/* mpc_exp -- exponential of a complex number. Copyright (C) 2002, 2009, 2010, 2011, 2012 INRIA This file is part of GNU MPC. GNU MPC is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/ . */ #include "mpc-impl.h" int mpc_exp (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd) { mpfr_t x, y, z; mpfr_prec_t prec; int ok = 0; int inex_re, inex_im; int saved_underflow, saved_overflow; /* special values */ if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op))) /* NaNs exp(nan +i*y) = nan -i*0 if y = -0, nan +i*0 if y = +0, nan +i*nan otherwise exp(x+i*nan) = +/-0 +/-i*0 if x=-inf, +/-inf +i*nan if x=+inf, nan +i*nan otherwise */ { if (mpfr_zero_p (mpc_imagref (op))) return mpc_set (rop, op, MPC_RNDNN); if (mpfr_inf_p (mpc_realref (op))) { if (mpfr_signbit (mpc_realref (op))) return mpc_set_ui_ui (rop, 0, 0, MPC_RNDNN); else { mpfr_set_inf (mpc_realref (rop), +1); mpfr_set_nan (mpc_imagref (rop)); return MPC_INEX(0, 0); /* Inf/NaN are exact */ } } mpfr_set_nan (mpc_realref (rop)); mpfr_set_nan (mpc_imagref (rop)); return MPC_INEX(0, 0); /* NaN is exact */ } if (mpfr_zero_p (mpc_imagref(op))) /* special case when the input is real exp(x-i*0) = exp(x) -i*0, even if x is NaN exp(x+i*0) = exp(x) +i*0, even if x is NaN */ { inex_re = mpfr_exp (mpc_realref(rop), mpc_realref(op), MPC_RND_RE(rnd)); inex_im = mpfr_set (mpc_imagref(rop), mpc_imagref(op), MPC_RND_IM(rnd)); return MPC_INEX(inex_re, inex_im); } if (mpfr_zero_p (mpc_realref (op))) /* special case when the input is imaginary */ { inex_re = mpfr_cos (mpc_realref (rop), mpc_imagref (op), MPC_RND_RE(rnd)); inex_im = mpfr_sin (mpc_imagref (rop), mpc_imagref (op), MPC_RND_IM(rnd)); return MPC_INEX(inex_re, inex_im); } if (mpfr_inf_p (mpc_realref (op))) /* real part is an infinity, exp(-inf +i*y) = 0*(cos y +i*sin y) exp(+inf +i*y) = +/-inf +i*nan if y = +/-inf +inf*(cos y +i*sin y) if 0 < |y| < inf */ { mpfr_t n; mpfr_init2 (n, 2); if (mpfr_signbit (mpc_realref (op))) mpfr_set_ui (n, 0, MPFR_RNDN); else mpfr_set_inf (n, +1); if (mpfr_inf_p (mpc_imagref (op))) { int real_sign = mpfr_signbit (mpc_realref (op)); inex_re = mpfr_set (mpc_realref (rop), n, MPFR_RNDN); if (real_sign) inex_im = mpfr_set (mpc_imagref (rop), n, MPFR_RNDN); else { mpfr_set_nan (mpc_imagref (rop)); inex_im = 0; /* NaN is exact */ } } else { mpfr_t c, s; mpfr_init2 (c, 2); mpfr_init2 (s, 2); mpfr_sin_cos (s, c, mpc_imagref (op), MPFR_RNDN); inex_re = mpfr_copysign (mpc_realref (rop), n, c, MPFR_RNDN); inex_im = mpfr_copysign (mpc_imagref (rop), n, s, MPFR_RNDN); mpfr_clear (s); mpfr_clear (c); } mpfr_clear (n); return MPC_INEX(inex_re, inex_im); } if (mpfr_inf_p (mpc_imagref (op))) /* real part is finite non-zero number, imaginary part is an infinity */ { mpfr_set_nan (mpc_realref (rop)); mpfr_set_nan (mpc_imagref (rop)); return MPC_INEX(0, 0); /* NaN is exact */ } /* from now on, both parts of op are regular numbers */ prec = MPC_MAX_PREC(rop) + MPC_MAX (MPC_MAX (-mpfr_get_exp (mpc_realref (op)), 0), -mpfr_get_exp (mpc_imagref (op))); /* When op is close to 0, then exp is close to 1+Re(op), while cos is close to 1-Im(op); to decide on the ternary value of exp*cos, we need a high enough precision so that none of exp or cos is computed as 1. */ mpfr_init2 (x, 2); mpfr_init2 (y, 2); mpfr_init2 (z, 2); /* save the underflow or overflow flags from MPFR */ saved_underflow = mpfr_underflow_p (); saved_overflow = mpfr_overflow_p (); do { prec += mpc_ceil_log2 (prec) + 5; mpfr_set_prec (x, prec); mpfr_set_prec (y, prec); mpfr_set_prec (z, prec); /* FIXME: x may overflow so x.y does overflow too, while Re(exp(op)) could be represented in the precision of rop. */ mpfr_clear_overflow (); mpfr_clear_underflow (); mpfr_exp (x, mpc_realref(op), MPFR_RNDN); /* error <= 0.5ulp */ mpfr_sin_cos (z, y, mpc_imagref(op), MPFR_RNDN); /* errors <= 0.5ulp */ mpfr_mul (y, y, x, MPFR_RNDN); /* error <= 2ulp */ ok = mpfr_overflow_p () || mpfr_zero_p (x) || mpfr_can_round (y, prec - 2, MPFR_RNDN, MPFR_RNDZ, MPC_PREC_RE(rop) + (MPC_RND_RE(rnd) == MPFR_RNDN)); if (ok) /* compute imaginary part */ { mpfr_mul (z, z, x, MPFR_RNDN); ok = mpfr_overflow_p () || mpfr_zero_p (x) || mpfr_can_round (z, prec - 2, MPFR_RNDN, MPFR_RNDZ, MPC_PREC_IM(rop) + (MPC_RND_IM(rnd) == MPFR_RNDN)); } } while (ok == 0); inex_re = mpfr_set (mpc_realref(rop), y, MPC_RND_RE(rnd)); inex_im = mpfr_set (mpc_imagref(rop), z, MPC_RND_IM(rnd)); if (mpfr_overflow_p ()) { inex_re = mpc_fix_inf (mpc_realref(rop), MPC_RND_RE(rnd)); inex_im = mpc_fix_inf (mpc_imagref(rop), MPC_RND_IM(rnd)); } else if (mpfr_underflow_p ()) { inex_re = mpc_fix_zero (mpc_realref(rop), MPC_RND_RE(rnd)); inex_im = mpc_fix_zero (mpc_imagref(rop), MPC_RND_IM(rnd)); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); /* restore underflow and overflow flags from MPFR */ if (saved_underflow) mpfr_set_underflow (); if (saved_overflow) mpfr_set_overflow (); return MPC_INEX(inex_re, inex_im); }