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (lck->count > 1) {
rpm-build ca8475
		lck->count--;
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/*
rpm-build ca8475
	 * This lock has count==1 left, so we need to unlock it in the
rpm-build ca8475
	 * kernel. We don't bother with decrementing the in-memory array
rpm-build ca8475
	 * element, we're about to overwrite it with the last array element
rpm-build ca8475
	 * anyway.
rpm-build ca8475
	 */
rpm-build ca8475
rpm-build ca8475
	if (mark_lock) {
rpm-build ca8475
		ret = 0;
rpm-build ca8475
	} else {
rpm-build ca8475
		ret = tdb_brunlock(tdb, ltype, offset, 1);
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/*
rpm-build ca8475
	 * Shrink the array by overwriting the element just unlocked with the
rpm-build ca8475
	 * last array element.
rpm-build ca8475
	 */
rpm-build ca8475
	*lck = tdb->lockrecs[--tdb->num_lockrecs];
rpm-build ca8475
rpm-build ca8475
	/*
rpm-build ca8475
	 * We don't bother with realloc when the array shrinks, but if we have
rpm-build ca8475
	 * a completely idle tdb we should get rid of the locked array.
rpm-build ca8475
	 */
rpm-build ca8475
rpm-build ca8475
	if (ret)
rpm-build ca8475
		TDB_LOG((tdb, TDB_DEBUG_ERROR, "tdb_unlock: An error occurred unlocking!\n"));
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
_PUBLIC_ int tdb_unlock(struct tdb_context *tdb, int list, int ltype)
rpm-build ca8475
{
rpm-build ca8475
	/* a global lock allows us to avoid per chain locks */
rpm-build ca8475
	if (tdb->allrecord_lock.count) {
rpm-build ca8475
		return tdb_lock_covered_by_allrecord_lock(tdb, ltype);
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	return tdb_nest_unlock(tdb, lock_offset(list), ltype, false);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/*
rpm-build ca8475
  get the transaction lock
rpm-build ca8475
 */
rpm-build ca8475
int tdb_transaction_lock(struct tdb_context *tdb, int ltype,
rpm-build ca8475
			 enum tdb_lock_flags lockflags)
rpm-build ca8475
{
rpm-build ca8475
	return tdb_nest_lock(tdb, TRANSACTION_LOCK, ltype, lockflags);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/*
rpm-build ca8475
  release the transaction lock
rpm-build ca8475
 */
rpm-build ca8475
int tdb_transaction_unlock(struct tdb_context *tdb, int ltype)
rpm-build ca8475
{
rpm-build ca8475
	return tdb_nest_unlock(tdb, TRANSACTION_LOCK, ltype, false);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* Returns 0 if all done, -1 if error, 1 if ok. */
rpm-build ca8475
static int tdb_allrecord_check(struct tdb_context *tdb, int ltype,
rpm-build ca8475
			       enum tdb_lock_flags flags, bool upgradable)
rpm-build ca8475
{
rpm-build ca8475
	/* There are no locks on read-only dbs */
rpm-build ca8475
	if (tdb->read_only || tdb->traverse_read) {
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count &&
rpm-build ca8475
	    tdb->allrecord_lock.ltype == (uint32_t)ltype) {
rpm-build ca8475
		tdb->allrecord_lock.count++;
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count) {
rpm-build ca8475
		/* a global lock of a different type exists */
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb_have_extra_locks(tdb)) {
rpm-build ca8475
		/* can't combine global and chain locks */
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (upgradable && ltype != F_RDLCK) {
rpm-build ca8475
		/* tdb error: you can't upgrade a write lock! */
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
	return 1;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* We only need to lock individual bytes, but Linux merges consecutive locks
rpm-build ca8475
 * so we lock in contiguous ranges. */
rpm-build ca8475
static int tdb_chainlock_gradual(struct tdb_context *tdb,
rpm-build ca8475
				 int ltype, enum tdb_lock_flags flags,
rpm-build ca8475
				 size_t off, size_t len)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
	enum tdb_lock_flags nb_flags = (flags & ~TDB_LOCK_WAIT);
rpm-build ca8475
rpm-build ca8475
	if (len <= 4) {
rpm-build ca8475
		/* Single record.  Just do blocking lock. */
rpm-build ca8475
		return tdb_brlock(tdb, ltype, off, len, flags);
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* First we try non-blocking. */
rpm-build ca8475
	ret = tdb_brlock(tdb, ltype, off, len, nb_flags);
rpm-build ca8475
	if (ret == 0) {
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* Try locking first half, then second. */
rpm-build ca8475
	ret = tdb_chainlock_gradual(tdb, ltype, flags, off, len / 2);
rpm-build ca8475
	if (ret == -1)
rpm-build ca8475
		return -1;
rpm-build ca8475
rpm-build ca8475
	ret = tdb_chainlock_gradual(tdb, ltype, flags,
rpm-build ca8475
				    off + len / 2, len - len / 2);
rpm-build ca8475
	if (ret == -1) {
rpm-build ca8475
		tdb_brunlock(tdb, ltype, off, len / 2);
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
	return 0;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock/unlock entire database.  It can only be upgradable if you have some
rpm-build ca8475
 * other way of guaranteeing exclusivity (ie. transaction write lock).
rpm-build ca8475
 * We do the locking gradually to avoid being starved by smaller locks. */
rpm-build ca8475
int tdb_allrecord_lock(struct tdb_context *tdb, int ltype,
rpm-build ca8475
		       enum tdb_lock_flags flags, bool upgradable)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
rpm-build ca8475
	switch (tdb_allrecord_check(tdb, ltype, flags, upgradable)) {
rpm-build ca8475
	case -1:
rpm-build ca8475
		return -1;
rpm-build ca8475
	case 0:
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* We cover two kinds of locks:
rpm-build ca8475
	 * 1) Normal chain locks.  Taken for almost all operations.
rpm-build ca8475
	 * 2) Individual records locks.  Taken after normal or free
rpm-build ca8475
	 *    chain locks.
rpm-build ca8475
	 *
rpm-build ca8475
	 * It is (1) which cause the starvation problem, so we're only
rpm-build ca8475
	 * gradual for that. */
rpm-build ca8475
rpm-build ca8475
	if (tdb_have_mutexes(tdb)) {
rpm-build ca8475
		ret = tdb_mutex_allrecord_lock(tdb, ltype, flags);
rpm-build ca8475
	} else {
rpm-build ca8475
		ret = tdb_chainlock_gradual(tdb, ltype, flags, FREELIST_TOP,
rpm-build ca8475
					    tdb->hash_size * 4);
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (ret == -1) {
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* Grab individual record locks. */
rpm-build ca8475
	if (tdb_brlock(tdb, ltype, lock_offset(tdb->hash_size), 0,
rpm-build ca8475
		       flags) == -1) {
rpm-build ca8475
		if (tdb_have_mutexes(tdb)) {
rpm-build ca8475
			tdb_mutex_allrecord_unlock(tdb);
rpm-build ca8475
		} else {
rpm-build ca8475
			tdb_brunlock(tdb, ltype, FREELIST_TOP,
rpm-build ca8475
				     tdb->hash_size * 4);
rpm-build ca8475
		}
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	tdb->allrecord_lock.count = 1;
rpm-build ca8475
	/* If it's upgradable, it's actually exclusive so we can treat
rpm-build ca8475
	 * it as a write lock. */
rpm-build ca8475
	tdb->allrecord_lock.ltype = upgradable ? F_WRLCK : ltype;
rpm-build ca8475
	tdb->allrecord_lock.off = upgradable;
rpm-build ca8475
rpm-build ca8475
	if (tdb_needs_recovery(tdb)) {
rpm-build ca8475
		bool mark = flags & TDB_LOCK_MARK_ONLY;
rpm-build ca8475
		tdb_allrecord_unlock(tdb, ltype, mark);
rpm-build ca8475
		if (mark) {
rpm-build ca8475
			tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
			TDB_LOG((tdb, TDB_DEBUG_ERROR,
rpm-build ca8475
				 "tdb_lockall_mark cannot do recovery\n"));
rpm-build ca8475
			return -1;
rpm-build ca8475
		}
rpm-build ca8475
		if (tdb_lock_and_recover(tdb) == -1) {
rpm-build ca8475
			return -1;
rpm-build ca8475
		}
rpm-build ca8475
		return tdb_allrecord_lock(tdb, ltype, flags, upgradable);
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	return 0;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
rpm-build ca8475
rpm-build ca8475
/* unlock entire db */
rpm-build ca8475
int tdb_allrecord_unlock(struct tdb_context *tdb, int ltype, bool mark_lock)
rpm-build ca8475
{
rpm-build ca8475
	/* There are no locks on read-only dbs */
rpm-build ca8475
	if (tdb->read_only || tdb->traverse_read) {
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count == 0) {
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* Upgradable locks are marked as write locks. */
rpm-build ca8475
	if (tdb->allrecord_lock.ltype != (uint32_t)ltype
rpm-build ca8475
	    && (!tdb->allrecord_lock.off || ltype != F_RDLCK)) {
rpm-build ca8475
		tdb->ecode = TDB_ERR_LOCK;
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count > 1) {
rpm-build ca8475
		tdb->allrecord_lock.count--;
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (!mark_lock) {
rpm-build ca8475
		int ret;
rpm-build ca8475
rpm-build ca8475
		if (tdb_have_mutexes(tdb)) {
rpm-build ca8475
			ret = tdb_mutex_allrecord_unlock(tdb);
rpm-build ca8475
			if (ret == 0) {
rpm-build ca8475
				ret = tdb_brunlock(tdb, ltype,
rpm-build ca8475
						   lock_offset(tdb->hash_size),
rpm-build ca8475
						   0);
rpm-build ca8475
			}
rpm-build ca8475
		} else {
rpm-build ca8475
			ret = tdb_brunlock(tdb, ltype, FREELIST_TOP, 0);
rpm-build ca8475
		}
rpm-build ca8475
rpm-build ca8475
		if (ret != 0) {
rpm-build ca8475
			TDB_LOG((tdb, TDB_DEBUG_ERROR, "tdb_unlockall failed "
rpm-build ca8475
				 "(%s)\n", strerror(errno)));
rpm-build ca8475
			return -1;
rpm-build ca8475
		}
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	tdb->allrecord_lock.count = 0;
rpm-build ca8475
	tdb->allrecord_lock.ltype = 0;
rpm-build ca8475
rpm-build ca8475
	return 0;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock entire database with write lock */
rpm-build ca8475
_PUBLIC_ int tdb_lockall(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace(tdb, "tdb_lockall");
rpm-build ca8475
	return tdb_allrecord_lock(tdb, F_WRLCK, TDB_LOCK_WAIT, false);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock entire database with write lock - mark only */
rpm-build ca8475
_PUBLIC_ int tdb_lockall_mark(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace(tdb, "tdb_lockall_mark");
rpm-build ca8475
	return tdb_allrecord_lock(tdb, F_WRLCK, TDB_LOCK_MARK_ONLY, false);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* unlock entire database with write lock - unmark only */
rpm-build ca8475
_PUBLIC_ int tdb_lockall_unmark(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace(tdb, "tdb_lockall_unmark");
rpm-build ca8475
	return tdb_allrecord_unlock(tdb, F_WRLCK, true);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock entire database with write lock - nonblocking varient */
rpm-build ca8475
_PUBLIC_ int tdb_lockall_nonblock(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	int ret = tdb_allrecord_lock(tdb, F_WRLCK, TDB_LOCK_NOWAIT, false);
rpm-build ca8475
	tdb_trace_ret(tdb, "tdb_lockall_nonblock", ret);
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* unlock entire database with write lock */
rpm-build ca8475
_PUBLIC_ int tdb_unlockall(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace(tdb, "tdb_unlockall");
rpm-build ca8475
	return tdb_allrecord_unlock(tdb, F_WRLCK, false);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock entire database with read lock */
rpm-build ca8475
_PUBLIC_ int tdb_lockall_read(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace(tdb, "tdb_lockall_read");
rpm-build ca8475
	return tdb_allrecord_lock(tdb, F_RDLCK, TDB_LOCK_WAIT, false);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock entire database with read lock - nonblock varient */
rpm-build ca8475
_PUBLIC_ int tdb_lockall_read_nonblock(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	int ret = tdb_allrecord_lock(tdb, F_RDLCK, TDB_LOCK_NOWAIT, false);
rpm-build ca8475
	tdb_trace_ret(tdb, "tdb_lockall_read_nonblock", ret);
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* unlock entire database with read lock */
rpm-build ca8475
_PUBLIC_ int tdb_unlockall_read(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace(tdb, "tdb_unlockall_read");
rpm-build ca8475
	return tdb_allrecord_unlock(tdb, F_RDLCK, false);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock/unlock one hash chain. This is meant to be used to reduce
rpm-build ca8475
   contention - it cannot guarantee how many records will be locked */
rpm-build ca8475
_PUBLIC_ int tdb_chainlock(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	int ret = tdb_lock(tdb, BUCKET(tdb->hash_fn(&key)), F_WRLCK);
rpm-build ca8475
	tdb_trace_1rec(tdb, "tdb_chainlock", key);
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* lock/unlock one hash chain, non-blocking. This is meant to be used
rpm-build ca8475
   to reduce contention - it cannot guarantee how many records will be
rpm-build ca8475
   locked */
rpm-build ca8475
_PUBLIC_ int tdb_chainlock_nonblock(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	int ret = tdb_lock_nonblock(tdb, BUCKET(tdb->hash_fn(&key)), F_WRLCK);
rpm-build ca8475
	tdb_trace_1rec_ret(tdb, "tdb_chainlock_nonblock", key, ret);
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* mark a chain as locked without actually locking it. Warning! use with great caution! */
rpm-build ca8475
_PUBLIC_ int tdb_chainlock_mark(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	int ret = tdb_nest_lock(tdb, lock_offset(BUCKET(tdb->hash_fn(&key))),
rpm-build ca8475
				F_WRLCK, TDB_LOCK_MARK_ONLY);
rpm-build ca8475
	tdb_trace_1rec(tdb, "tdb_chainlock_mark", key);
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* unmark a chain as locked without actually locking it. Warning! use with great caution! */
rpm-build ca8475
_PUBLIC_ int tdb_chainlock_unmark(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace_1rec(tdb, "tdb_chainlock_unmark", key);
rpm-build ca8475
	return tdb_nest_unlock(tdb, lock_offset(BUCKET(tdb->hash_fn(&key))),
rpm-build ca8475
			       F_WRLCK, true);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
_PUBLIC_ int tdb_chainunlock(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace_1rec(tdb, "tdb_chainunlock", key);
rpm-build ca8475
	return tdb_unlock(tdb, BUCKET(tdb->hash_fn(&key)), F_WRLCK);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
_PUBLIC_ int tdb_chainlock_read(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	int ret;
rpm-build ca8475
	ret = tdb_lock(tdb, BUCKET(tdb->hash_fn(&key)), F_RDLCK);
rpm-build ca8475
	tdb_trace_1rec(tdb, "tdb_chainlock_read", key);
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
_PUBLIC_ int tdb_chainunlock_read(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	tdb_trace_1rec(tdb, "tdb_chainunlock_read", key);
rpm-build ca8475
	return tdb_unlock(tdb, BUCKET(tdb->hash_fn(&key)), F_RDLCK);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
_PUBLIC_ int tdb_chainlock_read_nonblock(struct tdb_context *tdb, TDB_DATA key)
rpm-build ca8475
{
rpm-build ca8475
	int ret = tdb_lock_nonblock(tdb, BUCKET(tdb->hash_fn(&key)), F_RDLCK);
rpm-build ca8475
	tdb_trace_1rec_ret(tdb, "tdb_chainlock_read_nonblock", key, ret);
rpm-build ca8475
	return ret;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* record lock stops delete underneath */
rpm-build ca8475
int tdb_lock_record(struct tdb_context *tdb, tdb_off_t off)
rpm-build ca8475
{
rpm-build ca8475
	if (tdb->allrecord_lock.count) {
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
	return off ? tdb_brlock(tdb, F_RDLCK, off, 1, TDB_LOCK_WAIT) : 0;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/*
rpm-build ca8475
  Write locks override our own fcntl readlocks, so check it here.
rpm-build ca8475
  Note this is meant to be F_SETLK, *not* F_SETLKW, as it's not
rpm-build ca8475
  an error to fail to get the lock here.
rpm-build ca8475
*/
rpm-build ca8475
int tdb_write_lock_record(struct tdb_context *tdb, tdb_off_t off)
rpm-build ca8475
{
rpm-build ca8475
	struct tdb_traverse_lock *i;
rpm-build ca8475
	if (tdb == NULL) {
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
	for (i = &tdb->travlocks; i; i = i->next)
rpm-build ca8475
		if (i->off == off)
rpm-build ca8475
			return -1;
rpm-build ca8475
	if (tdb->allrecord_lock.count) {
rpm-build ca8475
		if (tdb->allrecord_lock.ltype == F_WRLCK) {
rpm-build ca8475
			return 0;
rpm-build ca8475
		}
rpm-build ca8475
		return -1;
rpm-build ca8475
	}
rpm-build ca8475
	return tdb_brlock(tdb, F_WRLCK, off, 1, TDB_LOCK_NOWAIT|TDB_LOCK_PROBE);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
int tdb_write_unlock_record(struct tdb_context *tdb, tdb_off_t off)
rpm-build ca8475
{
rpm-build ca8475
	if (tdb->allrecord_lock.count) {
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
	return tdb_brunlock(tdb, F_WRLCK, off, 1);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* fcntl locks don't stack: avoid unlocking someone else's */
rpm-build ca8475
int tdb_unlock_record(struct tdb_context *tdb, tdb_off_t off)
rpm-build ca8475
{
rpm-build ca8475
	struct tdb_traverse_lock *i;
rpm-build ca8475
	uint32_t count = 0;
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count) {
rpm-build ca8475
		return 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	if (off == 0)
rpm-build ca8475
		return 0;
rpm-build ca8475
	for (i = &tdb->travlocks; i; i = i->next)
rpm-build ca8475
		if (i->off == off)
rpm-build ca8475
			count++;
rpm-build ca8475
	return (count == 1 ? tdb_brunlock(tdb, F_RDLCK, off, 1) : 0);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
bool tdb_have_extra_locks(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	unsigned int extra = tdb->num_lockrecs;
rpm-build ca8475
rpm-build ca8475
	/* A transaction holds the lock for all records. */
rpm-build ca8475
	if (!tdb->transaction && tdb->allrecord_lock.count) {
rpm-build ca8475
		return true;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* We always hold the active lock if CLEAR_IF_FIRST. */
rpm-build ca8475
	if (find_nestlock(tdb, ACTIVE_LOCK)) {
rpm-build ca8475
		extra--;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	/* In a transaction, we expect to hold the transaction lock */
rpm-build ca8475
	if (tdb->transaction && find_nestlock(tdb, TRANSACTION_LOCK)) {
rpm-build ca8475
		extra--;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	return extra;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* The transaction code uses this to remove all locks. */
rpm-build ca8475
void tdb_release_transaction_locks(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	int i;
rpm-build ca8475
	unsigned int active = 0;
rpm-build ca8475
rpm-build ca8475
	if (tdb->allrecord_lock.count != 0) {
rpm-build ca8475
		tdb_allrecord_unlock(tdb, tdb->allrecord_lock.ltype, false);
rpm-build ca8475
		tdb->allrecord_lock.count = 0;
rpm-build ca8475
	}
rpm-build ca8475
rpm-build ca8475
	for (i=0;i<tdb->num_lockrecs;i++) {
rpm-build ca8475
		struct tdb_lock_type *lck = &tdb->lockrecs[i];
rpm-build ca8475
rpm-build ca8475
		/* Don't release the active lock!  Copy it to first entry. */
rpm-build ca8475
		if (lck->off == ACTIVE_LOCK) {
rpm-build ca8475
			tdb->lockrecs[active++] = *lck;
rpm-build ca8475
		} else {
rpm-build ca8475
			tdb_brunlock(tdb, lck->ltype, lck->off, 1);
rpm-build ca8475
		}
rpm-build ca8475
	}
rpm-build ca8475
	tdb->num_lockrecs = active;
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* Following functions are added specifically to support CTDB. */
rpm-build ca8475
rpm-build ca8475
/* Don't do actual fcntl locking, just mark tdb locked */
rpm-build ca8475
int tdb_transaction_write_lock_mark(struct tdb_context *tdb);
rpm-build ca8475
_PUBLIC_ int tdb_transaction_write_lock_mark(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	return tdb_transaction_lock(tdb, F_WRLCK, TDB_LOCK_MARK_ONLY);
rpm-build ca8475
}
rpm-build ca8475
rpm-build ca8475
/* Don't do actual fcntl unlocking, just mark tdb unlocked */
rpm-build ca8475
int tdb_transaction_write_lock_unmark(struct tdb_context *tdb);
rpm-build ca8475
_PUBLIC_ int tdb_transaction_write_lock_unmark(struct tdb_context *tdb)
rpm-build ca8475
{
rpm-build ca8475
	return tdb_nest_unlock(tdb, TRANSACTION_LOCK, F_WRLCK, true);
rpm-build ca8475
}