
A Consumer Library Interface to DWARF

David Anderson

1. INTRODUCTION

This document describes an interface to libdwarf, a library of functions to provide access to DWARF

debugging information records, DWARF line number information, DWARF address range and global

names information, weak names information, DWARF frame description information, DWARF static

function names, DWARF static variables, and DWARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest

Group" (PLSIG), under whose auspices the DWARF committee was formed around 1991. "Unix

International" was disbanded in the 1990s and no longer exists.

The DWARF committee published DWARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the committee never endorsed, having

decided not to endorse or approve any particular library interface) was made available on the internet by

Silicon Graphics, Inc.

In 2005 the DWARF committee began an aff iliation with FreeStandards.org. In 2007 FreeStandards.org

merged with The Linux Foundation. The DWARF committee dropped its affiliation with FreeStandards.org

in 2007 and established the dwarfstd.org website. See "http://www.dwarfstd.org" for current information

on standardization activities and a copy of the standard.

1.1 Copyright

Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2015 David Anderson.

Permission is hereby granted to copy or republish or use any or all of this document without restriction

except that when publishing more than a small amount of the document please acknowledge Silicon

Graphics, Inc and David Anderson.

This document is distributed in the hope that it would be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to access DWARF debugging

information. There is no effort made in this document to address the creation of these records as those

issues are addressed separately (see "A Producer Library Interface to DWARF").

Additionally, the focus of this document is the functional interface, and as such, implementation as well as

optimization issues are intentionally ignored.

1.3 Document History

A document was written about 1991 which had similar layout and interfaces. Written by people from Hal

rev 2.58, May 18, 2017 - 1 -



- 2 -

Corporation, That document described a library for reading DWARF1. The authors distributed paper

copies to the committee with the clearly expressed intent to propose the document as a supported interface

definition. The committee decided not to pursue a library definition.

SGI wrote the document you are now reading in 1993 with a similar layout and content and organization,

but it was complete document rewrite with the intent to read DWARF2 (the DWARF version then in

existence). The intent was (and is) to also cover future revisions of DWARF. All the function interfaces

were changed in 1994 to uniformly return a simple integer success-code (see DW_DLV_OK etc), generally

following the recommendations in the chapter titled "Candy Machine Interfaces" of "Writing Solid Code",

a book by Steve Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are the segments of information placed in the .debug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are

necessary for symbolic source-level debugging. Refer to the latest "DWARF Debugging Information

Format" from www.dwarfstd.org for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format" versions

2,3,4, and 5. It originally focused on the implementation at Silicon Graphics, Inc., but now attempts to be

more generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interface to libdwarf, first by describing

the purpose of additional types defined by the interface, followed by descriptions of the available

operations. This document assumes you are thoroughly familiar with the information contained in the

DWARF Debugging Information Format document.

We separate the functions into several categories to emphasize that not all consumers want to use all the

functions. We call the categories Debugger, Internal-level, High-level, and Miscellaneous not because one

is more important than another but as a way of making the rather large set of function calls easier to

understand.

Unless otherwise specified, all functions and structures should be taken as being designed for Debugger

consumers.

The Debugger Interface of this library is intended to be used by debuggers. The interface is low-level

(close to dwarf) but suppresses irrelevant detail. A debugger will want to absorb all of some sections at

startup and will want to see little or nothing of some sections except at need. And even then will probably

want to absorb only the information in a single compilation unit at a time. A debugger does not care about

implementation details of the library.

The Internal-level Interface is for a DWARF prettyprinter and checker. A thorough prettyprinter will want

to know all kinds of internal things (like actual FORM numbers and actual offsets) so it can check for

appropriate structure in the DWARF data and print (on request) all that internal information for human

users and libdwarf authors and compiler-writers. Calls in this interface provide data a debugger does not

normally care about.

The High-level Interface is for higher level access (it is not really a high level interface!). Programs such as

disassemblers will want to be able to display relevant information about functions and line numbers without

having to invest too much effort in looking at DWARF.

The miscellaneous interface is just what is left over: the error handler functions.

The following is a brief mention of the changes in this libdwarf from the libdwarf draft for DWARF Version

1 and recent changes.

rev 2.58, May 18, 2017 - 2 -



- 3 -

1.6 Items Changed

Added COMDAT support. Recent compilers generate COMDAT sections (for some DWARF information)

routinely so this became important recently. The new libdwarf COMDAT support extends the groupnumber

idea as suggested just below. (May 17, 2017)

Adding dwarf_init_b() and dwarf_elf_init_b() and dwarf_object_init_b() with a groupnumber option added.

DWARF5 adds split-dwarf and we call original sections like .debug_info group one and new sections like

.debug_info.dwo group two. It has not escaped our attention that this numbering can be extended to deal

with Elf COMDAT section groups of DWARF information, though COMDAT groups are not currently

supported. (April 02, 2017)

Adding support for DWARF5 .debug_loc.dwo and split dwarf range tables. Added

dwarf_get_offset_size(). (November 08, 2015)

Adding support for reading DWARF5 line tables and GNU two-level line tables. The function

dwarf_srclines() still works but those using DWARF4 or DWARF5 are advised to switch to

dwarf_srclines_b(). dwarf_srclines() cannot handle skeleton line tables sensibly and a new interface was

needed for two-level line tables so the new approach satisfies both. (October 5,2015)

Adding support for Package Files (DWARF5) to enable access of address data using DW_FORM_addrx.

See dwarf_set_tied_dbg(). (September 13, 2015)

Adding some DWARF5 support and improved DWP Package File support, using

dwarf_next_cu_header_d().

Added a note about dwarf_errmsg(): the string pointer returned should be considered ephemeral, not a

string which remains valid permanently. User code should print it or copy it before calling other libdwarf

functions on the specific Dwarf_Debug instance. (May 15, 2014)

Added a printf-callback so libdwarf will not actually print to stdout. Added dwarf_highpc_b() so return of

a DWARF4 DW_AT_high_pc of class constant can be returned properly. (August 15 2013)

Defined how the new operator DW_OP_GNU_const_type is handled. (January 26 2013)

Added dwarf_loclist_from_expr_b() function which adds arguments of the DWARF version (2 for

DWARF2, etc) and the offset size to the dwarf_loclist_from_expr_a() function. Because the

DW_OP_GNU_implicit_pointer opcode is defined differently for DWARF2 than for later versions.

(November 2012)

Added new functions (some for libdwarf client code) and internal logic support for the DWARF4

.debug_types section. The new functions are dwarf_next_cu_header_c(), dwarf_siblingof_b(),

dwarf_offdie_b(), dwarf_get_cu_die_offset_given_cu_header_offset_b(), dwarf_get_die_infotypes_flag(),

dwarf_get_section_max_offsets_b().

New functions and logic support additional detailed error reporting so that more compiler bugs can be

reported sensibly by consumer code (as opposed to having libdwarf just assume things are ok and blindly

continuing on with erroneous data). November 20, 2010

It seems impossible to default to both DW_FRAME_CFA_COL and DW_FRAME_CFA_COL3 in a single

build of libdwarf, so the default is now unambiguously DW_FRAME_CFA_COL3 unless the configure

option --enable-oldframecol is specified at configure time. The function dwarf_set_frame_cfa_value() may

be used to override the default : using that function gives consumer applications full control (its use is

highly recommended). (January 17,2010)

Added dwarf_set_reloc_application() and the default automatic application of Elf ’rela’ relocations to

DWARF sections (such rela sections appear in .o files, not in executables or shared objects, in general).

The dwarf_set_reloc_application() routine lets a consumer turn off the automatic application of ’rela’

relocations if desired (it is not clear why anyone would really want to do that, but possibly a consumer

could write its own relocation application). An example application that traverses a set of DIEs was added

to the new dwarfexample directory (not in this libdwarf directory, but in parallel to it). (July 10, 2009)

rev 2.58, May 18, 2017 - 3 -



- 4 -

Added dwarf_get_TAG_name() (and the FORM AT and so on) interface functions so applications can get

the string of the TAG, Attribute, etc as needed. (June 2009)

Added dwarf_get_ranges_a() and dwarf_loclist_from_expr_a() functions which add arguments allowing a

correct address_size when the address_size varies by compilation unit (a varying address_size is quite rare

as of May 2009). (May 2009)

Added dwarf_set_frame_same_value(), and dwarf_set_frame_undefined_value() to complete the set of

frame-information functions needed to allow an application get all frame information returned correctly

(meaning that it can be correctly interpreted) for all ABIs. Documented dwarf_set_frame_cfa_value().

Corrected spelling to dwarf_set_frame_rule_initial_value(). (April 2009).

Added support for various DWARF3 features, but primarily a new frame-information interface tailorable at

run-time to more than a single ABI. See dwarf_set_frame_rule_initial_value(),

dwarf_set_frame_rule_table_size(), dwarf_set_frame_cfa_value(). See also dwarf_get_fde_info_for_reg3()

and dwarf_get_fde_info_for_cfa_reg3(). (April 2006)

Added support for DWARF3 .debug_pubtypes section. Corrected various leaks (revising dealloc() calls,

adding new functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the previous deallocation method documented for data returned by

dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_nextglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the

.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pointer arguments.

This makes writing safe and correct library-using-code far easier. For justification for this approach, see

the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" by Steve Maguire.

1.7 Items Removed

Dwarf_Type was removed since types are no longer special.

dwarf_typeof() was removed since types are no longer special.

Dwarf_Ellist was removed since element lists no longer are a special format.

Dwarf_Bounds was removed since bounds have been generalized.

dwarf_nextdie() was replaced by dwarf_next_cu_header() to reflect the real way DWARF is organized.

The dwarf_nextdie() was only useful for getting to compilation unit beginnings, so it does not seem harmful

to remove it in favor of a more direct function.

dwarf_childcnt() is removed on grounds that no good use was apparent.

dwarf_prevline() and dwarf_nextline() were removed on grounds this is better left to a debugger to do.

Similarly, dwarf_dieline() was removed.

dwarf_is1stline() was removed as it was not meaningful for the revised DWARF line operations.

Any libdwarf implementation might well decide to support all the removed functionality and to retain the

DWARF Version 1 meanings of that functionality. This would be difficult because the original libdwarf

draft specification used traditional C library interfaces which confuse the values returned by successful

calls with exceptional conditions like failures and ’no more data’ indications.

1.8 Revision History

rev 2.58, May 18, 2017 - 4 -



- 5 -

July 2014 Added support for the .gdb_index section and started support for the .debug_cu_index

and .debug_tu_index sections.

October 2011 DWARF4 support for reading .debug_types added.

March 93 Work on DWARF2 SGI draft begins

June 94 The function returns are changed to return an error/success code only.

April 2006: Support for DWARF3 consumer operations is close to completion.

November 2010: Added various new functions and improved error checking.

March 2017: Adding support for DWARF5 split dwarf.

2. Types Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used

to reference objects of libdwarf. The types defined by typedefs contained in libdwarf.h all use the

convention of adding Dwarf_ as a prefix and can be placed in three categories:

• Scalar types : The scalar types defined in libdwarf.h are defined primarily for notational convenience

and identification. Depending on the individual definition, they are interpreted as a value, a pointer,

or as a flag.

• Aggregate types : Some values can not be represented by a single scalar type; they must be

represented by a collection of, or as a union of, scalar and/or aggregate types.

• Opaque types : The complete definition of these types is intentionally omitted; their use is as handles

for query operations, which will yield either an instance of another opaque type to be used in another

query, or an instance of a scalar or aggregate type, which is the actual result.

2.2 Scalar Types

The following are the defined by libdwarf.h:

typedef int Dwarf_Bool;

typedef unsigned long long Dwarf_Off;

typedef unsigned long long Dwarf_Unsigned;

typedef unsigned short Dwarf_Half;

typedef unsigned char Dwarf_Small;

typedef signed long long Dwarf_Signed;

typedef unsigned long long Dwarf_Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf_Handler)(Dwarf_Error error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the library, not for representing pc-

values/addresses within the target object file. Dwarf_Addr is for pc-values within the target object file.

The sample scalar type assignments above are for a libdwarf.h that can read and write 32-bit or 64-bit

binaries on a 32-bit or 64-bit host machine. The types must be defined appropriately for each

implementation of libdwarf. A description of these scalar types in the SGI/MIPS environment is given in

Figure 1.

rev 2.58, May 18, 2017 - 5 -



- 6 -

NAME SIZE ALIGNMENT PURPOSE

Dwarf_Bool 4 4 Boolean states

Dwarf_Off 8  8 Unsigned file offset

Dwarf_Unsigned 8 8 Unsigned large integer

Dwarf_Half 2 2 Unsigned medium integer

Dwarf_Small 1 1 Unsigned small integer

Dwarf_Signed 8 8 Signed large integer

Dwarf_Addr 8 8 Program address

(target program)

Dwarf_Ptr 4|8 4|8 Dwarf section pointer

(host program)

Dwarf_Handler 4|8 4|8 Pointer to

error handler function

Figure 1. Scalar Types

2.3 Aggregate Types

The following aggregate types are defined by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,

Dwarf_Block, Dwarf_Frame_Op. Dwarf_Regtable. Dwarf_Regtable3. While most of

libdwarf acts on or returns simple values or opaque pointer types, this small set of structures seems

useful.

2.3.1 Location Record

The Dwarf_Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwarf_Small lr_atom;

Dwarf_Unsigned lr_number;

Dwarf_Unsigned lr_number2;

Dwarf_Unsigned lr_offset;

} Dwarf_Loc;

The lr_atom identifies the atom corresponding to the DW_OP_* definition in dwarf.h and it represents

the operation to be performed in order to locate the item in question.

The lr_number field is the operand to be used in the calculation specified by the lr_atom field; not all

atoms use this field. Some atom operations imply signed numbers so it is necessary to cast this to a

Dwarf_Signed type for those operations.

The lr_number2 field is the second operand specified by the lr_atom field; only DW_OP_BREGX has

this field. Some atom operations imply signed numbers so it may be necessary to cast this to a

Dwarf_Signed type for those operations.

For a DW_OP_implicit_value operator the lr_number2 field is a pointer to the bytes of the value.

The field pointed to is lr_number bytes long. There is no explicit terminator. Do not attempt to free

the bytes which lr_number2 points at and do not alter those bytes. The pointer value remains valid till

the open Dwarf_Debug is closed. This is a rather ugly use of a host integer to hold a pointer. You will

normally have to do a ’cast’ operation to use the value.

For a DW_OP_GNU_const_type operator the lr_number2 field is a pointer to a block with an initial

unsigned byte giving the number of bytes following, followed immediately that number of const value

rev 2.58, May 18, 2017 - 6 -



- 7 -

bytes. There is no explicit terminator. Do not attempt to free the bytes which lr_number2 points at

and do not alter those bytes. The pointer value remains valid till the open Dwarf_Debug is closed. This is a

rather ugly use of a host integer to hold a pointer. You will normally have to do a ’cast’ operation to use the

value.

The lr_offset field is the byte offset (within the block the location record came from) of the atom

specified by the lr_atom field. This is set on all atoms. This is useful for operations DW_OP_SKIP and

DW_OP_BRA.

2.3.2 Location Description

The Dwarf_Locdesc type represents an ordered list of Dwarf_Loc records used in the calculation to

locate an item. Note that in many cases, the location can only be calculated at runtime of the associated

program.

typedef struct {

Dwarf_Addr ld_lopc;

Dwarf_Addr ld_hipc;

Dwarf_Unsigned ld_cents;

Dwarf_Loc* ld_s;

} Dwarf_Locdesc;

The ld_lopc and ld_hipc fields provide an address range for which this location descriptor is valid.

Both of these fields are set to zero if the location descriptor is valid throughout the scope of the item it is

associated with. These addresses are virtual memory addresses, not offsets-from-something. The virtual

memory addresses do not account for dso movement (none of the pc values from libdwarf do that, it is up to

the consumer to do that).

The ld_cents field contains a count of the number of Dwarf_Loc entries pointed to by the ld_s field.

The ld_s field points to an array of Dwarf_Loc records.

2.3.3 Data Block

The Dwarf_Block type is used to contain the value of an attribute whose form is either

DW_FORM_block1, DW_FORM_block2, DW_FORM_block4, DW_FORM_block8, or

DW_FORM_block. Its intended use is to deliver the value for an attribute of any of these forms.

typedef struct {

Dwarf_Unsigned bl_len;

Dwarf_Ptr bl_data;

} Dwarf_Block;

The bl_len field contains the length in bytes of the data pointed to by the bl_data field.

The bl_data field contains a pointer to the uninterpreted data. Since we use a Dwarf_Ptr here one

must copy the pointer to some other type (typically an unsigned char *) so one can add increments to

index through the data. The data pointed to by bl_data is not necessarily at any useful alignment.

rev 2.58, May 18, 2017 - 7 -



- 8 -

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate for DWARF2 but not for DWARF3. A separate interface usable for DWARF3

and for DWARF2 is described below. This interface is deprecated. Use the interface for DWARF3 and

DWARF2. See also the section "Low Lev el Frame Operations" below.

The DWARF2 Dwarf_Frame_Op type is used to contain the data of a single instruction of an instruction-

sequence of low-level information from the section containing frame information. This is ordinarily used

by Internal-level Consumers trying to print everything in detail.

typedef struct {

Dwarf_Small fp_base_op;

Dwarf_Small fp_extended_op;

Dwarf_Half fp_register;

Dwarf_Signed fp_offset;

Dwarf_Offset fp_instr_offset;

} Dwarf_Frame_Op;

fp_base_op is the 2-bit basic op code. fp_extended_op is the 6-bit extended opcode (if

fp_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is any (or the first) register value as defined in the Call Frame Instruction

Encodings figure in the dwarf document. If not used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined in the Call Frame

Instruction Encodings figure in the dwarf document. If this is an address then the value

should be cast to (Dwarf_Addr) before being used. In any implementation this field *must* be as large

as the larger of Dwarf_Signed and Dwarf_Addr for this to work properly. If not used with the op it is 0.

fp_instr_offset is the byte_offset (within the instruction stream of the frame instructions) of this

operation. It starts at 0 for a given frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate for DWARF2 and MIPS but not for DWARF3. A separate and preferred interface

usable for DWARF3 and for DWARF2 is described below. See also the section "Low Lev el Frame

Operations" below.

The Dwarf_Regtable type is used to contain the register-restore information for all registers at a given

PC value. Normally used by debuggers. If you wish to default to this interface and to the use of

DW_FRAME_CFA_COL, specify --enable_oldframecol at libdwarf configure time. Or add a call

dwarf_set_frame_cfa_value(dbg,DW_FRAME_CFA_COL) after your dwarf_init_b() call, this call replaces

the default libdwarf-compile-time value with DW_FRAME_CFA_COL.

/* DW_REG_TABLE_SIZE must reflect the number of registers

*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*/

#define DW_REG_TABLE_SIZE <fill in size here, 66 for MIPS/IRIX>

typedef struct {

struct {

Dwarf_Small dw_offset_relevant;

Dwarf_Half dw_regnum;

Dwarf_Addr dw_offset;

} rules[DW_REG_TABLE_SIZE];

} Dwarf_Regtable;

The array is indexed by register number. The field values for each index are described next. For clarity we

rev 2.58, May 18, 2017 - 8 -



- 9 -

describe the field values for index rules[M] (M being any leg al array element index).

dw_offset_relevant is non-zero to indicate the dw_offset field is meaningful. If zero then the

dw_offset is zero and should be ignored.

dw_regnum is the register number applicable. If dw_offset_relevant is zero, then this is the

register number of the register containing the value for register M. If dw_offset_relevant is non-

zero, then this is the register number of the register to use as a base (M may be DW_FRAME_CFA_COL,

for example) and the dw_offset value applies. The value of register M is therefore the value of register

dw_regnum.

dw_offset should be ignored if dw_offset_relevant is zero. If dw_offset_relevant is non-

zero, then the consumer code should add the value to the value of the register dw_regnum to produce the

value.

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate for DWARF3 and for DWARF2 (and DWARF4). It is new in libdwarf in April

2006. See also the section "Low Lev el Frame Operations" below.

The DWARF2 Dwarf_Frame_Op3 type is used to contain the data of a single instruction of an

instruction-sequence of low-level information from the section containing frame information. This is

ordinarily used by Internal-level Consumers trying to print everything in detail.

typedef struct {

Dwarf_Small fp_base_op;

Dwarf_Small fp_extended_op;

Dwarf_Half fp_register;

/* Value may be signed, depends on op.

Any applicable data_alignment_factor has

not been applied, this is the raw offset. */

Dwarf_Unsigned fp_offset_or_block_len;

Dwarf_Small *fp_expr_block;

Dwarf_Off fp_instr_offset;

} Dwarf_Frame_Op3;

fp_base_op is the 2-bit basic op code. fp_extended_op is the 6-bit extended opcode (if

fp_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is any (or the first) register value as defined in the Call Frame Instruction

Encodings figure in the dwarf document. If not used with the Op it is 0.

fp_offset_or_block_len is the address, delta, offset, or second register as defined in the Call

Frame Instruction Encodings figure in the dwarf document. Or (depending on the op, it may

be the length of the dwarf-expression block pointed to by fp_expr_block. If this is an address then

the value should be cast to (Dwarf_Addr) before being used. In any implementation this field *must*

be as large as the larger of Dwarf_Signed and Dwarf_Addr for this to work properly. If not used with the

op it is 0.

fp_expr_block (if applicable to the op) points to a dwarf-expression block which is

fp_offset_or_block_len bytes long.

fp_instr_offset is the byte_offset (within the instruction stream of the frame instructions) of this

operation. It starts at 0 for a given frame descriptor.

rev 2.58, May 18, 2017 - 9 -



- 10 -

2.3.7 Frame Regtable: DWARF 3

This interface is adequate for DWARF3 and for DWARF2. It is new in libdwarf as of April 2006. The

default configure of libdwarf inserts DW_FRAME_CFA_COL3 as the default CFA column. Or add a call

dwarf_set_frame_cfa_value(dbg,DW_FRAME_CFA_COL3) after your dwarf_init_b() call, this call

replaces the default libdwarf-compile-time value with DW_FRAME_CFA_COL3.

The Dwarf_Regtable3 type is used to contain the register-restore information for all registers at a given

PC value. Normally used by debuggers.

typedef struct Dwarf_Regtable_Entry3_s {

Dwarf_Small dw_offset_relevant;

Dwarf_Small dw_value_type;

Dwarf_Half dw_regnum;

Dwarf_Unsigned dw_offset_or_block_len;

Dwarf_Ptr dw_block_ptr;

}Dwarf_Regtable_Entry3;

typedef struct Dwarf_Regtable3_s {

struct Dwarf_Regtable_Entry3_s rt3_cfa_rule;

Dwarf_Half rt3_reg_table_size;

struct Dwarf_Regtable_Entry3_s * rt3_rules;

} Dwarf_Regtable3;

The array is indexed by register number. The field values for each index are described next. For clarity we

describe the field values for index rules[M] (M being any leg al array element index).

(DW_FRAME_CFA_COL3 DW_FRAME_SAME_VAL, DW_FRAME_UNDEFINED_VAL are not legal

array indexes, nor is any index <  0  or >= rt3_reg_table_size); The caller of routines using this struct must

create data space for rt3_reg_table_size entries of struct Dwarf_Regtable_Entry3_s and arrange that

rt3_rules points to that space and that rt3_reg_table_size is set correctly. The caller need not (but may)

initialize the contents of the rt3_cfa_rule or the rt3_rules array. The following applies to each rt3_rules rule

M:

dw_regnum is the register number applicable. If dw_regnum is

DW_FRAME_UNDEFINED_VAL, then the register I has undefined value. If dw_regnum is

DW_FRAME_SAME_VAL, then the register I has the same value as in the previous frame.

If dw_regnum is neither of these two, then the following apply:

dw_value_type determines the meaning of the other fields. It is one of DW_EXPR_OFFSET

(0), DW_EXPR_VAL_OFFSET(1), DW_EXPR_EXPRESSION(2) or

DW_EXPR_VAL_EXPRESSION(3).

If dw_value_type is DW_EXPR_OFFSET (0) then this is as in DWARF2 and the offset(N)

rule or the register(R) rule of the DWARF3 and DWARF2 document applies. The value is either:

If dw_offset_relevant is non-zero, then dw_regnum is effectively ignored but

must be identical to DW_FRAME_CFA_COL3 (and the dw_offset value applies.

The value of register M is therefore the value of CFA plus the value of dw_offset.

The result of the calculation is the address in memory where the value of register M

resides. This is the offset(N) rule of the DWARF2 and DWARF3 documents.

dw_offset_relevant is zero it indicates the dw_offset field is not meaningful.

The value of register M is the value currently in register dw_regnum (the value

DW_FRAME_CFA_COL3 must not appear, only real registers). This is the register(R)

rule of the DWARF3 spec.

rev 2.58, May 18, 2017 - 10 -



- 11 -

If dw_value_type is DW_EXPR_OFFSET (1) then this is the the val_offset(N) rule of the

DWARF3 spec applies. The calculation is identical to that of DW_EXPR_OFFSET (0) but the

value is interpreted as the value of register M (rather than the address where register M’s value is

stored).

If dw_value_type is DW_EXPR_EXPRESSION (2) then this is the the expression(E) rule of

the DWARF3 document.

dw_offset_or_block_len is the length in bytes of the in-memory block pointed

at by dw_block_ptr. dw_block_ptr is a DWARF expression. Evaluate that

expression and the result is the address where the previous value of register M is found.

If dw_value_type is DW_EXPR_VAL_EXPRESSION (3) then this is the the

val_expression(E) rule of the DWARF3 spec.

dw_offset_or_block_len is the length in bytes of the in-memory block pointed

at by dw_block_ptr. dw_block_ptr is a DWARF expression. Evaluate that

expression and the result is the previous value of register M.

The rule rt3_cfa_rule is the current value of the CFA. It is interpreted exactly like any

register M rule (as described just above) except that dw_regnum cannot be

CW_FRAME_CFA_REG3 or DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL

but must be a real register number.

2.3.8 Macro Details Record

The Dwarf_Macro_Details type gives information about a single entry in the .debug.macinfo section

(DWARF2, DWARF3, and DWARF4).

struct Dwarf_Macro_Details_s {

Dwarf_Off dmd_offset;

Dwarf_Small dmd_type;

Dwarf_Signed dmd_lineno;

Dwarf_Signed dmd_fileindex;

char * dmd_macro;

};

typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dmd_offset is the byte offset, within the .debug_macinfo section, of this macro information.

dmd_type is the type code of this macro info entry (or 0, the type code indicating that this is the end of

macro information entries for a compilation unit. See DW_MACINFO_define, etc in the DWARF

document.

dmd_lineno is the line number where this entry was found, or 0 if there is no applicable line number.

dmd_fileindex is the file index of the file involved. This is only guaranteed meaningful on a

DW_MACINFO_start_file dmd_type. Set to -1 if unknown (see the functional interface for more

details).

dmd_macro is the applicable string. For a DW_MACINFO_define this is the macro name and value.

For a DW_MACINFO_undef, or this is the macro name. For a DW_MACINFO_vendor_ext this is the

vendor-defined string value. For other dmd_types this is 0.

2.4 Opaque Types

The opaque types declared in libdwarf.h are used as descriptors for queries against DWARF information

rev 2.58, May 18, 2017 - 11 -



- 12 -

stored in various debugging sections. Each time an instance of an opaque type is returned as a result of a

libdwarf operation (Dwarf_Debug excepted), it should be freed, using dwarf_dealloc() when it is

no longer of use (read the following documentation for details, as in at least one case there is a special

routine provided for deallocation and dwarf_dealloc() is not directly called: see

dwarf_srclines()). Some functions return a number of instances of an opaque type in a block, by

means of a pointer to the block and a count of the number of opaque descriptors in the block: see the

function description for deallocation rules for such functions. The list of opaque types defined in

libdwarf.h that are pertinent to the Consumer Library, and their intended use is described below.

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of the Dwarf_Debug type is created as a result of a successful call to dwarf_init_b(),

or dwarf_elf_init_b(), and is used as a descriptor for subsequent access to most libdwarf

functions on that object. The storage pointed to by this descriptor should be not be freed, using the

dwarf_dealloc() function. Instead free it with dwarf_finish().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of a Dwarf_Die type is returned from a successful call to the dwarf_siblingof(),

dwarf_child, or dwarf_offdie_b() function, and is used as a descriptor for queries about

information related to that DIE. The storage pointed to by this descriptor should be freed, using

dwarf_dealloc() with the allocation type DW_DLA_DIE when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances of Dwarf_Line type are returned from a successful call to the dwarf_srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these

descriptors should be individually freed, using dwarf_dealloc() with the allocation type

DW_DLA_LINE when no longer needed.

typedef struct Dwarf_Global_s* Dwarf_Global;

Instances of Dwarf_Global type are returned from a successful call to the dwarf_get_globals()

function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak_s* Dwarf_Weak;

Instances of Dwarf_Weak type are returned from a successful call to the SGI-specific

dwarf_get_weaks() function, and are used as descriptors for queries about weak names. The storage

pointed to by these descriptors should be individually freed, using dwarf_dealloc() with the

allocation type DW_DLA_WEAK_CONTEXT (or DW_DLA_WEAK, an older name, supported for

compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf_Func type are returned from a successful call to the SGI-specific

dwarf_get_funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specific

dwarf_get_types() function, and are used as descriptors for queries about user defined types.

rev 2.58, May 18, 2017 - 12 -



- 13 -

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf_Var type are returned from a successful call to the SGI-specific

dwarf_get_vars() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detected by libdwarf.

Users typically provide a location for libdwarf to store this descriptor for the user to obtain more

information about the error. The storage pointed to by this descriptor should be freed, using

dwarf_dealloc() with the allocation type DW_DLA_ERROR when no longer needed.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances of Dwarf_Attribute type are returned from a successful call to the dwarf_attrlist(),

or dwarf_attr() functions, and are used as descriptors for queries about attribute values. The storage

pointed to by this descriptor should be individually freed, using dwarf_dealloc() with the allocation

type DW_DLA_ATTR when no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of a Dwarf_Abbrev type is returned from a successful call to dwarf_get_abbrev(),

and is used as a descriptor for queries about abbreviations in the .debug_abbrev section. The storage

pointed to by this descriptor should be freed, using dwarf_dealloc() with the allocation type

DW_DLA_ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances of Dwarf_Fde type are returned from a successful call to the dwarf_get_fde_list(),

dwarf_get_fde_for_die(), or dwarf_get_fde_at_pc() functions, and are used as descriptors

for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances of Dwarf_Cie type are returned from a successful call to the dwarf_get_fde_list()

function, and are used as descriptors for queries about information that is common to several frames.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances of Dwarf_Arange type are returned from successful calls to the dwarf_get_aranges(),

or dwarf_get_arange() functions, and are used as descriptors for queries about address ranges. The

storage pointed to by this descriptor should be individually freed, using dwarf_dealloc() with the

allocation type DW_DLA_ARANGE when no longer needed.

typedef struct Dwarf_Gdbindex_s* Dwarf_Gdbindex;

Instances of Dwarf_Gdbindex type are returned from successful calls to the

dwarf_gdbindex_header() function and are used to extract information from a .gdb_index section.

This section is a gcc/gdb extension and is designed to allow a debugger fast access to data in .debug_info.

The storage pointed to by this descriptor should be freed using a call to dwarf_gdbindex_free()

with a valid Dwarf_Gdbindex pointer as the argument.

typedef struct Dwarf_Xu_Index_Header_s* Dwarf_Xu_Index_header;

Instances of Dwarf_Xu_Index_Header_s type are returned from successful calls to the

rev 2.58, May 18, 2017 - 13 -



- 14 -

dwarf_get_xu_index_header() function and are used to extract information from a

.debug_cu_index or .debug_tu_index section. These sections are used to make possible access to .dwo

sections gathered into a .dwp object as part of the DebugFission project allowing separation of an

executable from most of its DWARF debugging information. As of May 2015 these sections are accepted

into DWARF5 but the standard has not been released. The storage pointed to by this descriptor should be

freed using a call to dwarf_xh_header_free() with a valid Dwarf_XuIndexHeader pointer as

the argument.

typedef struct Dwarf_Line_Context_s * Dwarf_Line_Context;

dwarf_srclines_b() returns a Dwarf_Line_Context through an argument and the new structure

pointer lets us access line header information conveniently.

typedef struct Dwarf_Loc_c_s * Dwarf_Loc_c;

typedef struct Dwarf_Locdesc_c_s * Dwarf_Locdesc_c;

typedef struct Dwarf_Loc_Head_c_s * Dwarf_Loc_Head_c;

Dwarf_Loc* are involved in the DWARF5 interfaces to location lists. The new interfaces are all

functional and contents of the above types are not exposed.

typedef struct Dwarf_Macro_Context_s * Dwarf_Macro_Context;

dwarf_get_macro_context() and dwarf_get_macro_context_by_offset() return a

Dwarf_Line_Context through an argument and the new structure pointer lets us access macro data from the

.debug_macro section.

typedef struct Dwarf_Dsc_Head_s * Dwarf_Dsc_Head;

dwarf_discr_list() returns a Dwarf_Dsc_Head through an argument and the new structure pointer

lets us access macro data from a DW_AT_discr_list attribute.

3. UTF-8 strings

libdwarf is defined, at various points, to return string pointers or to copy strings into string areas you define.

DWARF allows the use of DW_AT_use_UTF8 (DWARF3 and later) DW_ATE_UTF (DWARF4 and later)

to specify that the strings returned are actually in UTF-8 format. What this means is that if UTF-8 is

specfied on a particular object it is up to callers that wish to print all the characters properly to use

language-appropriate functions to convert the char * to wide characters and print the wide characters. All

ASCII characters in the strings will print properly whether printed as wide characters or not. The methods

to convert UTF-8 strings so they will print correctly for all such strings is beyond the scope of this

document.

If UTF-8 is not specified then one is probably safe in assuming the strings are iso_8859-15 and normal C

printf() will work fine..

In either case one should be wary of corrupted (accidentally or intentionally) strings with ASCII control

characters in the text. Such can cause bad effects if simply printed to a device (such as a terminal).

4. Error Handling

The method for detection and disposition of error conditions that arise during access of debugging

information via libdwarf is consistent across all libdwarf functions that are capable of producing an error.

This section describes the method used by libdwarf in notifying client programs of error conditions.

rev 2.58, May 18, 2017 - 14 -



- 15 -

Most functions within libdwarf accept as an argument a pointer to a Dwarf_Error descriptor where a

Dwarf_Error descriptor is stored if an error is detected by the function. Routines in the client program

that provide this argument can query the Dwarf_Error descriptor to determine the nature of the error and

perform appropriate processing. The intent is that clients do the appropriate processing immediately on

encountering an error and then the client calls dwarf_dealloc to free the descriptor.

In the rare case where the malloc arena is exhausted when trying to create a Dwarf_Error descriptor a

pointer to a statically allocated descriptor will be returned. This static descriptor is new in December 2014.

A call to dwarf_dealloc() to free the statically allocated descriptor is harmless (it sets the error value

in the descriptor to DW_DLE_FAILSAFE_ERRVAL). The possible conflation of errors when the arena is

exhausted (and a dwarf_error descriptor is saved past the next reader call in any thread) is considered better

than having libdwarf call abort() (as earlier libdwarf did).

A client program can also specify a function to be invoked upon detection of an error at the time the library

is initialized (see dwarf_init_b()). When a libdwarf routine detects an error, this function is called

with two arguments: a code indicating the nature of the error and a pointer provided by the client at

initialization (again see dwarf_init_b()). This pointer argument can be used to relay information

between the error handler and other routines of the client program. A client program can specify or change

both the error handling function and the pointer argument after initialization using

dwarf_seterrhand() and dwarf_seterrarg().

In the case where libdwarf functions are not provided a pointer to a Dwarf_Error descriptor, and no

error handling function was provided at initialization, libdwarf functions print a short message to stdout and

terminate exectution with abort().

Before March 2016 libdwarf gave up when there was no error handling by emitting a short message on

stderr calling abort(3C).

The following lists the processing steps taken upon detection of an error:

1. Check the error argument; if not a NULL pointer, allocate and initialize a Dwarf_Error

descriptor with information describing the error, place this descriptor in the area pointed to by

error, and return a value indicating an error condition.

2. If an errhand argument was provided to dwarf_init_b() at initialization, call errhand()

passing it the error descriptor and the value of the errarg argument provided to

dwarf_init_b(). If the error handling function returns, return DW_DLV_ERROR indicating an

error condition.

3. If neither the error argument nor an errhand argument was provided Terminate program

execution by calling abort(3C).

In all cases, it is clear from the value returned from a function that an error occurred in executing the

function, since DW_DLV_ERROR is returned.

As can be seen from the above steps, the client program can provide an error handler at initialization, and

still provide an error argument to libdwarf functions when it is not desired to have the error handler

invoked.

If a libdwarf function is called with invalid arguments, the behavior is undefined. In particular,

supplying a NULL pointer to a libdwarf function (except where explicitly permitted), or pointers to

invalid addresses or uninitialized data causes undefined behavior; the return value in such cases is

undefined, and the function may fail to invoke the caller supplied error handler or to return a meaningful

error number. Implementations also may abort execution for such cases.

Some errors are so inconsequential that it does not warrant rejecting an object or returning an error. An

rev 2.58, May 18, 2017 - 15 -



- 16 -

example would be a frame length not being a multiple of an address-size (right now this is the only such

inconsequential error). To make it possible for a client to report such errors the function

dwarf_get_harmless_error_list returns strings with error text in them. This function may be

ignored if client code does not want to bother with such error reporting. See

DW_DLE_DEBUG_FRAME_LENGTH_NOT_MULTIPLE in the libdwarf source code.

4.1 Returned values in the functional interface

Values returned by libdwarf functions to indicate success and errors are enumerated in Figure 2. The

DW_DLV_NO_ENTRY case is useful for functions need to indicate that while there was no data to return

there was no error either. For example, dwarf_siblingof() may return DW_DLV_NO_ENTRY to

indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING

DW_DLV_ERROR 1 Error

DW_DLV_OK 0 Successful call

DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications

Each function in the interface that returns a value returns one of the integers in the above figure.

If DW_DLV_ERROR is returned and a pointer to a Dwarf_Error pointer is passed to the function, then a

Dwarf_Error handle is returned through the pointer. No other pointer value in the interface returns a value.

After the Dwarf_Error is no longer of interest, a

dwarf_dealloc(dbg,dw_err,DW_DLA_ERROR) on the error pointer is appropriate to free any

space used by the error information.

If DW_DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW_DLV_OK is returned, the Dwarf_Error pointer, if supplied, is not touched, but any other values to

be returned through pointers are returned. In this case calls (depending on the exact function returning the

error) to dwarf_dealloc() may be appropriate once the particular pointer returned is no longer of

interest.

Pointers passed to allow values to be returned through them are uniformly the last pointers in each

argument list.

All the interface functions are defined from the point of view of the writer-of-the-library (as is traditional

for UN*X library documentation), not from the point of view of the user of the library. The caller might

code:

Dwarf_Line line;

Dwarf_Signed ret_loff;

Dwarf_Error err;

int retval = dwarf_lineoff(line,&ret_loff,&err);

for the function defined as

int dwarf_lineoff(Dwarf_Line line,Dwarf_Signed *return_lineoff,

Dwarf_Error* err);

and this document refers to the function as returning the value through *err or *return_lineoff or uses the

phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

5. Memory Management

Several of the functions that comprise libdwarf return pointers (opaque descriptors) to structures that have

been dynamically allocated by the library. To aid in the management of dynamic memory, the function

rev 2.58, May 18, 2017 - 16 -



- 17 -

dwarf_dealloc() is provided to free storage allocated as a result of a call to a libdwarf function. This

section describes the strategy that should be taken by a client program in managing dynamic storage.

5.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a result of a libdwarf Consumer Library call should be

assumed to point to read-only memory. The results are undefined for libdwarf clients that attempt to write

to a region pointed to by a value returned by a libdwarf Consumer Library call.

5.2 Storage Deallocation

See the section "Returned values in the functional interface", above, for the general rules where calls to

dwarf_dealloc() is appropriate.

In some cases the pointers returned by a libdwarf call are pointers to data which is not freeable. The library

knows from the allocation type provided to it whether the space is freeable or not and will not free

inappropriately when dwarf_dealloc() is called. So it is vital that dwarf_dealloc() be called

with the proper allocation type.

For most storage allocated by libdwarf, the client can free the storage for reuse by calling

dwarf_dealloc(), providing it with the Dwarf_Debug descriptor specifying the object for which the

storage was allocated, a pointer to the area to be free-ed, and an identifier that specifies what the pointer

points to (the allocation type). For example, to free a Dwarf_Die die belonging the the object

represented by Dwarf_Debug dbg, allocated by a call to dwarf_siblingof(), the call to

dwarf_dealloc() would be:

dwarf_dealloc(dbg, die, DW_DLA_DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list

should be deallocated, followed by deallocation of the actual list itself. The following code fragment uses

an invocation of dwarf_attrlist() as an example to illustrate a technique that can be used to free

storage from any libdwarf routine that returns a list:

Figure 3. Example1 dwarf_attrlist()

void example1(Dwarf_Die somedie)

{

Dwarf_Debug dbg = 0;

Dwarf_Signed atcount;

Dwarf_Attribute *atlist;

Dwarf_Error error = 0;

Dwarf_Signed i = 0;

int errv;

errv = dwarf_attrlist(somedie, &atlist,&atcount, &error);

if (errv == DW_DLV_OK) {

for (i = 0; i < atcount; ++i) {

/* use atlist[i] */

dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}

dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

}

The Dwarf_Debug returned from dwarf_init_b() or dwarf_elf_init_b() cannot be freed

using dwarf_dealloc(). The function dwarf_finish() will deallocate all dynamic storage

rev 2.58, May 18, 2017 - 17 -



- 18 -

associated with an instance of a Dwarf_Debug type. In particular, it will deallocate all dynamically

allocated space associated with the Dwarf_Debug descriptor, and finally make the descriptor invalid.

An Dwarf_Error returned from dwarf_init_b() or dwarf_elf_init_b() in case of a failure

cannot be freed using dwarf_dealloc(). The only way to free the Dwarf_Error from either of

those calls is to use free(3) directly. Every Dwarf_Error must be freed by dwarf_dealloc() except

those returned by dwarf_init_b() or dwarf_elf_init_b().

The codes that identify the storage pointed to in calls to dwarf_dealloc() are described in figure 4.

IDENTIFIER USED TO FREE

DW_DLA_STRING char*

DW_DLA_LOC Dwarf_Loc

DW_DLA_LOCDESC Dwarf_Locdesc

DW_DLA_ELLIST Dwarf_Ellist (not used)

DW_DLA_BOUNDS Dwarf_Bounds (not used)

DW_DLA_BLOCK Dwarf_Block

DW_DLA_DEBUG Dwarf_Debug (do not use)

DW_DLA_DIE Dwarf_Die

DW_DLA_LINE Dwarf_Line

DW_DLA_ATTR Dwarf_Attribute

DW_DLA_TYPE Dwarf_Type (not used)

DW_DLA_SUBSCR Dwarf_Subscr (not used)

DW_DLA_GLOBAL_CONTEXT Dwarf_Global

DW_DLA_ERROR Dwarf_Error

DW_DLA_LIST a list of opaque descriptors

DW_DLA_LINEBUF Dwarf_Line* (not used)

DW_DLA_ARANGE Dwarf_Arange

DW_DLA_ABBREV Dwarf_Abbrev

DW_DLA_FRAME_OP Dwarf_Frame_Op

DW_DLA_CIE Dwarf_Cie

DW_DLA_FDE Dwarf_Fde

DW_DLA_LOC_BLOCK Dwarf_Loc Block

DW_DLA_FRAME_BLOCK Dwarf_Frame Block (not used)

DW_DLA_FUNC_CONTEXT Dwarf_Func

DW_DLA_TYPENAME_CONTEXT Dwarf_Type

DW_DLA_VAR_CONTEXT Dwarf_Var

DW_DLA_WEAK_CONTEXT Dwarf_Weak

DW_DLA_PUBTYPES_CONTEXT Dwarf_Type

Figure 4. Allocation/Deallocation Identifiers

6. Functional Interface

This section describes the functions available in the libdwarf library. Each function description includes its

definition, followed by one or more paragraph describing the function’s operation.

The following sections describe these functions.

6.1 Initialization Operations

These functions are concerned with preparing an object file for subsequent access by the functions in

rev 2.58, May 18, 2017 - 18 -



- 19 -

libdwarf and with releasing allocated resources when access is complete.

6.1.1 dwarf_init_b()

int dwarf_init_b(

int fd,

Dwarf_Unsigned access,

unsigned group_number,

Dwarf_Handler errhand,

Dwarf_Ptr errarg,

Dwarf_Debug * dbg,

Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_init_b() returns through dbg a Dwarf_Debug

descriptor that represents a handle for accessing debugging records associated with the open file descriptor

fd. DW_DLV_NO_ENTRY is returned if the object does not contain DWARF debugging information.

DW_DLV_ERROR is returned if an error occurred.

The access argument indicates what access is allowed for the section. The DW_DLC_READ parameter is

valid for read access (only read access is defined or discussed in this document).

The groupnumber argument indicates which group is to be accessed Group one is normal dwarf sections

such as .debug_info. Group two is DWARF5 dwo split-dwarf dwarf sections such as .debug_info.dwo.

Groups three and higher are for COMDAT groups. If an object file has only sections from one of the

groups then passing zero will access that group. Otherwise passing zero will access only group one. See

dwarf_sec_group_sizes() and dwarf_sec_group_map() for more group information.

The errhand argument is a pointer to a function that will be invoked whenever an error is detected as a

result of a libdwarf operation. The errarg argument is passed as an argument to the errhand function.

The file descriptor associated with the fd argument must refer to an ordinary file (i.e. not a pipe, socket,

device, /proc entry, etc.), be opened with the at least as much permission as specified by the access

argument, and cannot be closed or used as an argument to any system calls by the client until after

dwarf_finish() is called. The seek position of the file associated with fd is undefined upon return of

dwarf_init().

With SGI IRIX, by default it is allowed that the app close() fd immediately after calling

dwarf_init(), but that is not a portable approach (that it works is an accidental side effect of the fact

that SGI IRIX uses ELF_C_READ_MMAP in its hidden internal call to elf_begin()). The portable

approach is to consider that fd must be left open till after the corresponding dwarf_finish() call has

returned.

Since dwarf_init() uses the same error handling processing as other libdwarf functions (see Error

Handling above), client programs will generally supply an error parameter to bypass the default actions

during initialization unless the default actions are appropriate.

6.1.2 dwarf_init()

rev 2.58, May 18, 2017 - 19 -



- 20 -

int dwarf_init(

int fd,

Dwarf_Unsigned access,

Dwarf_Handler errhand,

Dwarf_Ptr errarg,

Dwarf_Debug * dbg,

Dwarf_Error *error)

This identical to dwarf_init() dwarf_init_b() except that it is missing the groupnumber argument so

access to an object file containing both dwo and non-dwo DWARF5 object sections will access only group

one (and will ignore the dwo sections).

6.1.3 Dwarf_Handler function

This is an example of a valid error handler function. A pointer to this (or another like it) may be passed to

dwarf_elf_init_b() or dwarf_init_b().

static void

simple_error_handler(Dwarf_Error error, Dwarf_Ptr errarg)

{

printf("libdwarf error: %d %s0,

dwarf_errno(error), dwarf_errmsg(error));

exit(1);

}

This will only be called if an error is detected inside libdwarf and the Dwarf_Error argument passed to

libdwarf is NULL. A Dwarf_Error will be created with the error number assigned by the library and passed

to the error handler.

The second argument is a copy of the value passed in to dwarf_elf_init_b() or dwarf_init() as

the errarg() argument. Typically the init function would be passed a pointer to an application-created

struct containing the data the application needs to do what it wants to do in the error handler.

In a language with exceptions or exception-like features an exception could be thrown here. Or the

application could simply give up and call exit() as in the sample given above.

6.1.4 dwarf_elf_init_b()

int dwarf_elf_init_b(

Elf * elf_file_pointer,

Dwarf_Unsigned access,

unsigned groupnumber,

Dwarf_Handler errhand,

Dwarf_Ptr errarg,

Dwarf_Debug * dbg,

Dwarf_Error *error)

The function dwarf_elf_init_b() is identical to dwarf_init_b() except that an open Elf *

pointer is passed instead of a file descriptor.

In systems supporting Elf object files this may be more space or time-efficient than using

dwarf_init_b(), see that function for more detailed description of the arguments here..

The client is allowed to use the Elf * pointer for its own purposes without restriction during the time the

Dwarf_Debug is open, except that the client should not elf_end() the pointer till after

dwarf_finish is called.

rev 2.58, May 18, 2017 - 20 -



- 21 -

6.1.5 dwarf_elf_init()

int dwarf_elf_init(

Elf * elf_file_pointer,

Dwarf_Unsigned access,

Dwarf_Handler errhand,

Dwarf_Ptr errarg,

Dwarf_Debug * dbg,

Dwarf_Error *error)

The function dwarf_elf_init() is identical to dwarf_init() except that an open Elf * pointer

is passed instead of a file descriptor.

6.1.6 dwarf_get_elf()

int dwarf_get_elf(

Dwarf_Debug dbg,

Elf ** elf,

Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_get_elf() returns through the pointer elf the Elf

* handle used to access the object represented by the Dwarf_Debug descriptor dbg. It returns

DW_DLV_ERROR on error.

Because int dwarf_init() opens an Elf descriptor on its fd and dwarf_finish() does not close

that descriptor, an app should use dwarf_get_elf and should call elf_end with the pointer returned

through the Elf** handle created by int dwarf_init().

This function is not meaningful for a system that does not use the Elf format for objects.

6.1.7 dwarf_set_tied_dbg()

int dwarf_set_tied_dbg(

Dwarf_Debug dbg,

Dwarf_Debug tieddbg,

Dwarf_Error *error)

The function dwarf_set_tied_dbg() enables cross-object access of DWARF data. If a DWARF5

Package object has DW_FORM_addrx or DW_FORM_GNU_addr_index in an address attribute one

needs both the Package file and the executable to extract the actual address with dwarf_formaddr().

So one does a normal dwarf_elf_init_b() or dwarf_init()_b on each object and then tie the

two together with a call such as:

rev 2.58, May 18, 2017 - 21 -



- 22 -

Figure 5. Example2 dwarf_set_died_dbg()

void example2(Dwarf_Debug dbg, Dwarf_Debug tieddbg)

{

Dwarf_Error error = 0;

int res = 0;

/* Do the dwarf_init_b() or dwarf_elf_init_b()

calls to set

dbg, tieddbg at this point. Then: */

res = dwarf_set_tied_dbg(dbg,tieddbg,&error);

if (res != DW_DLV_OK) {

/* Something went wrong*/

}

}

When done with both dbg and tieddbg do the normal finishing operations on both in any order.

It is possible to undo the tieing operation with

Figure 6. Example3 dwarf_set_tied_dbg() obsolete

void example3(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

int res = 0;

res = dwarf_set_tied_dbg(dbg,NULL,&error);

if (res != DW_DLV_OK) {

/* Something went wrong*/

}

}

It is not necessary to undo the tieing operation before finishing on the dbg and tieddbg.

6.1.8 dwarf_get_tied_dbg()

int dwarf_get_tied_dbg(

Dwarf_Debug /*dbg*/,

Dwarf_Debug * /*tieddbg_out*/,

Dwarf_Error * /*error*/)

dwarf_get_tied_dbg returns DW_DLV_OK and sets tieddbg_out to the pointer to the ’tied’

Dwarf_Debug. If there is no ’tied’ object tieddbg_out is set to NULL.

On error it returns DW_DLV_ERROR.

It never returns DW_DLV_NO_ENTRY.

6.1.9 dwarf_finish()

int dwarf_finish(

Dwarf_Debug dbg,

Dwarf_Error *error)

The function dwarf_finish() releases all Libdwarf internal resources associated with the descriptor

dbg, and invalidates dbg. It returns DW_DLV_ERROR if there is an error during the finishing operation. It

rev 2.58, May 18, 2017 - 22 -



- 23 -

returns DW_DLV_OK for a successful operation.

Because int dwarf_init() opens an Elf descriptor on its fd and dwarf_finish() does not close

that descriptor, an app should use dwarf_get_elf and should call elf_end with the pointer returned

through the Elf** handle created by int dwarf_init().

6.1.10 dwarf_set_stringcheck()

int dwarf_set_stringcheck(

int stringcheck)

The function int dwarf_set_stringcheck() sets a global flag and returns the previous value of

the global flag.

If the stringcheck global flag is zero (the default) libdwarf does string length validity checks (the checks do

slow libdwarf down very slightly). If the stringcheck global flag is non-zero libdwarf does not do string

length validity checks.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

6.1.11 dwarf_set_reloc_application()

int dwarf_set_reloc_application(

int apply)

The function int dwarf_set_reloc_application() sets a global flag and returns the previous

value of the global flag.

If the reloc_application global flag is non-zero (the default) then the applicable .rela section (if one exists)

will be processed and applied to any DWARF section when it is read in. If the reloc_application global flag

is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but then very few relocation

types apply to DWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

6.1.12 dwarf_record_cmdline_options()

int dwarf_record_cmdline_options(

Dwarf_Cmdline_Options options)

The function int dwarf_record_cmdline_options() copies a Dwarf_Cmdline_Options

structure from consumer code to libdwarf.

The structure is defined in libdwarf.h.

The initial version of this structure has a single field check_verbose_mode which, if non-zero, tells

libdwarf to print some detailed messages to stdout in case certain errors are detected.

rev 2.58, May 18, 2017 - 23 -



- 24 -

The default for this value is FALSE (0) so the extra messages are off by default.

6.1.13 dwarf_object_init_b()

int dwarf_object_init_b(

Dwarf_Obj_Access_Interface* obj,

Dwarf_Handler errhand,

Dwarf_Ptr errarg,

unsigned groupnumber,

Dwarf_Debug* dbg,

Dwarf_Error* error)

The function int dwarf_object_init_b() enables access to non-Elf object files by allowing the

caller to then provide function pointers to code (user-written, not part of libdwarf) that will look, to

libdwarf, as if libdwarf was reading Elf.

See int dwarf_init_b() for additional information on the arguments passed in (the obj argument

here is a set of function pointers and describing how to access non-Elf files is beyond the scope of this

document.

Writing the functions needed to support non-Elf will require study of Elf and of the object format involved.

The topic is beyond the scope of this document.

6.1.14 dwarf_object_init()

int dwarf_object_init(

Dwarf_Obj_Access_Interface* obj,

Dwarf_Handler errhand,

Dwarf_Ptr errarg,

Dwarf_Debug* dbg,

Dwarf_Error* error)

The function int dwarf_object_init() is the same as int dwarf_object_init_b() except

int dwarf_object_init() is missing the groupnumber argument so DWARF5 split dwarf objects

cannot be fully handled.

6.2 Section Group Operations

The section group data is essential information when processing an object with COMDAT section group

DWARF sections or with both split-dwarf (.dwo sections) and non-split dwarf sections. A standard

DWARF2 or DWARF3 or DWARF4 object (Old Standard Object, or OSO) will not contain any of those

new sections. The DWARF4 standard, Appendix E.1 "Using Compilation Units" offers an overview of

COMDAT section groups. libdwarf assigns the group number one(1) to OSO DWARF. Any sections

that are split dwarf (section name ending in .dwo or one of the two special DWP index sections) are

assigned group number two(2) by libdwarf. COMDAT section groups are assigned groups numbers 3 and

higher as needed.

The COMDAT section group uses are not well defined, but popular compilations systems are using such

sections. There is no meaningful documentation that we can find (so far) on how the COMDAT section

groups are used, so libdwarf is based on observations of what compilers generate.

rev 2.58, May 18, 2017 - 24 -



- 25 -

6.2.1 dwarf_sec_group_sizes()

int dwarf_dwarf_sec_group_sizes(

Dwarf_Debug dbg,

Dwarf_Unsigned * section_count_out,

Dwarf_Unsigned * group_count_out,

Dwarf_Unsigned * selected_group_out,

Dwarf_Unsigned * map_entry_count_out,

Dwarf_Error * error)

The function dwarf_sec_group_sizes() may be called on any open Dwarf_Debug. It returns

DW_DLV_OK on success and returns values via the pointer arguments.

Once the Dwarf_Debug is open the group information is set and it will not change for the life of this

Dwarf_Debug.

The *section_count_out is set to the number of sections in the object. Many of the sections will be

irrelevant to libdwarf.

The *group_count_out is set to the number of groups in the object (as libdwarf counts them). An

OSO will have exactly one group. A DWP object will have exactly one group. If is more than one group

consumer code will likely want to open additional Dwarf_Debug objects and request relevant information

to process the DWARF contents. An executable or a DWP object will always have a

*group_count_out of one(1). An executable or a shared library cannot have any COMDAT section

groups as the linker will have dealt with them.

The *selected_group_out is set to the group number that this Dwarf_Debug will focus on. See

dwarf_sec_group_map() for additional details on how *selected_group_out is interpreted.

The *map_entry_count_out is set to the number of entries in the map. See

dwarf_sec_group_map().

On failure it returns DW_DLV_ERROR and sets *error

The initial implementation never returns DW_DLV_ERROR or DW_DLV_NO_ENTRY but callers should

allow for that possibility.

6.2.2 dwarf_sec_group_map()

int dwarf_sec_group_map(

Dwarf_Debug dbg,

Dwarf_Unsigned map_entry_count,

Dwarf_Unsigned * group_numbers_array,

Dwarf_Unsigned * section_numbers_array,

const char ** sec_names_array,

Dwarf_Error * error)

The function dwarf_sec_group_map() may be called on any open Dwarf_Debug.

The caller must allocate map_entry_count arrays used in the following three arguments the and pass

the appropriate pointer into the function as well as passing in map_entry_count itself.

The map entries returned cover all the DWARF related sections in the object though the

selected_group value will dictate which of the sections in the Dwarf_Debug will actually be

accessed via the usual libdwarf functions. That is, only sections in the selected group may be directly

accessed though libdwarf may indirectly access sections in section group one(1) so relevant details can be

rev 2.58, May 18, 2017 - 25 -



- 26 -

accessed, such as abbreviation tables etc. Describing the details of this access outside the current

selected_group goes beyond what this document covers (as of this writing).

It returns DW_DLV_OK on success and sets values into the user-allocated array elements (sorted by section

number):

group_numbers_array[0]... group_numbers_array[map_entry_count-1]

section_numbers_array[0]... section_numbers_array[map_entry_count-1]

sec_names_array[0]... sec_names_array[map_entry_count-1]

group_numbers_array[0] for example is set to a group number. One(1), or two(2) or if there are

COMDAT groups it will be three(3) or higher.

section_numbers_array[0] for example is set to a valid Elf section number relevant to DWARF

(each section number shown will be greater than zero).

sec_names_array[0] for example is set to a pointer to a string containing the Elf section name of the

Elf section number in sections_number_array[0].

On error the function will return DW_DLV_ERROR or DW_DLV_NO_ENTRY which indicates a serious

problem with this object.

Here is an example of use of these functions.

rev 2.58, May 18, 2017 - 26 -



- 27 -

void examplesecgroup(Dwarf_Debug dbg)

{

int res = 0;

Dwarf_Unsigned section_count = 0;

Dwarf_Unsigned group_count;

Dwarf_Unsigned selected_group = 0;

Dwarf_Unsigned group_map_entry_count = 0;

Dwarf_Unsigned *sec_nums = 0;

Dwarf_Unsigned *group_nums = 0;

const char ** sec_names = 0;

Dwarf_Error error = 0;

Dwarf_Unsigned i = 0;

res = dwarf_sec_group_sizes(dbg,&section_count,

&group_count,&selected_group, &group_map_entry_count,

&error);

if(res != DW_DLV_OK) {

/* Something is badly wrong*/

return;

}

/* In an object without split-dwarf sections

or COMDAT sections we now have

selected_group == 1. */

sec_nums = calloc(group_map_entry_count,sizeof(Dwarf_Unsigned));

if(!sec_nums) {

/* FAIL. out of memory */

return;

}

group_nums = calloc(group_map_entry_count,sizeof(Dwarf_Unsigned));

if(!group_nums) {

free(group_nums);

/* FAIL. out of memory */

return;

}

sec_names = calloc(group_map_entry_count,sizeof(char*));

if(!sec_names) {

free(group_nums);

free(sec_nums);

/* FAIL. out of memory */

return;

}

res = dwarf_sec_group_map(dbg,group_map_entry_count,

group_nums,sec_nums,sec_names,&error);

if(res != DW_DLV_OK) {

/* FAIL. Something badly wrong. */

}

for( i = 0; i < group_map_entry_count; ++i) {

/* Now do something with

group_nums[i],sec_nums[i],sec_names[i] */

}

free(group_nums);

free(sec_nums);

rev 2.58, May 18, 2017 - 27 -



- 28 -

/* The strings are in Elf data.

Do not free() the strings themselves.*/

free(sec_names);

}

6.3 Section size operations

These operations are informative but not normally needed.

6.3.1 dwarf_get_section_max_offsets_b()

int dwarf_get_section_max_offsets_b(Dwarf_debug dbg,

Dwarf_Unsigned * /*debug_info_size*/,

Dwarf_Unsigned * /*debug_abbrev_size*/,

Dwarf_Unsigned * /*debug_line_size*/,

Dwarf_Unsigned * /*debug_loc_size*/,

Dwarf_Unsigned * /*debug_aranges_size*/,

Dwarf_Unsigned * /*debug_macinfo_size*/,

Dwarf_Unsigned * /*debug_pubnames_size*/,

Dwarf_Unsigned * /*debug_str_size*/,

Dwarf_Unsigned * /*debug_frame_size*/,

Dwarf_Unsigned * /*debug_ranges_size*/,

Dwarf_Unsigned * /*debug_pubtypes_size*/,

Dwarf_Unsigned * /*debug_types_size*/);

The function dwarf_get_section_max_offsets_b() an open Dwarf_Dbg and reports on the

section sizes by pushing section size values back through the pointers.

Created in October 2011.

6.3.2 dwarf_get_section_max_offsets()

int dwarf_get_section_max_offsets(Dwarf_debug dbg,

Dwarf_Unsigned * /*debug_info_size*/,

Dwarf_Unsigned * /*debug_abbrev_size*/,

Dwarf_Unsigned * /*debug_line_size*/,

Dwarf_Unsigned * /*debug_loc_size*/,

Dwarf_Unsigned * /*debug_aranges_size*/,

Dwarf_Unsigned * /*debug_macinfo_size*/,

Dwarf_Unsigned * /*debug_pubnames_size*/,

Dwarf_Unsigned * /*debug_str_size*/,

Dwarf_Unsigned * /*debug_frame_size*/,

Dwarf_Unsigned * /*debug_ranges_size*/,

Dwarf_Unsigned * /*debug_pubtypes_size*/);

The function is the same as dwarf_get_section_max_offsets_b() except it is missing the

debug_types_size() argument. Though obsolete it is still supported.

6.4 Printf Callbacks

This is new in August 2013.

rev 2.58, May 18, 2017 - 28 -



- 29 -

The dwarf_print_lines() function is intended as a helper to programs like dwarfdump and show

some line internal details in a way only the interals of libdwarf can show these details. But using printf

directly in libdwarf means the caller has limited control of where the output appears. So now the ’printf’

output is passed back to the caller through a callback function whose implementation is provided by the

caller.

Any code calling libdwarf can ignore the functions described in this section completely. If the functions are

ignored the messages (if any) from libdwarf will simply not appear anywhere.

The libdwarf.h header file defines struct Dwarf_Printf_Callback_Info_s and

dwarf_register_printf_callback for those libdwarf callers wishing to implement the callback.

In this section we describe how one uses that interface. The applications dwarfdump and dwarfdump2

are examples of how these may be used.

6.4.1 dwarf_register_printf_callback

struct Dwarf_Printf_Callback_Info_s

dwarf_register_printf_callback(Dwarf_Debug dbg,

struct Dwarf_Printf_Callback_Info_s * newvalues);

The dwarf_register_printf_callback() function can only be called after the Dwarf_Debug

instance has been initialized, the call makes no sense at other times. The function returns the current value

of the structure. If newvalues is non-null then the passed-in values are used to initialize the libdwarf

internal callback data (the values returned are the values before the newvalues are recorded). If

newvalues is null no change is made to the libdwarf internal callback data.

6.4.2 Dwarf_Printf_Callback_Info_s

struct Dwarf_Printf_Callback_Info_s {

void * dp_user_pointer;

dwarf_printf_callback_function_type dp_fptr;

char * dp_buffer;

unsigned int dp_buffer_len;

int dp_buffer_user_provided;

void * dp_reserved;

};

First we describe the fields as applicable in setting up for a call to

dwarf_register_printf_callback().

The field dp_user_pointer is remembered by libdwarf and passed back in any call libdwarf makes to

the user’s callback function. It is otherwise ignored by libdwarf.

The field dp_fptr is either NULL or a pointer to a user-implemented function.

If the field dp_buffer_user_provided is non-zero then dp_buffer_len and dp_buffer must

be set by the user and libdwarf will use that buffer without doing any malloc of space. If the field

dp_buffer_user_provided is zero then the input fields dp_buffer_len and dp_buffer are

ignored by libdwarf and space is malloc’d as needed.

rev 2.58, May 18, 2017 - 29 -



- 30 -

The field dp_reserved is ignored, it is reserved for future use.

When the structure is returned by dwarf_register_printf_callback() the values of the fields

before the dwarf_register_printf_callback() call are returned.

6.4.3 dwarf_printf_callback_function_type

typedef void (* dwarf_printf_callback_function_type)(void * user_pointer,

const char * linecontent);

Any application using the callbacks needs to use the function

dwarf_register_printf_callback() and supply a function matching the above function

prototype from libdwarf.h.

6.4.4 Example of printf callback use in a C++ application using libdwarf

struct Dwarf_Printf_Callback_Info_s printfcallbackdata;

memset(&printfcallbackdata,0,sizeof(printfcallbackdata));

printfcallbackdata.dp_fptr = printf_callback_for_libdwarf;

dwarf_register_printf_callback(dbg,&printfcallbackdata);

Assuming the user implements something

like the following function in her application:

void

printf_callback_for_libdwarf(void *userdata,const char *data)

{

cout << data;

}

It is crucial that the user’s callback function copies or prints the data immediately. Once the user callback

function returns the data pointer may change or become stale without warning.

6.5 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries, whether from a .debug_info,

.debug_types, .debug_info.dwo, or .debug_types.dwo .

Since all such sections use similar formats, one set of functions suffices.

6.5.1 dwarf_get_die_section_name()

int

dwarf_get_die_section_name(Dwarf_Debug dbg,

Dwarf_Bool is_info,

const char ** sec_name,

Dwarf_Error * error);

dwarf_get_die_section_name() lets consumers access the object section name when no specific

rev 2.58, May 18, 2017 - 30 -



- 31 -

DIE is at hand. This is useful for applications wanting to print the name, but of course the object section

name is not really a part of the DWARF information. Most applications will probably not call this function.

It can be called at any time after the Dwarf_Debug initialization is done. See also

dwarf_get_die_section_name_b().

The function dwarf_get_die_section_name() operates on the either the .debug_info[.dwo]

section (if is_info is non-zero) or .debug_types[.dwo] section (if is_info is zero).

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.5.2 dwarf_get_die_section_name_b()

int

dwarf_get_die_section_name_b(Dwarf_Die die,

const char ** sec_name,

Dwarf_Error * error);

dwarf_get_die_section_name_b() lets consumers access the object section name when one has a

DIE. This is useful for applications wanting to print the name, but of course the object section name is not

really a part of the DWARF information. Most applications will probably not call this function. It can be

called at any time after the Dwarf_Debug initialization is done. See also

dwarf_get_die_section_name().

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.5.3 dwarf_next_cu_header_d()

rev 2.58, May 18, 2017 - 31 -



- 32 -

int dwarf_next_cu_header_d(

Dwarf_debug dbg,

Dwarf_Bool is_info,

Dwarf_Unsigned *cu_header_length,

Dwarf_Half *version_stamp,

Dwarf_Unsigned *abbrev_offset,

Dwarf_Half *address_size,

Dwarf_Half *offset_size,

Dwarf_Half *extension_size,

Dwarf_Sig8 *signature,

Dwarf_Unsigned *typeoffset

Dwarf_Unsigned *next_cu_header,

Dwarf_Half *header_cu_type,

Dwarf_Error *error);

The function dwarf_next_cu_header_d() operates on the either the .debug_info section (if

is_info is non-zero) or .debug_types section (if is_info is zero). It returns DW_DLV_ERROR if it

fails, and DW_DLV_OK if it succeeds.

If it succeeds, *next_cu_header is set to the offset in the .debug_info section of the next compilation-

unit header if it succeeds. On reading the last compilation-unit header in the .debug_info section it contains

the size of the .debug_info or debug_types section. The next call to dwarf_next_cu_header_b()

returns DW_DLV_NO_ENTRY without reading a compilation-unit or setting *next_cu_header.

Subsequent calls to dwarf_next_cu_header() repeat the cycle by reading the first compilation-unit

and so on.

The other values returned through pointers are the values in the compilation-unit header. If any of

cu_header_length, version_stamp, abbrev_offset, address_size, offset_size,

extension_size, signature, or typeoffset, is NULL, the argument is ignored (meaning it is not

an error to provide a NULL pointer for any or all of these arguments).

cu_header_length returns the length in bytes of the compilation unit header.

version_stamp returns the section version, which would be (for .debug_info) 2 for DWARF2, 3 for

DWARF4, or 4 for DWARF4.

abbrev_offset returns the .debug_abbrev section offset of the abbreviations for this compilation unit.

address_size returns the size of an address in this compilation unit. Which is usually 4 or 8.

offset_size returns the size in bytes of an offset for the compilation unit. The offset size is 4 for 32bit

dwarf and 8 for 64bit dwarf. This is the offset size in dwarf data, not the address size inside the executable

code. The offset size can be 4 even if embedded in a 64bit elf file (which is normal for 64bit elf), and can

be 8 even in a 32bit elf file (which probably will never be seen in practice).

The extension_size pointer is only relevant if the offset_size pointer returns 8. The value is not

normally useful but is returned through the pointer for completeness. The pointer extension_size

returns 0 if the CU is MIPS/IRIX non-standard 64bit dwarf (MIPS/IRIX 64bit dwarf was created years

before DWARF3 defined 64bit dwarf) and returns 4 if the dwarf uses the standard 64bit extension (the 4 is

the size in bytes of the 0xffffffff in the initial length field which indicates the following 8 bytes in the

.debug_info section are the real length). See the DWARF3 or DWARF4 standard, section 7.4.

The signature pointer is only relevant if

the CU has a type signature, and if relevant the 8 byte type signature of the .debug_types CU header is

assigned through the pointer.

The typeoffset pointer is only relevant the CU has a type signature if relevant the local offset within

the CU of the the type offset the .debug_types entry represents is assigned through the pointer. The

typeoffset matters because a DW_AT_type referencing the type unit may reference an inner type, such

as a C++ class in a C++ namespace, but the type itself has the enclosing namespace in the .debug_type

rev 2.58, May 18, 2017 - 32 -



- 33 -

type_unit.

The header_cu_type pointer is applicable to all CU headers. The value returned through the pointer is

either DW_UT_compile DW_UT_partial DW_UT_type and identifies the header type of this CU. In

DWARF4 a DW_UT_type will be in .debug_types, but in DWARF5 these compilation units are in

.debug_info and the Debug Fission .debug_info.dwo .

6.5.4 dwarf_next_cu_header_c()

int dwarf_next_cu_header_c(

Dwarf_debug dbg,

Dwarf_Bool is_info,

Dwarf_Unsigned *cu_header_length,

Dwarf_Half *version_stamp,

Dwarf_Unsigned *abbrev_offset,

Dwarf_Half *address_size,

Dwarf_Half *offset_size,

Dwarf_Half *extension_size,

Dwarf_Sig8 *signature,

Dwarf_Unsigned *typeoffset

Dwarf_Unsigned *next_cu_header,

Dwarf_Error *error);

The function dwarf_next_cu_header_c() operates on the either the .debug_info section (if

is_info is non-zero) or .debug_types section (if is_info is zero).

It operates exactly like dwarf_next_cu_header_d() but is missing the header_type field. This

is kept for compatibility. All code using this should be changed to use dwarf_next_cu_header_d()

6.5.5 dwarf_next_cu_header_b()

int dwarf_next_cu_header_b(

Dwarf_debug dbg,

Dwarf_Unsigned *cu_header_length,

Dwarf_Half *version_stamp,

Dwarf_Unsigned *abbrev_offset,

Dwarf_Half *address_size,

Dwarf_Half *offset_size,

Dwarf_Half *extension_size,

Dwarf_Unsigned *next_cu_header,

Dwarf_Error *error);

This is obsolete as of October 2011 though supported.

The function dwarf_next_cu_header_b() operates on the .debug_info section. It operates exactly

like dwarf_next_cu_header_c() but is missing the signature, and typeoffset fields. This is

kept for compatibility. All code using this should be changed to use dwarf_next_cu_header_c()

6.5.6 dwarf_next_cu_header()

The following is the original form, missing the offset_size, extension_size, signature, and

typeoffset fields in dwarf_next_cu_header_c(). This is kept for compatibility. All code using

rev 2.58, May 18, 2017 - 33 -



- 34 -

this should be changed to use dwarf_next_cu_header_c()

int dwarf_next_cu_header(

Dwarf_debug dbg,

Dwarf_Unsigned *cu_header_length,

Dwarf_Half *version_stamp,

Dwarf_Unsigned *abbrev_offset,

Dwarf_Half *address_size,

Dwarf_Unsigned *next_cu_header,

Dwarf_Error *error);

6.5.7 dwarf_siblingof_b()

int dwarf_siblingof_b(

Dwarf_Debug dbg,

Dwarf_Die die,

Dwarf_Bool is_info,

Dwarf_Die *return_sib,

Dwarf_Error *error)

The function dwarf_siblingof_b() returns DW_DLV_ERROR and sets the error pointer on error.

If there is no sibling it returns DW_DLV_NO_ENTRY. When it succeeds, dwarf_siblingof_b()

returns DW_DLV_OK and sets *return_sib to the Dwarf_Die descriptor of the sibling of die.

If is_info is non-zero then the die is assumed to refer to a .debug_info DIE. If is_info is zero then

the die is assumed to refer to a .debug_types DIE. Note that the first call (the call that gets the

compilation-unit DIE in a compilation unit) passes in a NULL die so having the caller pass in is_info

is essential. And if die is non-NULL it is still essential for the call to pass in is_info set properly to

reflect the section the DIE came from. The function dwarf_get_die_infotypes_flag() is of

interest as it returns the proper is_info value from any non-NULL die pointer.

If die is NULL, the Dwarf_Die descriptor of the first die in the compilation-unit is returned. This die

has the DW_TAG_compile_unit, DW_TAG_partial_unit, or DW_TAG_type_unit tag.

Figure 7. Example4 dwarf_siblingof()

void example4(Dwarf_Debug dbg,Dwarf_Die in_die,Dwarf_Bool is_info)

{

Dwarf_Die return_sib = 0;

Dwarf_Error error = 0;

int res = 0;

/* in_die might be NULL or a valid Dwarf_Die */

res = dwarf_siblingof_b(dbg,in_die,is_info,&return_sib, &error);

if (res == DW_DLV_OK) {

/* Use return_sib here. */

dwarf_dealloc(dbg, return_sib, DW_DLA_DIE);

/* return_sib is no longer usable for anything, we

ensure we do not use it accidentally with: */

return_sib = 0;

}

}

rev 2.58, May 18, 2017 - 34 -



- 35 -

6.5.8 dwarf_siblingof()

int dwarf_siblingof(

Dwarf_Debug dbg,

Dwarf_Die die,

Dwarf_Die *return_sib,

Dwarf_Error *error)

int dwarf_siblingof() operates exactly the same as int dwarf_siblingof_b(), but int

dwarf_siblingof() refers only to .debug_info DIEs.

6.5.9 dwarf_child()

int dwarf_child(

Dwarf_Die die,

Dwarf_Die *return_kid,

Dwarf_Error *error)

The function dwarf_child() returns DW_DLV_ERROR and sets the error die on error. If there is no

child it returns DW_DLV_NO_ENTRY. When it succeeds, dwarf_child() returns DW_DLV_OK and

sets *return_kid to the Dwarf_Die descriptor of the first child of die. The function

dwarf_siblingof() can be used with the return value of dwarf_child() to access the other

children of die.

Figure 8. Example5 dwarf_child()

void example5(Dwarf_Debug dbg,Dwarf_Die in_die)

{

Dwarf_Die return_kid = 0;

Dwarf_Error error = 0;

int res = 0;

res = dwarf_child(in_die,&return_kid, &error);

if (res == DW_DLV_OK) {

/* Use return_kid here. */

dwarf_dealloc(dbg, return_kid, DW_DLA_DIE);

/* return_die is no longer usable for anything, we

ensure we do not use it accidentally with: */

return_kid = 0;

}

}

6.5.10 dwarf_offdie_b()

rev 2.58, May 18, 2017 - 35 -



- 36 -

int dwarf_offdie_b(

Dwarf_Debug dbg,

Dwarf_Off offset,

Dwarf_Bool is_info,

Dwarf_Die *return_die,

Dwarf_Error *error)

The function dwarf_offdie_b() returns DW_DLV_ERROR and sets the error die on error. When it

succeeds, dwarf_offdie_b() returns DW_DLV_OK and sets *return_die to the the Dwarf_Die

descriptor of the debugging information entry at offset in the section containing debugging information

entries i.e the .debug_info section. A return of DW_DLV_NO_ENTRY means that the offset in the

section is of a byte containing all 0 bits, indicating that there is no abbreviation code. Meaning this ’die

offset’ is not the offset of a real die, but is instead an offset of a null die, a padding die, or of some random

zero byte: this should not be returned in normal use.

It is the user’s responsibility to make sure that offset is the start of a valid debugging information entry.

The result of passing it an invalid offset could be chaos.

If is_info is non-zero the offset must refer to a .debug_info section offset. If is_info zero the

offset must refer to a .debug_types section offset. Error returns or misleading values may result if the

is_info flag or the offset value are incorrect.

Figure 9. Example6 dwarf_offdie_b()

void example6(Dwarf_Debug dbg,Dwarf_Off die_offset,Dwarf_Bool is_info)

{

Dwarf_Error error = 0;

Dwarf_Die return_die = 0;

int res = 0;

res = dwarf_offdie_b(dbg,die_offset,is_info,&return_die, &error);

if (res == DW_DLV_OK) {

/* Use return_die here. */

dwarf_dealloc(dbg, return_die, DW_DLA_DIE);

/* return_die is no longer usable for anything, we

ensure we do not use it accidentally with: */

return_die = 0;

} else {

/* res could be NO ENTRY or ERROR, so no

dealloc necessary. */

}

}

6.5.11 dwarf_offdie()

int dwarf_offdie(

Dwarf_Debug dbg,

Dwarf_Off offset,

Dwarf_Die *return_die,

Dwarf_Error *error)

The function dwarf_offdie() is obsolete, use dwarf_offdie_b() instead. The function is still

supported in the library, but only references the .debug_info section.

rev 2.58, May 18, 2017 - 36 -



- 37 -

6.5.12 dwarf_validate_die_sibling()

int validate_die_sibling(

Dwarf_Die sibling,

Dwarf_Off *offset)

When used correctly in a depth-first walk of a DIE tree this function validates that any DW_AT_sibling

attribute gives the same offset as the direct tree walk. That is the only purpose of this function.

The function dwarf_validate_die_sibling() returns DW_DLV_OK if the last die processed in a

depth-first DIE tree walk was the same offset as generated by a call to dwarf_siblingof(). Meaning

that the DW_AT_sibling attribute value, if any, was correct.

If the conditions are not met then DW_DLV_ERROR is returned and *offset is set to the offset in the

.debug_info section of the last DIE processed. If the application prints the offset a knowledgeable user may

be able to figure out what the compiler did wrong.

6.6 Debugging Information Entry Query Operations

These queries return specific information about debugging information entries or a descriptor that can be

used on subsequent queries when given a Dwarf_Die descriptor. Note that some operations are specific

to debugging information entries that are represented by a Dwarf_Die descriptor of a specific type. For

example, not all debugging information entries contain an attribute having a name, so consequently, a call

to dwarf_diename() using a Dwarf_Die descriptor that does not have a name attribute will return

DW_DLV_NO_ENTRY. This is not an error, i.e. calling a function that needs a specific attribute is not an

error for a die that does not contain that specific attribute.

There are several methods that can be used to obtain the value of an attribute in a given die:

1. Call dwarf_hasattr() to determine if the debugging information entry has the attribute of

interest prior to issuing the query for information about the attribute.

2. Supply an error argument, and check its value after the call to a query indicates an unsuccessful

return, to determine the nature of the problem. The error argument will indicate whether an error

occurred, or the specific attribute needed was missing in that die.

3. Arrange to have an error handling function invoked upon detection of an error (see

dwarf_init()).

4. Call dwarf_attrlist() and iterate through the returned list of attributes, dealing with each one

as appropriate.

6.6.1 dwarf_get_die_infotypes_flag()

Dwarf_Bool dwarf_get_die_infotypes_flag(Dwarf_Die die)

The function dwarf_tag() returns the section flag indicating which section the DIE originates from. If

the returned value is non-zero the DIE originates from the .debug_info section. If the returned value is zero

the DIE originates from the .debug_types section.

rev 2.58, May 18, 2017 - 37 -



- 38 -

6.6.2 dwarf_tag()

int dwarf_tag(

Dwarf_Die die,

Dwarf_Half *tagval,

Dwarf_Error *error)

The function dwarf_tag() returns the tag of die through the pointer tagval if it succeeds. It

returns DW_DLV_OK if it succeeds. It returns DW_DLV_ERROR on error.

6.6.3 dwarf_dieoffset()

int dwarf_dieoffset(

Dwarf_Die die,

Dwarf_Off * return_offset,

Dwarf_Error *error)

When it succeeds, the function dwarf_dieoffset() returns DW_DLV_OK and sets

*return_offset to the position of die in the section containing debugging information entries (the

return_offset is a section-relative offset). In other words, it sets return_offset to the offset of

the start of the debugging information entry described by die in the section containing dies i.e

.debug_info. It returns DW_DLV_ERROR on error.

6.6.4 dwarf_debug_addr_index_to_addr()

int dwarf_debug_addr_index_to_addr(Dwarf_Die /*die*/,

Dwarf_Unsigned index,

Dwarf_Addr * return_addr,

Dwarf_Error * error);

Attributes with form DW_FORM_addrx, the operation DW_OP_addrx, or certain of the split-dwarf

location list entries give an index value to a machine address in the .debug_addr section (which is always in

.debug_addr even when the form/operation are in a split dwarf .dwo section).

On successful return this function turns such an index into a target address value through the pointer

return_addr .

If there is an error this may return DW_ DW_DLV_ERROR and it will have returned an error through

*error.

If there is no available .debug_addr section this may return DW_DLV_NO_ENTRY.

6.6.5 dwarf_die_CU_offset()

int dwarf_die_CU_offset(

Dwarf_Die die,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_die_CU_offset() is similar to dwarf_dieoffset(), except that it puts the

rev 2.58, May 18, 2017 - 38 -



- 39 -

offset of the DIE represented by the Dwarf_Die die, from the start of the compilation-unit that it

belongs to rather than the start of .debug_info (the return_offset is a CU-relative offset).

6.6.6 dwarf_die_offsets()

int dwarf_die_offsets(

Dwarf_Die die,

Dwarf_Off *global_off,

Dwarf_Off *cu_off,

Dwarf_Error *error)

The function dwarf_die_offsets() is a combination of dwarf_dieoffset() and

dwarf_die_cu_offset() in that it returns both the global .debug_info offset and the CU-relative

offset of the die in a single call.

6.6.7 dwarf_ptr_CU_offset()

int dwarf_ptr_CU_offset(

Dwarf_CU_Context cu_context,

Dwarf_Byte_ptr di_ptr ,

Dwarf_Off *cu_off)

Given a valid CU context pointer and a pointer into that CU context, the function

dwarf_ptr_CU_offset() returns DW_DLV_OK and sets *cu_off to the CU-relative (local) offset

in that CU.

6.6.8 dwarf_CU_dieoffset_given_die()

int dwarf_CU_dieoffset_given_die(

Dwarf_Die given_die,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_CU_dieoffset_given_die() is similar to dwarf_die_CU_offset(),

except that it puts the global offset of the CU DIE owning given_die of .debug_info (the

return_offset is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the

return_offset can be passed to dwarf_offdie_b() to return a pointer to the CU die of the CU

owning the given_die passed to dwarf_CU_dieoffset_given_die(). The consumer can extract

information from the CU die and the given_die (in the normal way) and print it.

An example (a snippet) of code using this function follows. It assumes that in_die is a DIE in

.debug_info that, for some reason, you have decided needs CU context printed (assuming

print_die_data does some reasonable printing).

Figure 10. Example7 dwarf_CU_dieoffset_given_die()

rev 2.58, May 18, 2017 - 39 -



- 40 -

void example7(Dwarf_Debug dbg, Dwarf_Die in_die,Dwarf_Bool is_info)

{

int res = 0;

Dwarf_Off cudieoff = 0;

Dwarf_Die cudie = 0;

Dwarf_Error error = 0;

print_die_data(dbg,in_die);

res = dwarf_CU_dieoffset_given_die(in_die,&cudieoff,&error);

if(res != DW_DLV_OK) {

/* FAIL */

return;

}

res = dwarf_offdie_b(dbg,cudieoff,is_info,&cudie,&error);

if(res != DW_DLV_OK) {

/* FAIL */

return;

}

print_die_data(dbg,cudie);

dwarf_dealloc(dbg,cudie, DW_DLA_DIE);

}

y

6.6.9 dwarf_die_CU_offset_range()

int dwarf_die_CU_offset_range(

Dwarf_Die die,

Dwarf_Off *cu_global_offset,

Dwarf_Off *cu_length,

Dwarf_Error *error)

The function dwarf_die_CU_offset_range() returns the offset of the beginning of the CU and the

length of the CU. The offset and length are of the entire CU that this DIE is a part of. It is used by

dwarfdump (for example) to check the validity of offsets. Most applications will have no reason to call this

function.

6.6.10 dwarf_diename()

int dwarf_diename(

Dwarf_Die die,

char ** return_name,

Dwarf_Error *error)

When it succeeds, the function dwarf_diename() returns DW_DLV_OK and sets *return_name to a

pointer to a null-terminated string of characters that represents the name attribute (DW_AT_name) of die.

The storage pointed to by a successful return of dwarf_diename() should be freed using the allocation

type DW_DLA_STRING when no longer of interest (see dwarf_dealloc()).

rev 2.58, May 18, 2017 - 40 -



- 41 -

It returns DW_DLV_NO_ENTRY if die does not have a name attribute. It returns DW_DLV_ERROR if an

error occurred.

6.6.11 dwarf_die_text()

int dwarf_die_text(

Dwarf_Die die,

Dwarf_Half attrnum,

char ** return_name,

Dwarf_Error *error)

When it succeeds, the function dwarf_die_text() returns DW_DLV_OK and sets *return_name to

a pointer to a null-terminated string of characters that represents a string-value attribute of die if an

attribute attrnum is present.

The storage pointed to by a successful return of dwarf_die_text() should be freed using the

allocation type DW_DLA_STRING when no longer of interest (see dwarf_dealloc()).

It returns DW_DLV_NO_ENTRY if die does not have the attribute attrnum. It returns DW_DLV_ERROR

if an error occurred.

6.6.12 dwarf_die_abbrev_code()

int dwarf_die_abbrev_code( Dwarf_Die die)

The function returns the abbreviation code of the DIE. That is, it returns the abbreviation "index" into the

abbreviation table for the compilation unit of which the DIE is a part. It cannot fail. No errors are possible.

The pointer die() must not be NULL.

6.6.13 dwarf_die_abbrev_children_flag()

int dwarf_die_abbrev_children_flag( Dwarf_Die die,

Dwarf_Half *has_child)

The function returns the has-children flag of the die passed in through the *has_child passed in and

returns DW_DLV_OK on success. A non-zero value of *has_child means the die has children.

On failure it returns DW_DLV_ERROR.

The function was developed to let consumer code do better error reporting in some circumstances, it is not

generally needed.

6.6.14 dwarf_die_abbrev_global_offset()

int dwarf_die_abbrev_global_offset(Dwarf_Die die,

Dwarf_Off * abbrev_offset,

Dwarf_Unsigned * abbrev_count,

Dwarf_Error* error);

rev 2.58, May 18, 2017 - 41 -



- 42 -

The function allows more detailed printing of abbreviation data. It is handy for analyzing abbreviations but

is not normally needed by applications. The function first appears in March 2016.

On success the function returns DW_DLV_OK and sets *abbrev_offset to the global offset in the

.debug_abbrev section of the abbreviation. It also sets *abbrev_count to the number of

attribute/form pairs in the abbreviation entry. It is possible, though unusual, for the count to be zero

(meaning there is abbreviation instance and a TAG instance which have no attributes).

On failure it returns DW_DLV_ERROR and sets *error

It should never return DW_DLV_NO_ENTRY, but callers should allow for that possibility..

6.6.15 dwarf_get_version_of_die()

int dwarf_get_version_of_die(Dwarf_Die die,

Dwarf_Half *version,

Dwarf_Half *offset_size)

The function returns the CU context version through *version and the CU context offset-size through

*offset_size and returns DW_DLV_OK on success.

In case of error, the only errors possible involve an inappropriate NULL die pointer so no Dwarf_Debug

pointer is available. Therefore setting a Dwarf_Error would not be very meaningful (there is no

Dwarf_Debug to attach it to). The function returns DW_DLV_ERROR on error.

The values returned through the pointers are the values two arguments to dwarf_get_form_class() requires.

6.6.16 dwarf_attrlist()

int dwarf_attrlist(

Dwarf_Die die,

Dwarf_Attribute** attrbuf,

Dwarf_Signed *attrcount,

Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_attrlist() sets attrbuf to point to an array of

Dwarf_Attribute descriptors corresponding to each of the attributes in die, and returns the number of

elements in the array through attrcount. DW_DLV_NO_ENTRY is returned if the count is zero (no

attrbuf is allocated in this case). DW_DLV_ERROR is returned on error. On a successful return from

dwarf_attrlist(), each of the Dwarf_Attribute descriptors should be individually freed using

dwarf_dealloc() with the allocation type DW_DLA_ATTR, followed by free-ing the list pointed to by

*attrbuf using dwarf_dealloc() with the allocation type DW_DLA_LIST, when no longer of

interest (see dwarf_dealloc()).

Freeing the attrlist:

Figure 11. Example8 dwarf_attrlist() free

rev 2.58, May 18, 2017 - 42 -



- 43 -

void example8(Dwarf_Debug dbg, Dwarf_Die somedie)

{

Dwarf_Signed atcount = 0;

Dwarf_Attribute *atlist = 0;

Dwarf_Error error = 0;

int errv = 0;

errv = dwarf_attrlist(somedie, &atlist,&atcount, &error);

if (errv == DW_DLV_OK) {

Dwarf_Signed i = 0;

for (i = 0; i < atcount; ++i) {

/* use atlist[i] */

dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}

dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

}

6.6.17 dwarf_hasattr()

int dwarf_hasattr(

Dwarf_Die die,

Dwarf_Half attr,

Dwarf_Bool *return_bool,

Dwarf_Error *error)

When it succeeds, the function dwarf_hasattr() returns DW_DLV_OK and sets *return_bool to

non-zero if die has the attribute attr and zero otherwise. If it fails, it returns DW_DLV_ERROR.

6.6.18 dwarf_attr()

int dwarf_attr(

Dwarf_Die die,

Dwarf_Half attr,

Dwarf_Attribute *return_attr,

Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_attr() sets *return_attr to the

Dwarf_Attribute descriptor of die having the attribute attr. It returns DW_DLV_NO_ENTRY if

attr is not contained in die. It returns DW_DLV_ERROR if an error occurred.

6.6.19 dwarf_lowpc()

int dwarf_lowpc(

Dwarf_Die die,

Dwarf_Addr * return_lowpc,

Dwarf_Error * error)

The function dwarf_lowpc() returns DW_DLV_OK and sets *return_lowpc to the low program

counter value associated with the die descriptor if die represents a debugging information entry with the

rev 2.58, May 18, 2017 - 43 -



- 44 -

DW_AT_low_pc attribute. It returns DW_DLV_NO_ENTRY if die does not have this attribute. It returns

DW_DLV_ERROR if an error occurred.

6.6.20 dwarf_highpc_b()

int dwarf_highpc_b(

Dwarf_Die die,

Dwarf_Addr * return_highpc,

Dwarf_Half * return_form*/,

enum Dwarf_Form_Class * return_class*/,

Dwarf_Error *error)

The function dwarf_highpc_b() returns DW_DLV_OK and sets *return_highpc to the value of

the DW_AT_high_pc attribute. It also sets return_form to the FORM of the attribute. It also sets

return_class to the form class of the attribute.

If the form class returned is DW_FORM_CLASS_ADDRESS the return_highpc is an actual pc address

(1 higher than the address of the last pc in the address range).. If the form class returned is

DW_FORM_CLASS_CONSTANT the return_highpc is an offset from the value of the the DIE’s low

PC address (see DWARF4 section 2.17.2 Contiguous Address Range).

It returns DW_DLV_NO_ENTRY if die does not have the DW_AT_high_pc attribute.

It returns DW_DLV_ERROR if an error occurred.

6.6.21 dwarf_highpc()

int dwarf_highpc(

Dwarf_Die die,

Dwarf_Addr * return_highpc,

Dwarf_Error *error)

The function dwarf_highpc() returns DW_DLV_OK and sets *return_highpc the high program

counter value associated with the die descriptor if die represents a debugging information entry with the

DW_AT_high_pc attribute and the form is DW_FORM_addr (meaning the form is of class

address).

This function is useless for a DW_AT_high_pc which is encoded as a constant (which was first possible

in DWARF4).

It returns DW_DLV_NO_ENTRY if die does not have this attribute.

It returns DW_DLV_ERROR if an error occurred or if the form is not of class address.

6.6.22 dwarf_dietype_offset()

int dwarf_dietype_offset(Dwarf_Die /*die*/,

Dwarf_Off * /*return_off*/,

Dwarf_Error * /*error*/);

On success the function dwarf_dietype_offset() returns the offset referred to by DW_AT_type

attribute of die.

rev 2.58, May 18, 2017 - 44 -



- 45 -

DW_DLV_NO_ENTRY is returned if the die has no DW_AT_type attribute.

DW_DLV_ERROR is returned if an error is detected.

This feature was introduced in February 2016.

6.6.23 dwarf_offset_list()

int dwarf_offset_list(Dwarf_Debug dbg,

Dwarf_Off offset,

Dwarf_Bool is_info,

Dwarf_Off ** offbuf,

Dwarf_Unsigned * offcnt,

Dwarf_Error * error);

On success The function dwarf_offset_list() returns DW_DLV_OK and sets *offbuf to point to

an array of the offsets of the direct children of the die at offset. It sets *offcnt to point to the count of

entries in the offset array

In case of error it returns DW_DLV_OK.

It does not return DW_DLV_NO_ENTRY but callers should allow for that possibility anyway.

This feature was introduced in March 2016.

Freeing the offset_list is done as follows.:

Figure 12. Exampleoffset_list dwarf_offset_list() free

void exampleoffset_list(Dwarf_Debug dbg, Dwarf_Off dieoffset,

Dwarf_Bool is_info)

{

Dwarf_Unsigned offcnt = 0;

Dwarf_Off *offbuf = 0;

Dwarf_Error error = 0;

int errv = 0;

errv = dwarf_offset_list(dbg,dieoffset, is_info,

&offbuf,&offcnt, &error);

if (errv == DW_DLV_OK) {

Dwarf_Unsigned i = 0;

for (i = 0; i < offcnt; ++i) {

/* use offbuf[i] */

}

dwarf_dealloc(dbg, offbuf, DW_DLA_LIST);

}

}

6.6.24 dwarf_bytesize()

rev 2.58, May 18, 2017 - 45 -



- 46 -

Dwarf_Signed dwarf_bytesize(

Dwarf_Die die,

Dwarf_Unsigned *return_size,

Dwarf_Error *error)

When it succeeds, dwarf_bytesize() returns DW_DLV_OK and sets *return_size to the number

of bytes needed to contain an instance of the aggregate debugging information entry represented by die. It

returns DW_DLV_NO_ENTRY if die does not contain the byte size attribute DW_AT_byte_size. It

returns DW_DLV_ERROR if an error occurred.

6.6.25 dwarf_bitsize()

int dwarf_bitsize(

Dwarf_Die die,

Dwarf_Unsigned *return_size,

Dwarf_Error *error)

When it succeeds, dwarf_bitsize() returns DW_DLV_OK and sets *return_size to the number of

bits occupied by the bit field value that is an attribute of the given die. It returns DW_DLV_NO_ENTRY if

die does not contain the bit size attribute DW_AT_bit_size. It returns DW_DLV_ERROR if an error

occurred.

6.6.26 dwarf_bitoffset()

int dwarf_bitoffset(

Dwarf_Die die,

Dwarf_Unsigned *return_size,

Dwarf_Error *error)

When it succeeds, dwarf_bitoffset() returns DW_DLV_OK and sets *return_size to the number

of bits to the left of the most significant bit of the bit field value. This bit offset is not necessarily the net bit

offset within the structure or class , since DW_AT_data_member_location may give a byte offset to

this DIE and the bit offset returned through the pointer does not include the bits in the byte offset. It

returns DW_DLV_NO_ENTRY if die does not contain the bit offset attribute DW_AT_bit_offset. It

returns DW_DLV_ERROR if an error occurred.

6.6.27 dwarf_srclang()

int dwarf_srclang(

Dwarf_Die die,

Dwarf_Unsigned *return_lang,

Dwarf_Error *error)

When it succeeds, dwarf_srclang() returns DW_DLV_OK and sets *return_lang to a code

indicating the source language of the compilation unit represented by the descriptor die. It returns

DW_DLV_NO_ENTRY if die does not represent a source file debugging information entry (i.e. contain the

attribute DW_AT_language). It returns DW_DLV_ERROR if an error occurred.

6.6.28 dwarf_arrayorder()

rev 2.58, May 18, 2017 - 46 -



- 47 -

int dwarf_arrayorder(

Dwarf_Die die,

Dwarf_Unsigned *return_order,

Dwarf_Error *error)

When it succeeds, dwarf_arrayorder() returns DW_DLV_OK and sets *return_order a code

indicating the ordering of the array represented by the descriptor die. It returns DW_DLV_NO_ENTRY if

die does not contain the array order attribute DW_AT_ordering. It returns DW_DLV_ERROR if an error

occurred.

6.7 Attribute Queries

Based on the attributes form, these operations are concerned with returning uninterpreted attribute data.

Since it is not always obvious from the return value of these functions if an error occurred, one should

always supply an error parameter or have arranged to have an error handling function invoked (see

dwarf_init() ) to determine the validity of the returned value and the nature of any errors that may

have occurred.

A Dwarf_Attribute descriptor describes an attribute of a specific die. Thus, each

Dwarf_Attribute descriptor is implicitly associated with a specific die.

6.7.1 dwarf_hasform()

int dwarf_hasform(

Dwarf_Attribute attr,

Dwarf_Half form,

Dwarf_Bool *return_hasform,

Dwarf_Error *error)

The function dwarf_hasform() returns DW_DLV_OK and and puts a non-zero

value in the *return_hasform boolean if the attribute represented by the Dwarf_Attribute

descriptor attr has the attribute form form. If the attribute does not have that form zero is put into

*return_hasform. DW_DLV_ERROR is returned on error.

6.7.2 dwarf_whatform()

int dwarf_whatform(

Dwarf_Attribute attr,

Dwarf_Half *return_form,

Dwarf_Error *error)

When it succeeds, dwarf_whatform() returns DW_DLV_OK and sets *return_form to the attribute

form code of the attribute represented by the Dwarf_Attribute descriptor attr. It returns

DW_DLV_ERROR on error.

An attribute using DW_FORM_indirect effectively has two forms. This function returns the ’final’ form

for DW_FORM_indirect, not the DW_FORM_indirect itself. This function is what most applications

will want to call.

6.7.3 dwarf_whatform_direct()

rev 2.58, May 18, 2017 - 47 -



- 48 -

int dwarf_whatform_direct(

Dwarf_Attribute attr,

Dwarf_Half *return_form,

Dwarf_Error *error)

When it succeeds, dwarf_whatform_direct() returns DW_DLV_OK and sets *return_form to

the attribute form code of the attribute represented by the Dwarf_Attribute descriptor attr. It

returns DW_DLV_ERROR on error. An attribute using DW_FORM_indirect effectively has two forms.

This returns the form ’directly’ in the initial form field. That is, it returns the ’initial’ form of the attribute.

So when the form field is DW_FORM_indirect this call returns the DW_FORM_indirect form, which

is sometimes useful for dump utilities.

It is confusing that the _direct() function returns DW_FORM_indirect if an indirect form is involved. Just

think of this as returning the initial form the first form value seen for the attribute, which is also the final

form unless the initial form is DW_FORM_indirect.

6.7.4 dwarf_whatattr()

int dwarf_whatattr(

Dwarf_Attribute attr,

Dwarf_Half *return_attr,

Dwarf_Error *error)

When it succeeds, dwarf_whatattr() returns DW_DLV_OK and sets *return_attr to the attribute

code represented by the Dwarf_Attribute descriptor attr. It returns DW_DLV_ERROR on error.

6.7.5 dwarf_formref()

int dwarf_formref(

Dwarf_Attribute attr,

Dwarf_Off *return_offset,

Dwarf_Error *error)

When it succeeds, dwarf_formref() returns DW_DLV_OK and sets *return_offset to the CU-

relative offset represented by the descriptor attr if the form of the attribute belongs to the REFERENCE

class. attr must be a CU-local reference, not form DW_FORM_ref_addr and not

DW_FORM_sec_offset . It is an error for the form to not belong to the REFERENCE class. It returns

DW_DLV_ERROR on error.

Beginning November 2010: All DW_DLV_ERROR returns set *return_offset. Most errors set

*return_offset to zero, but for error DW_DLE_ATTR_FORM_OFFSET_BAD the function sets

*return_offset to the invalid offset (which allows the caller to print a more detailed error message).

See also dwarf_global_formref below.

6.7.6 dwarf_global_formref()

rev 2.58, May 18, 2017 - 48 -



- 49 -

int dwarf_global_formref(

Dwarf_Attribute attr,

Dwarf_Off *return_offset,

Dwarf_Error *error)

When it succeeds, dwarf_global_formref() returns DW_DLV_OK and sets *return_offset to

the section-relative offset represented by the descriptor attr if the form of the attribute belongs to the

REFERENCE or other section-references classes.

attr can be any leg al REFERENCE class form plus DW_FORM_ref_addr or

DW_FORM_sec_offset. It is an error for the form to not belong to one of the reference classes. It

returns DW_DLV_ERROR on error. See also dwarf_formref above.

The caller must determine which section the offset returned applies to. The function

dwarf_get_form_class() is useful to determine the applicable section.

The function converts CU relative offsets from forms such as DW_FORM_ref4 into global section offsets.

6.7.7 dwarf_convert_to_global_offset()

int dwarf_convert_to_global_offset(

Dwarf_Attribute attr,

Dwarf_Off offset,

Dwarf_Off *return_offset,

Dwarf_Error *error)

When it succeeds, dwarf_convert_to_global_offset() returns DW_DLV_OK and sets

*return_offset to the section-relative offset represented by the cu-relative offset offset if the form

of the attribute belongs to the REFERENCE class. attr must be a CU-local reference (DWARF class

REFERENCE) or form DW_FORM_ref_addr and the attr must be directly relevant for the calculated

*return_offset to mean anything.

The function returns DW_DLV_ERROR on error.

The function is not strictly necessary but may be a convenience for attribute printing in case of error.

6.7.8 dwarf_formaddr()

int dwarf_formaddr(

Dwarf_Attribute attr,

Dwarf_Addr * return_addr,

Dwarf_Error *error)

When it succeeds, dwarf_formaddr() returns DW_DLV_OK and sets *return_addr to the address

represented by the descriptor attr if the form of the attribute belongs to the ADDRESS class. It is an error

for the form to not belong to this class. It returns DW_DLV_ERROR on error.

One possible error that can arise (in a .dwo object file or a .dwp package file) is

DW_DLE_MISSING_NEEDED_DEBUG_ADDR_SECTION. Such an error means that the .dwo or .dwp

file is missing the .debug_addr section. When opening a .dwo object file or a .dwp package file one

should also open the corresponding executable and use dwarf_set_tied_dbg() to associate the

objects before calling dwarf_formaddr().

rev 2.58, May 18, 2017 - 49 -



- 50 -

H 3 "dwarf_get_debug_addr_index()"

int dwarf_get_debug_addr_index(

Dwarf_Attribute attr,

Dwarf_Unsigned * return_index,

Dwarf_Error *error)

dwarf_get_debug_addr_index() is only valid on attributes with form

DW_FORM_GNU_addr_index or DW_FORM_addrx.

The function makes it possible to print the index from a dwarf dumper program.

When it succeeds, dwarf_get_debug_addr_index() returns DW_DLV_OK and sets

*return_index to the attribute’s index (into the .debug_addr section).

It returns DW_DLV_ERROR on error.

6.7.9 dwarf_get_debug_str_index()

int dwarf_get_debug_str_index(

Dwarf_Attribute attr,

Dwarf_Unsigned * return_index,

Dwarf_Error * error);

For an attribute with form DW_FORM_strx or DW_FORM_GNU_str_index this function retrieves the

index (which refers to a .debug_str_offsets section in this .dwo).

If successful, the function dwarf_get_debug_str_index() returns DW_DLV_OK and returns the

index through the return_index() pointer.

If the passed in attribute does not have this form or there is no valid compilation unit context for the

attribute the function returns DW_DLV_ERROR.

DW_DLV_NO_ENTRY is not returned.

6.7.10 dwarf_formflag()

int dwarf_formflag(

Dwarf_Attribute attr,

Dwarf_Bool * return_bool,

Dwarf_Error *error)

When it succeeds, dwarf_formflag() returns DW_DLV_OK and sets *return_bool to the (one

unsigned byte) flag value. Any non-zero value means true. A zero value means false.

Before 29 November 2012 this would only return 1 or zero through the pointer, but that was always a

strange thing to do. The DWARF specification has always been clear that any non-zero value means true.

The function should report the value found truthfully, and now it does.

It returns DW_DLV_ERROR on error or if the attr does not have form flag.

rev 2.58, May 18, 2017 - 50 -



- 51 -

6.7.11 dwarf_formudata()

int dwarf_formudata(

Dwarf_Attribute attr,

Dwarf_Unsigned * return_uvalue,

Dwarf_Error * error)

The function dwarf_formudata() returns DW_DLV_OK and sets *return_uvalue to the

Dwarf_Unsigned value of the attribute represented by the descriptor attr if the form of the attribute

belongs to the CONSTANT class. It is an error for the form to not belong to this class. It returns

DW_DLV_ERROR on error.

Never returns DW_DLV_NO_ENTRY.

For DWARF2 and DWARF3, DW_FORM_data4 and DW_FORM_data8 are possibly class CONSTANT,

and for DWARF4 and later they are definitely class CONSTANT.

6.7.12 dwarf_formsdata()

int dwarf_formsdata(

Dwarf_Attribute attr,

Dwarf_Signed * return_svalue,

Dwarf_Error *error)

The function dwarf_formsdata() returns DW_DLV_OK and sets *return_svalue to the

Dwarf_Signed value of the attribute represented by the descriptor attr if the form of the attribute

belongs to the CONSTANT class. It is an error for the form to not belong to this class. If the size of the

data attribute referenced is smaller than the size of the Dwarf_Signed type, its value is sign extended. It

returns DW_DLV_ERROR on error.

Never returns DW_DLV_NO_ENTRY.

For DWARF2 and DWARF3, DW_FORM_data4 and DW_FORM_data8 are possibly class CONSTANT,

and for DWARF4 and later they are definitely class CONSTANT.

6.7.13 dwarf_formblock()

int dwarf_formblock(

Dwarf_Attribute attr,

Dwarf_Block ** return_block,

Dwarf_Error * error)

The function dwarf_formblock() returns DW_DLV_OK and sets *return_block to a pointer to a

Dwarf_Block structure containing the value of the attribute represented by the descriptor attr if the

form of the attribute belongs to the BLOCK class. It is an error for the form to not belong to this class. The

storage pointed to by a successful return of dwarf_formblock() should be freed using the allocation

type DW_DLA_BLOCK, when no longer of interest (see dwarf_dealloc()). It returns

DW_DLV_ERROR on error.

rev 2.58, May 18, 2017 - 51 -



- 52 -

6.7.14 dwarf_formstring()

int dwarf_formstring(

Dwarf_Attribute attr,

char ** return_string,

Dwarf_Error *error)

The function dwarf_formstring() returns DW_DLV_OK and sets *return_string to a pointer to

a null-terminated string containing the value of the attribute represented by the descriptor attr if the form

of the attribute belongs to the STRING class. It is an error for the form to not belong to this class. The

storage pointed to by a successful return of dwarf_formstring() should not be freed. The pointer

points into existing DWARF memory and the pointer becomes stale/invalid after a call to

dwarf_finish. dwarf_formstring() returns DW_DLV_ERROR on error.

6.7.15 dwarf_formsig8()

int dwarf_formsig8(

Dwarf_Attribute attr,

Dwarf_Sig8 * return_sig8,

Dwarf_Error * error)

The function dwarf_formsig8() returns DW_DLV_OK and copies the 8 byte signature to a

Dwarf_Sig8 structure provided by the caller if the form of the attribute is of form

DW_FORM_ref_sig8 ( a member of the REFERENCE class). It is an error for the form to be anything

but DW_FORM_ref_sig8. It returns DW_DLV_ERROR on error.

This form is used to refer to a type unit.

6.7.16 dwarf_formexprloc()

int dwarf_formexprloc(

Dwarf_Attribute attr,

Dwarf_Unsigned * return_exprlen,

Dwarf_Ptr * block_ptr,

Dwarf_Error * error)

The function dwarf_formexprloc() returns DW_DLV_OK and sets the two values thru the pointers to

the length and bytes of the DW_FORM_exprloc entry if the form of the attribute is of form

DW_FORM_experloc. It is an error for the form to be anything but DW_FORM_exprloc. It returns

DW_DLV_ERROR on error.

On success the value set through the return_exprlen pointer is the length of the location expression.

On success the value set through the block_ptr pointer is a pointer to the bytes of the location

expression itself.

6.7.17 dwarf_get_form_class()

rev 2.58, May 18, 2017 - 52 -



- 53 -

enum Dwarf_Form_Class dwarf_get_form_class(

Dwarf_Half dwversion,

Dwarf_Half attrnum,

Dwarf_Half offset_size,

Dwarf_Half form)

The function is just for the convenience of libdwarf clients that might wish to categorize the FORM of a

particular attribute. The DWARF specification divides FORMs into classes in Chapter 7 and this function

figures out the correct class for a form.

The dwversion passed in shall be the dwarf version of the compilation unit involved (2 for DWARF2, 3

for DWARF3, 4 for DWARF 4). The attrnum passed in shall be the attribute number of the attribute

involved (for example, DW_AT_name ). The offset_size passed in shall be the length of an offset in

the current compilation unit (4 for 32bit dwarf or 8 for 64bit dwarf). The form passed in shall be the

attribute form number. If form DW_FORM_indirect is passed in DW_FORM_CLASS_UNKNOWN will

be returned as this form has no defined ’class’.

When it returns DW_FORM_CLASS_UNKNOWN the function is simply saying it could not determine the

correct class given the arguments presented. Some user-defined attributes might have this problem.

The function dwarf_get_version_of_die() may be helpful in filling out arguments for a call to

dwarf_get_form_class().

6.7.18 dwarf_discr_list()

int dwarf_discr_list(

Dwarf_Debug dbg,

Dwarf_Small * blockpointer,

Dwarf_Unsigned blocklen,

Dwarf_Dsc_Head * dsc_head_out,

Dwarf_Unsigned * dsc_array_length_out,

Dwarf_Error * error)

Dwarf_Error *error)

When it succeeds, dwarf_discr_list() returns DW_DLV_OK and sets *dsc_head_out to a

pointer to the discriminant information for the discriminant list and sets *dsc_array_length_out to

the count of discriminant entries. The only current applicability is the block value of a

DW_AT_discr_list attribute.

Those values are useful for calls to dwarf_discr_entry_u() or dwarf_discr_entry_s() to get

the actual discriminant values. See the example below. It returns DW_DLV_NO_ENTRY if the block is

empty. It returns DW_DLV_ERROR if an error occurred.

When the call was successful and the Dwarf_Dsc_Head is no longer needed, call dwarf_dealloc()

to free all the space related to this.

rev 2.58, May 18, 2017 - 53 -



- 54 -

void example_discr_list(Dwarf_Debug dbg,

Dwarf_Die die,

Dwarf_Attribute attr,

Dwarf_Half attrnum,

Dwarf_Bool isunsigned,

Dwarf_Half theform,

Dwarf_Error *err)

{

/* The example here assumes that

attribute attr is a DW_AT_discr_list.

isunsigned should be set from the signedness

of the parent of ’die’ per DWARF rules for

DW_AT_discr_list. */

enum Dwarf_Form_Class fc = DW_FORM_CLASS_UNKNOWN;

Dwarf_Half version = 0;

Dwarf_Half offset_size = 0;

int wres = 0;

wres = dwarf_get_version_of_die(die,&version,&offset_size);

if (wres != DW_DLV_OK) {

/* FAIL */

return;

}

fc = dwarf_get_form_class(version,attrnum,offset_size,theform);

if (fc == DW_FORM_CLASS_BLOCK) {

int fres = 0;

Dwarf_Block *tempb = 0;

fres = dwarf_formblock(attr, &tempb, err);

if (fres == DW_DLV_OK) {

Dwarf_Dsc_Head h = 0;

Dwarf_Unsigned u = 0;

Dwarf_Unsigned arraycount = 0;

int sres = 0;

Dwarf_Bool unsignedflag =

sres = dwarf_discr_list(dbg,

(Dwarf_Small *)tempb->bl_data,

tempb->bl_len,

&h,&arraycount,err);

if (sres == DW_DLV_NO_ENTRY) {

/* Nothing here. */

dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);

return;

}

if (sres == DW_DLV_ERROR) {

/* FAIL . */

dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);

return;

}

for(u = 0; u < arraycount; u++) {

int u2res = 0;

Dwarf_Half dtype = 0;

Dwarf_Signed dlow = 0;

Dwarf_Signed dhigh = 0;

Dwarf_Unsigned ulow = 0;

rev 2.58, May 18, 2017 - 54 -



- 55 -

Dwarf_Unsigned uhigh = 0;

if (isunsigned) {

u2res = dwarf_discr_entry_u(h,u,

&dtype,&ulow,&uhigh,err);

} else {

u2res = dwarf_discr_entry_s(h,u,

&dtype,&dlow,&dhigh,err);

}

if( u2res == DW_DLV_ERROR) {

/* Something wrong */

dwarf_dealloc(dbg,h,DW_DLA_DSC_HEAD);

dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);

return;

}

if( u2res == DW_DLV_NO_ENTRY) {

/* Impossible. u < arraycount. */

dwarf_dealloc(dbg,h,DW_DLA_DSC_HEAD);

dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);

return;

}

/* Do something with dtype, and whichever

of ulow, uhigh,dlow,dhigh got set.

Probably save the values somewhere.

Simple casting of dlow to ulow (or vice versa)

will not get the right value due to the nature

of LEB values. Similarly for uhigh, dhigh.

One must use the right call.

*/

}

dwarf_dealloc(dbg,h,DW_DLA_DSC_HEAD);

dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);

}

}

}

6.7.19 dwarf_discr_entry_u()

int dwarf_discr_entry_u(

Dwarf_Dsc_Head dsc_head,

Dwarf_Unsigned dsc_array_index,

Dwarf_Half *dsc_type,

Dwarf_Unsigned *dsc_low,

Dwarf_Unsigned *dsc_high,

Dwarf_Error *error)

When it succeeds, dwarf_discr_entry_u() returns DW_DLV_OK and sets *dsc_type,

*dsc_low, and *dsc_high to the discriminent values for that index. Valid dsc_array_index

values are zero to (dsc_array_length_out -1) from a dwarf_discr_list() call.

If *dsc_type is DW_DSC_label *dsc_low is set to the discriminant value and *dsc_high is set to

zero.

rev 2.58, May 18, 2017 - 55 -



- 56 -

If *dsc_type is DW_DSC_range *dsc_low is set to the low end of the discriminant range and and

*dsc_high is set to the high end of the discriminant range.

Due to the nature of the LEB numbers in the discriminant representation in DWARF one must call the

correct one of dwarf_discr_entry_u() or dwarf_discr_entry_s() based on whether the

discriminant is signed or unsigned. Casting an unsigned to signed is not always going to get the right

value.

If dsc_array_index is outside the range of valid indexes the function returns DW_DLV_NO_ENTRY.

On error it returns DW_DLV_ERROR and sets *error to an error pointer.

6.7.20 dwarf_discr_entry_s()

int dwarf_discr_entry_s(

Dwarf_Dsc_Head dsc_head,

Dwarf_Unsigned dsc_array_index,

Dwarf_Half *dsc_type,

Dwarf_Signed *dsc_low,

Dwarf_Signed *dsc_high,

Dwarf_Error *error)

This is identical to dwarf_discr_entry_u() except that the discriminant values are signed values in

this interface. Callers must check the discriminant type and call the correct function.

6.8 Location List operations

6.8.1 dwarf_get_loclist_c()

int dwarf_get_loclist_c (Dwarf_Attribute attr,

Dwarf_Loc_Head_c * loclist_head,

Dwarf_Unsigned * locCount,

Dwarf_Error * error);

This function returns a pointer that is, in turn, used to make possible calls to return the details of the

location list.

The incoming argument attr should have one of the FORMs of a location expression or location list.

On success this returns DW_DLV_OK and sets *loclist_head to a pointer used in further calls (see the

example and descriptions that follow it). locCount is set to the number of entries in the location list (or

if the FORM is of a location expression the locCount will be set to one). At this point one cannot yet tell

if it was a location list or a location expression (see . dwarf_get_locdesc_entry_c{}).

In case of error DW_DLV_ERROR is returned and *error is set to an error designation.

A return of DW_DLV_NO_ENTRY may be possible but is a bit odd.

rev 2.58, May 18, 2017 - 56 -



- 57 -

void

example_loclistc(Dwarf_Debug dbg,Dwarf_Attribute someattr)

{

Dwarf_Unsigned lcount = 0;

Dwarf_Loc_Head_c loclist_head = 0;

Dwarf_Error error = 0;

int lres = 0;

lres = dwarf_get_loclist_c(someattr,&loclist_head,&lcount,&error);

if (lres == DW_DLV_OK) {

Dwarf_Unsigned i = 0;

Dwarf_Locdesc_c locentry = 0;

/* Before any return remember to call

dwarf_loc_head_c_dealloc(loclist_head); */

for (i = 0; i < lcount; ++i) {

Dwarf_Small loclist_source = 0;

Dwarf_Small lle_value = 0; /* DWARF5 */

Dwarf_Addr lopc = 0;

Dwarf_Addr hipc = 0;

Dwarf_Unsigned ulocentry_count = 0;

Dwarf_Locdesc_c locentry = 0;

/* section_offset is the section offset of the expression, not

the location description prefix. */

Dwarf_Unsigned section_offset = 0;

/* locdesc_offset is the section offset of the

location description prefix. */

Dwarf_Unsigned locdesc_offset = 0;

lres = dwarf_get_locdesc_entry_c(loclist_head,

i,

&lle_value,&lopc,&hipc,

&ulocentry_count,

&locentry,

&loclist_source,

&section_offset,

&locdesc_offset,

&error);

if (lres == DW_DLV_OK) {

/* Here, use loclist_source and

lle_value to determine what

sort of loclist it is and what to do with

the values. locentry_count will only be

more than zero if there is a set of location

operators.

One must use lle_value to determine how

to interpret lopc,hipc as sometimes they

are a target address and sometimes an

index into .debug_addr or even a length. */

Dwarf_Unsigned j = 0;

int opres = 0;

Dwarf_Small op = 0;

rev 2.58, May 18, 2017 - 57 -



- 58 -

for (j = 0; j < ulocentry_count; ++j) {

Dwarf_Unsigned opd1 = 0;

Dwarf_Unsigned opd2 = 0;

Dwarf_Unsigned opd3 = 0;

Dwarf_Unsigned offsetforbranch = 0;

opres = dwarf_get_location_op_value_c(locentry,

j,&op,&opd1, &opd2,&opd3,&offsetforbranch,

&error);

if (opres == DW_DLV_OK) {

/* Do something with the operators. */

} else {

/*Something is wrong. */

}

}

} else {

/* Something is wrong. Do something. */

}

}

/* In case of error or any other situation where one

is giving up one can call dwarf_loc_head_c_dealloc()

to free all the memory associated with loclist_head. */

dwarf_loc_head_c_dealloc(loclist_head);

loclist_head = 0;

}

}

6.8.2 dwarf_get_locdesc_entry_c()

int dwarf_get_locdesc_entry_c(Dwarf_Loc_Head_c /*loclist_head*/,

Dwarf_Unsigned /*index*/,

/* identifies type of locdesc entry*/

Dwarf_Small * /*lle_value_out*/,

Dwarf_Addr * /*lowpc_out*/,

Dwarf_Addr * /*hipc_out*/,

Dwarf_Unsigned * /*loclist_count_out*/,

/* Returns pointer to specific Locdesc index refers to */

Dwarf_Locdesc_c * /*locentry_out*/,

Dwarf_Small * /*loclist_source_out*/, /* 0,1, or 2 */

Dwarf_Unsigned * /*expression_offset_out*/,

Dwarf_Unsigned * /*locdesc_offset_out*/,

Dwarf_Error * /*error*/);

This function returns overall information about a location list or location description. Details about

location operators are retrieved by a call to dwarf_get_location_op_value_c() (described

below). The values returned here have been unified, hiding irrelevant differences between DWARF2

location expressions/lists and DWARF5 split-dwarf location expressions/lists.

In case of success DW_DLV_OK is returned and arguments are set through the pointers to return values to

the caller. Now we describe each argument.

rev 2.58, May 18, 2017 - 58 -



- 59 -

Return value *loclist_source_out is critical as it identifies the sort of entry we have. If its value is

zero (0) it identifies the location description is a location expression. In that case *lle_value_out,

*lowpc_out, and *hipc_out are not really interesting. And because it is a location expression the

index has to have been zero as there is no real list, just an expression made to look like a list entry.

If *loclist_source_out is one (1) then this is a location list entry in DWARF2,3,4 loclist form. Here

the *lle_value_out has been created by libdwarf to match the split-dwarf DW_LLE_ value that the

standard loclist entry represents ( DW_LLE_end_of_list_entry,

DW_LLE_base_address_selection_entry, or DW_LLE_offset_pair_entry ).

If *loclist_source_out is two (2) then this is a location list entry in DWARF5 split-dwarf (.dwo)

location-entry-form. *lle_value_out is set to the DW_LLE_ value that the split-dwarf loclist entry

contains.

The DW_LLE_ value determines how one is to interpret lopc_out and hipc_out. See the DWARF5

standard.

The argument loclist_count_out returns the number of operators in the location expression involved

(which may be zero).

The argument locentry_out returns an identifier used in calls to

dwarf_get_location_op_value_c().

The argument expression_offset_out returns the offset (in the .debug_loc(.dso) or

.debug_info(.dwo) of the location expression itself (possibly useful for debugging).

The argument locdesc_offset_out returns the offset (in the .debug_loc(.dso) of the location list

entry itself (possibly useful for debugging).

In case of error DW_DLV_ERROR is returned and *error is set to an error designation.

A return of DW_DLV_NO_ENTRY may be possible but is a bit odd.

6.8.3 dwarf_get_location_op_value_c()

int dwarf_get_location_op_value_c(Dwarf_Locdesc_c locdesc,

Dwarf_Unsigned index,

Dwarf_Small * atom_out,

Dwarf_Unsigned * operand1,

Dwarf_Unsigned * operand2,

Dwarf_Unsigned * operand3,

Dwarf_Unsigned * offset_for_branch,

Dwarf_Error* error);

On sucess The function dwarf_get_location_op_value_c() returns the information for the

single operator number index from the location expression locdesc. It sets the following values.

atom_out is set to the applicable operator code, for example DW_OP_reg5.

operand1, operand2, and operand3 are set to the operator operands as applicable (see DWARF

documents on the operands for each operator). operand3 is new as of DWARF5.

When a DWARF operand is not of a size fixed by dwarf, or is possibly too large for a dwarf stack entry,

libdwarf will insert a pointer (to memory in the dwarf data somewhere) as the operand value.

DW_OP_implicit_value operand 2, DW_OP_[GNU_]entry_value operand 2, and

DW_OP_[GNU_]const_type operand 3 are instances of this.

offset_for_branch is set to the offset (in bytes) in this expression of this operator. The value makes

it possible for callers to implement the operator branch operators.

rev 2.58, May 18, 2017 - 59 -



- 60 -

In case of an error, the function returns DW_DLV_ERROR and sets *error to an error value.

DW_DLV_NO_ENTRY is probably not a possible return value, but please test for it anyway.

6.8.4 dwarf_loclist_from_expr_c()

int dwarf_loclist_from_expr_c(Dwarf_Debug dbg,

Dwarf_Ptr expression_in,

Dwarf_Unsigned expression_length,

Dwarf_Half address_size,

Dwarf_Half offset_size,

Dwarf_Small dwarf_version,

Dwarf_Loc_Head_c* loc_head,

Dwarf_Unsigned * listlen,

Dwarf_Error * error);

Frame operators such as DW_CFA_def_cfa_expression have a location expression and the

location_expression is accessed with this function.

On success it returns DW_DLV_OK and sets the two return arguments (explained a few lines later here).

The expression_in argument must contain a valid pointer to location expression bytes. The

expression_length argument must contain the length of that location expression in bytes.

The address_size argument must contain the size of an address on the target machine for this

expression (normally 4 or 8). The offset_size argument must contain the size of an offset in the

expression (normally 4, sometimes 8). The version argument must contain the dwarf_version of the

expression (2,3,4, or 5).

The returned value *loc_head is used to actually access the location expression details (see the example

following).

The returned value *listlen is the number of location expressions (ie 1) in the location list (for

uniformity of access we make it look like a single-entry location list).

On error the function returns DW_DLV_ERROR and sets *error to reflect the error.

A return of DW_DLV_NO_ENTRY is probably impossible, but callers should assume it is possible. No

return arguments are set in this case.

rev 2.58, May 18, 2017 - 60 -



- 61 -

void

example_locexprc(Dwarf_Debug dbg,Dwarf_Ptr expr_bytes,

Dwarf_Unsigned expr_len,

Dwarf_Half addr_size,

Dwarf_Half offset_size,

Dwarf_Half version)

{

Dwarf_Loc_Head_c head = 0;

Dwarf_Locdesc_c locentry = 0;

int res2 = 0;

Dwarf_Unsigned lopc = 0;

Dwarf_Unsigned hipc = 0;

Dwarf_Unsigned ulistlen = 0;

Dwarf_Unsigned ulocentry_count = 0;

Dwarf_Unsigned section_offset = 0;

Dwarf_Unsigned locdesc_offset = 0;

Dwarf_Small lle_value = 0;

Dwarf_Small loclist_source = 0;

Dwarf_Unsigned i = 0;

Dwarf_Error error = 0;

res2 = dwarf_loclist_from_expr_c(dbg,

expr_bytes,expr_len,

addr_size,

offset_size,

version,

&head,

&ulistlen,

&error);

if(res2 == DW_DLV_NO_ENTRY) {

return;

}

if(res2 == DW_DLV_ERROR) {

return;

}

/* These are a location expression, not loclist.

So we just need the 0th entry. */

res2 = dwarf_get_locdesc_entry_c(head,

0, /* Data from 0th LocDesc */

&lle_value,

&lopc, &hipc,

&ulocentry_count,

&locentry,

&loclist_source,

&section_offset,

&locdesc_offset,

&error);

if (res2 == DW_DLV_ERROR) {

dwarf_loc_head_c_dealloc(head);

return;

} else if (res2 == DW_DLV_NO_ENTRY) {

dwarf_loc_head_c_dealloc(head);

return;

}

rev 2.58, May 18, 2017 - 61 -



- 62 -

/* ASSERT: ulistlen == 1 */

for (i = 0; i < ulocentry_count;++i) {

Dwarf_Small op = 0;

Dwarf_Unsigned opd1 = 0;

Dwarf_Unsigned opd2 = 0;

Dwarf_Unsigned opd3 = 0;

Dwarf_Unsigned offsetforbranch = 0;

res2 = dwarf_get_location_op_value_c(locentry,

i, &op,&opd1,&opd2,&opd3,&offsetforbranch,

&error);

/* Do something with the expression operator and operands */

if (res2 != DW_DLV_OK) {

dwarf_loc_head_c_dealloc(head);

return;

}

}

dwarf_loc_head_c_dealloc(head);

}

6.8.5 dwarf_loc_head_c_dealloc()

void dwarf_loc_head_c_dealloc(Dwarf_Loc_Head_c loclist_head);

This function frees all the memory associated with the loclist_head. There is no return value.

6.8.6 dwarf_loclist_n()

int dwarf_loclist_n(

Dwarf_Attribute attr,

Dwarf_Locdesc ***llbuf,

Dwarf_Signed *listlen,

Dwarf_Error *error)

This interface cannot handle DWARF5 or Split Dwarf. Use dwarf_get_loclist_c() and related

functions instead (as of November 2015). The function dwarf_loclist_n() sets *llbuf to point to

an array of Dwarf_Locdesc pointers corresponding to each of the location expressions in a location list,

and sets *listlen to the number of elements in the array and returns DW_DLV_OK if the attribute is

appropriate.

This is the preferred function for Dwarf_Locdesc as it is the interface allowing access to an entire loclist.

(use of dwarf_loclist_n() is suggested as the better interface, though dwarf_loclist() is still

supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8) the location list

entries are used to fill in all the fields of the Dwarf_Locdesc(s) returned.

If the attribute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the

Dwarf_Locdesc values of the single Dwarf_Locdesc record are set to ’sensible’ but arbitrary values.

Specifically, ld_lopc is set to 0 and ld_hipc is set to all-bits-on. And *listlen is set to 1.

If the attribute is a reference to a location expression (DW_FORM_locexper) then some of the

Dwarf_Locdesc values of the single Dwarf_Locdesc record are set to ’sensible’ but arbitrary values.

Specifically, ld_lopc is set to 0 and ld_hipc is set to all-bits-on. And *listlen is set to 1.

rev 2.58, May 18, 2017 - 62 -



- 63 -

It returns DW_DLV_ERROR on error.

dwarf_loclist_n() works on DW_AT_location, DW_AT_data_member_location,

DW_AT_vtable_elem_location, DW_AT_string_length, DW_AT_use_location, and

DW_AT_return_addr attributes.

If the attribute is DW_AT_data_member_location the value may be of class CONSTANT.

dwarf_loclist_n() is unable to read class CONSTANT, so you need to first determine the class using

dwarf_get_form_class() and if it is class CONSTANT call dwarf_formsdata() or

dwarf_formudata() to get the constant value (you may need to call both as DWARF4 does not define

the signedness of the constant value).

Storage allocated by a successful call of dwarf_loclist_n() should be deallocated when no longer of

interest (see dwarf_dealloc()). The block of Dwarf_Loc structs pointed to by the ld_s field of

each Dwarf_Locdesc structure should be deallocated with the allocation type DW_DLA_LOC_BLOCK.

and the llbuf[] space pointed to should be deallocated with allocation type DW_DLA_LOCDESC. This

should be followed by deallocation of the llbuf using the allocation type DW_DLA_LIST.

void

example9(Dwarf_Debug dbg,Dwarf_Attribute someattr)

{

Dwarf_Signed lcount = 0;

Dwarf_Locdesc **llbuf = 0;

Dwarf_Error error = 0;

int lres = 0;

lres = dwarf_loclist_n(someattr, &llbuf,&lcount,&error);

if (lres == DW_DLV_OK) {

Dwarf_Signed i = 0;

for (i = 0; i < lcount; ++i) {

/* Use llbuf[i]. Both Dwarf_Locdesc and the

array of Dwarf_Loc it points to are

defined in libdwarf.h: they are

not opaque structs. */

dwarf_dealloc(dbg, llbuf[i]->ld_s, DW_DLA_LOC_BLOCK);

dwarf_dealloc(dbg,llbuf[i], DW_DLA_LOCDESC);

}

dwarf_dealloc(dbg, llbuf, DW_DLA_LIST);

}

}

6.8.7 dwarf_loclist()

int dwarf_loclist(

Dwarf_Attribute attr,

Dwarf_Locdesc **llbuf,

Dwarf_Signed *listlen,

Dwarf_Error *error)

Use dwarf_get_loclist_c() and related functions instead (as of November 2015). The function

dwarf_loclist() sets *llbuf to point to a Dwarf_Locdesc pointer for the single location

expression it can return. It sets *listlen to 1. and returns DW_DLV_OK if the attribute is appropriate.

It is less flexible than dwarf_loclist_n() in that dwarf_loclist() can handle a maximum of

one location expression, not a full location list. If a location-list is present it returns only the first location-

rev 2.58, May 18, 2017 - 63 -



- 64 -

list entry location description. Use dwarf_loclist_n() instead.

It returns DW_DLV_ERROR on error. dwarf_loclist() works on DW_AT_location,

DW_AT_data_member_location, DW_AT_vtable_elem_location,

DW_AT_string_length, DW_AT_use_location, and DW_AT_return_addr attributes.

Storage allocated by a successful call of dwarf_loclist() should be deallocated when no longer of

interest (see dwarf_dealloc()). The block of Dwarf_Loc structs pointed to by the ld_s field of

each Dwarf_Locdesc structure should be deallocated with the allocation type DW_DLA_LOC_BLOCK.

This should be followed by deallocation of the llbuf using the allocation type DW_DLA_LOCDESC.

Figure 13. Examplea dwarf_loclist()

void examplea(Dwarf_Debug dbg,Dwarf_Attribute someattr)

{

Dwarf_Signed lcount = 0;

Dwarf_Locdesc *llbuf = 0;

Dwarf_Error error = 0;

int lres = 0;

lres = dwarf_loclist(someattr, &llbuf,&lcount,&error);

if (lres == DW_DLV_OK) {

/* lcount is always 1, (and has always been 1) */

/* Use llbuf here. */

dwarf_dealloc(dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);

dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);

}

}

6.8.8 dwarf_loclist_from_expr()

int dwarf_loclist_from_expr(

Dwarf_Debug dbg,

Dwarf_Ptr bytes_in,

Dwarf_Unsigned bytes_len,

Dwarf_Locdesc **llbuf,

Dwarf_Signed *listlen,

Dwarf_Error *error)

Use dwarf_loclist_from_expr_b() instead. This function is obsolete.

The function dwarf_loclist_from_expr() sets *llbuf to point to a Dwarf_Locdesc pointer

for the single location expression which is pointed to by *bytes_in (whose length is *bytes_len). It

sets *listlen to 1. and returns DW_DLV_OK if decoding is successful. Some sources of bytes of

expressions are dwarf expressions in frame operations like DW_CFA_def_cfa_expression,

DW_CFA_expression, and DW_CFA_val_expression.

Any address_size data in the location expression is assumed to be the same size as the default address_size

for the object being read (normally 4 or 8).

It returns DW_DLV_ERROR on error.

Storage allocated by a successful call of dwarf_loclist_from_expr() should be deallocated when

no longer of interest (see dwarf_dealloc()). The block of Dwarf_Loc structs pointed to by the

ld_s field of each Dwarf_Locdesc structure should be deallocated with the allocation type

DW_DLA_LOC_BLOCK. This should be followed by deallocation of the llbuf using the allocation type

rev 2.58, May 18, 2017 - 64 -



- 65 -

DW_DLA_LOCDESC.

Figure 14. Exampleb dwarf_loclist_from_expr()

void exampleb(Dwarf_Debug dbg,Dwarf_Ptr data, Dwarf_Unsigned len)

{

Dwarf_Signed lcount = 0;

Dwarf_Locdesc *llbuf = 0;

Dwarf_Error error = 0;

int lres = 0;

lres = dwarf_loclist_from_expr(dbg,data,len, &llbuf,&lcount, &error);

if (lres == DW_DLV_OK) {

/* lcount is always 1 */

/* Use llbuf here.*/

dwarf_dealloc(dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);

dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);

}

}

6.8.9 dwarf_loclist_from_expr_b()

int dwarf_loclist_from_expr_a(

Dwarf_Ptr bytes_in,

Dwarf_Unsigned bytes_len,

Dwarf_Half addr_size,

Dwarf_Half offset_size,

Dwarf_Half version_stamp,

Dwarf_Locdesc **llbuf,

Dwarf_Signed *listlen,

Dwarf_Error *error)

The function dwarf_loclist_from_expr_b() is identical to

dwarf_loclist_from_expr_a() in every way except that the caller passes an additional argument

version_stamp containing the version stamp (2 for DWARF2, etc) of the CU using this location

expression and an additional argument of the offset size of the CU using this location expression. The

DW_OP_GNU_implicit_pointer operation requires this version and offset information to be correctly

processed.

The addr_size argument (from 27April2009) is needed to correctly interpret frame information as

different compilation units can have different address sizes. DWARF4 adds address_size to the CIE header.

6.8.10 dwarf_loclist_from_expr_a()

int dwarf_loclist_from_expr_a(

Dwarf_Ptr bytes_in,

Dwarf_Unsigned bytes_len,

Dwarf_Half addr_size,

Dwarf_Locdesc **llbuf,

Dwarf_Signed *listlen,

Dwarf_Error *error)

Use dwarf_loclist_from_expr_b() instead. This function is obsolete.

rev 2.58, May 18, 2017 - 65 -



- 66 -

The function dwarf_loclist_from_expr_a() is identical to dwarf_loclist_from_expr()

in every way except that the caller passes the additional argument addr_size containing the address size

(normally 4 or 8) applying this location expression.

The addr_size argument (added 27April2009) is needed to correctly interpret frame information as

different compilation units can have different address sizes. DWARF4 adds address_size to the CIE header.

6.9 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry

objects to their corresponding source lines, and providing a mechanism for obtaining information about line

number entries. Although, the interface talks of "lines" what is really meant is "statements". In case there

is more than one statement on the same line, there will be at least one descriptor per statement, all with the

same line number. If column number is also being represented they will have the column numbers of the

start of the statements also represented.

There can also be more than one Dwarf_Line per statement. For example, if a file is preprocessed by a

language translator, this could result in translator output showing 2 or more sets of line numbers per

translated line of output.

As of October 2015 there are two sets of overall access and release functions. The older set of functions is

dwarf_srclines() with dwarf_srclines_dealloc(). This set does not handle line table

headers with no lines.

A newer set is dwarf_srclines_b() with dwarf_srclines_from_linecontext() and

dwarf_srclines_dealloc_b(). These functions provide for handling both DWARF2 through

DWARF5 details and give access to line header information even if there are no lines in a particular

compilation unit’s line table.

6.9.1 Get A Set of Lines (including skeleton line tables)

This set of functions works on any DWARF version. DWARF2,3,4,5 and the DWARF4 based experimental

two-level line tables are all supported. What was once done by dwarf_srclines() alone is now done with

two calls as described here.

The interfaces support reading GNU two-level line tables. The format of such tables is a topic beyond the

scope of this document.

6.9.2 dwarf_srclines_b()

This is the

int dwarf_srclines_b(

Dwarf_Die die,

Dwarf_Unsigned *version_out,

Dwarf_Bool *is_single_table,

Dwarf_Line_Context *context_out,

Dwarf_Error *error)

dwarf_srclines_b() takes a single argument as input, a pointer to a compilation-unit (CU) DIE.

The other arguments are used to return values to the caller. On success DW_DLV_OK is returned and values

are returned through the pointers. If there is no line table DW_DLV_NO_ENTRY is returned and no values

rev 2.58, May 18, 2017 - 66 -



- 67 -

are returned though the pointers. If DW_DLV_ERROR is returned the involved is returned through the

error pointer.

The values returned on success are:

*version_out() is set to the version number from the line table header for this CU. The experimental

two-level line table value is 0xf006. Standard numbers are 2,3,4 and 5.

*is_single_table() is set to non-zero if the line table is an ordinary single line table. If the line

table is anything else (either a line table header with no lines or an experimental two-level line table) it is

set to zero.

*context_out() is set to an opaque pointer to a Dwarf_Line_Context record which in turn is

used to get other data from this line table. See below.

See *dwarf_srclines_dealloc_b() for examples showing correct use.

6.9.3 dwarf_get_line_section_name_from_die()

int dwarf_get_line_section_name_from_die(

Dwarf_Die die,

const char ** sec_name,

Dwarf_Error *error)

*dwarf_get_line_section_name_from_die() retrieves the object file section name of the

applicable line section. This is useful for applications wanting to print the name, but of course the object

section name is not really a part of the DWARF information. Most applications will probably not call this

function. It can be called at any time after the Dwarf_Debug initialization is done.

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.9.4 dwarf_srclines_from_linecontext()

int dwarf_srclines_from_linecontext(

Dwarf_Line_Context line_context,

Dwarf_Line ** linebuf,

Dwarf_Signed *linecount,

Dwarf_Error *error)

*dwarf_srclines_from_linecontext() gives access to the line tables. On success it returns

DW_DLV_OK and passes back line tables through the pointers.

Though DW_DLV_OK will not be returned callers should assume it is possible.

On error DW_DLV_ERROR is returned and the error code set through the error pointer.

On success:

*linebuf is set to an array of Dwarf_Line pointers.

rev 2.58, May 18, 2017 - 67 -



- 68 -

*linecount is set to the number of pointers in the array.

6.9.5 dwarf_srclines_two_levelfrom_linecontext()

int dwarf_srclines_from_linecontext(

Dwarf_Line_Context line_context,

Dwarf_Line ** linebuf,

Dwarf_Signed *linecount,

Dwarf_Line ** linebuf_actuals,

Dwarf_Signed *linecount_actuals,

Dwarf_Error *error)

*dwarf_srclines_two_levelfrom_linecontext() gives access to the line tables. On success

it returns DW_DLV_OK and passes back line tables through the pointers.

Though DW_DLV_OK will not be returned callers should assume it is possible.

On error DW_DLV_ERROR is returned and the error code set through the error pointer.

On success:

*linebuf is set to an array of Dwarf_Line pointers.

*linecount is set to the number of pointers in the array.

If one is not intending that the experimental two-level line tables are of interest then pass NULL for

*linebuf_actuals and *linecount_actuals. The NULL pointers notify the library that the

second table is not to be passed back.

If a line table is actually a two-level tables *linebuf is set to point to an array of Logicals lines.

*linecount is set to the number of Logicals. *linebuf_actals is set to point to an array of Actuals

lines. *linecount_actuals is set to the number of Actuals.

6.9.6 dwarf_srclines_dealloc_b()

void dwarf_srclines_dealloc_b(

Dwarf_Line_Context line_context,

Dwarf_Error *error)

This does a complete deallocation of the memory of the Dwarf_Line_Context and the Dwarf_Line

array (or arrays) that came from the Dwarf_Line_Context. On return you should set any local

pointers to these buffers to NULL as a reminder that any use of the local pointers would be to stale

memory.

Figure 15. Examplec dwarf_srclines_b()

rev 2.58, May 18, 2017 - 68 -



- 69 -

void examplec(Dwarf_Die cu_die)

{

/* EXAMPLE: DWARF5 style access. */

Dwarf_Line *linebuf = 0;

Dwarf_Signed linecount = 0;

Dwarf_Line *linebuf_actuals = 0;

Dwarf_Signed linecount_actuals = 0;

Dwarf_Line_Context line_context = 0;

Dwarf_Signed linecount_total = 0;

Dwarf_Unsigned table_count = 0;

Dwarf_Unsigned lineversion = 0;

Dwarf_Error err = 0;

int sres = 0;

/* ... */

/* we use ’return’ here to signify we can do nothing more

at this point in the code. */

sres = dwarf_srclines_b(cu_die,&lineversion,

&table_count,&line_context,&err);

if (sres != DW_DLV_OK) {

/* Handle the DW_DLV_NO_ENTRY or DW_DLV_ERROR

No memory was allocated so there nothing

to dealloc. */

return;

}

if (table_count == 0) {

/* A line table with no actual lines.

But with a line table header. */

/*...do something, see dwarf_srclines_files_count()

etc below. */

dwarf_srclines_dealloc_b(line_context);

/* All the memory is released, the line_context

and linebuf zeroed now

as a reminder they are stale. */

linebuf = 0;

line_context = 0;

} else if (table_count == 1) {

Dwarf_Signed i = 0;

/* Standard dwarf 2,3,4, or 5 line table */

/* Do something. */

/* For this case where we have a line table we will likely

wish to get the line details: */

sres = dwarf_srclines_from_linecontext(line_context,

&linebuf,&linecount,

&err);

if (sres != DW_DLV_OK) {

/* Error. Clean up the context information. */

dwarf_srclines_dealloc_b(line_context);

return;

}

/* The lines are normal line table lines. */

for (i = 0; i < linecount; ++i) {

/* use linebuf[i] */

}

rev 2.58, May 18, 2017 - 69 -



- 70 -

dwarf_srclines_dealloc_b(line_context);

/* All the memory is released, the line_context

and linebuf zeroed now as a reminder they are stale */

linebuf = 0;

line_context = 0;

linecount = 0;

} else {

/* EXPERIMENTAL. NOT IN STANDARD DWARF */

Dwarf_Signed i = 0;

/* ASSERT: table_count == 2,

Experimental two-level line table. Version 0xf006

We do not define the meaning of this non-standard

set of tables here. */

/* For ’something C’ (two-level line tables)

one codes something like this

Note that we do not define the meaning or use of two-level line

tables as these are experimental, not standard DWARF. */

sres = dwarf_srclines_two_level_from_linecontext(line_context,

&linebuf,&linecount,

&linebuf_actuals,&linecount_actuals,

&err);

if (sres == DW_DLV_OK) {

for (i = 0; i < linecount; ++i) {

/* use linebuf[i], these are the ’logicals’ entries. */

}

for (i = 0; i < linecount_actuals; ++i) {

/* use linebuf_actuals[i], these are the actuals entries */

}

dwarf_srclines_dealloc_b(line_context);

line_context = 0;

linebuf = 0;

linecount = 0;

linebuf_actuals = 0;

linecount_actuals = 0;

} else if (sres == DW_DLV_NO_ENTRY) {

/* This should be impossible, but do something. */

/* Then Free the line_context */

dwarf_srclines_dealloc_b(line_context);

line_context = 0;

linebuf = 0;

linecount = 0;

linebuf_actuals = 0;

linecount_actuals = 0;

} else {

/* ERROR, show the error or something.

Free the line_context. */

dwarf_srclines_dealloc_b(line_context);

line_context = 0;

linebuf = 0;

linecount = 0;

linebuf_actuals = 0;

linecount_actuals = 0;

}

rev 2.58, May 18, 2017 - 70 -



- 71 -

}

}

6.10 Line Context Details (DWARF5 style)

New in October 2015. When a Dwarf_Line_Context has been returned by

dwarf_srclines_b() that line context data’s details can be retrieved with the following set of calls.

6.10.1 dwarf_srclines_table_offset()

int dwarf_srclines_table_offset(Dwarf_Line_Context line_context,

Dwarf_Unsigned * offset,

Dwarf_Error * error);

On success, this function returns the offset (in the object file line section) of the actual line data (i.e. after

the line header for this compilation unit) through the offset pointer. The offset is probably only of

interest when printing detailed information about a line table header.

In case of error, DW_DLV_ERROR is returned and the error is set through the error pointer.

DW_DLV_NO_ENTRY will not be returned.

6.10.2 dwarf_srclines_version()

int dwarf_srclines_version(Dwarf_Line_Context line_context,

Dwarf_Unsigned * version,

Dwarf_Error * error);

On success DW_DLV_OK is returned and the line table version number is returned through the version

pointer.

In case of error, DW_DLV_ERROR is returned and the error is set through the error pointer.

DW_DLV_NO_ENTRY will not be returned.

6.10.3 dwarf_srclines_comp_dir()

int dwarf_srclines_comp_dir(Dwarf_Line_Context line_context,

const char ** compilation_directory,

Dwarf_Error * error);

On success this returns a pointer to the compilation directory string for this line table in

*compilation_directory. That compilation string may be NULL or the empty string.

In case of error, DW_DLV_ERROR is returned and the error is set through the error pointer.

DW_DLV_NO_ENTRY will not be returned.

6.10.4 dwarf_srclines_files_count()

rev 2.58, May 18, 2017 - 71 -



- 72 -

int dwarf_srclines_files_count(Dwarf_Line_Context line_context,

Dwarf_Signed * count,

Dwarf_Error * error);

On success, the number of files in the files list of a line table header will be returned through count.

In case of error, DW_DLV_ERROR is returned and the error is set through the error pointer.

DW_DLV_NO_ENTRY will not be returned.

6.10.5 dwarf_srclines_files_data()

int dwarf_srclines_files_data(Dwarf_Line_Context line_context,

Dwarf_Signed index,

const char ** name,

Dwarf_Unsigned * directory_index,

Dwarf_Unsigned * last_mod_time,

Dwarf_Unsigned * file_length,

Dwarf_Error * error);

On success, data about a single file in the files list will be returned through the pointers. See DWARF

documentation for the meaning of these fields. count. Valid index. values are 1 through count,

reflecting the way the table is defined by DWARF.

This returns the raw files data from the line table header.

In case of error, DW_DLV_ERROR is returned and the error is set through the error pointer.

DW_DLV_NO_ENTRY will not be returned.

6.10.6 dwarf_srclines_include_dir_count()

int dwarf_srclines_include_dir_count(Dwarf_Line_Context line_context,

Dwarf_Signed * count,

Dwarf_Error * error);

On success, the number of files in the includes list of a line table header will be returned through count.

Valid index. values are 1 through count, reflecting the way the table is defined by DWARF.

In case of error, DW_DLV_ERROR is returned and the error is set through the error pointer.

DW_DLV_NO_ENTRY will not be returned.

6.10.7 dwarf_srclines_include_dir_data()

int dwarf_srclines_include_dir_data(Dwarf_Line_Context line_context,

Dwarf_Signed index,

const char ** name,

Dwarf_Error * error);

On success, data about a single file in the include files list will be returned through the pointers. See

DWARF documentation for the meaning of these fields.

Valid index. values are 1 through count, reflecting the way the table is defined by DWARF.

In case of error, DW_DLV_ERROR is returned and the error is set through the error pointer.

DW_DLV_NO_ENTRY will not be returned.

rev 2.58, May 18, 2017 - 72 -



- 73 -

6.10.8 dwarf_srclines_subprog_count()

int dwarf_srclines_subprog_count(Dwarf_Line_Context line_context,

Dwarf_Signed * count,

Dwarf_Error * error); This is only useful with experimental two-level line tables.

6.10.9 dwarf_srclines_subprog_data()

int dwarf_srclines_subprog_data(Dwarf_Line_Context line_context,

Dwarf_Signed index,

const char ** name,

Dwarf_Unsigned * decl_file,

Dwarf_Unsigned * decl_line,

Dwarf_Error * error); This is only useful with experimental two-level line tables.

6.11 Get A Set of Lines (DWARF2,3,4 style)

The function returns information about every source line for a particular compilation-unit. The

compilation-unit is specified by the corresponding die. It does not support line tables with no lines very

well nor does it support experimental two-level linetables.

6.11.1 dwarf_srclines()

int dwarf_srclines(

Dwarf_Die die,

Dwarf_Line **linebuf,

Dwarf_Signed *linecount,

Dwarf_Error *error)

This function is not useful for DWARF5 skeleton line tables nor for two-level line tables. It works for

DWARF2,3,4,5 ordinary single line tables. The function dwarf_srclines() places all line number

descriptors for a single compilation unit into a single block, sets *linebuf to point to that block, sets

*linecount to the number of descriptors in this block and returns DW_DLV_OK.

To get a more detailed view of the contents of a dwarf line table header see dwarf_srclines_b()

and the routines that use the Dwarf_Line_Context information, such as

dwarf_srcfiles_comp_dir(), dwarf_srclines_files_count(),

dwarf_srclines_include_dir_count() and similar functions.

The compilation-unit is indicated by the given die which must be a compilation-unit die. It returns

DW_DLV_ERROR on error. On successful return, line number information should be freed using

dwarf_srclines_dealloc() when no longer of interest.

Figure 16. Exampled dwarf_srclines()

rev 2.58, May 18, 2017 - 73 -



- 74 -

/* dwarf_srclines_b() should be used instead. */

void exampled(Dwarf_Debug dbg,Dwarf_Die somedie)

{

Dwarf_Signed count = 0;

Dwarf_Line *linebuf = 0;

Dwarf_Signed i = 0;

Dwarf_Error error = 0;

int sres = 0;

sres = dwarf_srclines(somedie, &linebuf,&count, &error);

if (sres == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use linebuf[i] */

}

dwarf_srclines_dealloc(dbg, linebuf, count);

}

}

An alternative using dwarf_dealloc() directly is no longer (as of 2015) described here. It works as

well as ever, but it has been obsolete since 2005. still works, but does not completely free all data allocated.

The dwarf_srclines_dealloc() routine was created to fix the problem of incomplete deallocation.

6.12 Get the set of Source File Names

The function returns the names of the source files that have contributed to the compilation-unit represented

by the given DIE. Only the source files named in the statement program prologue are returned.

6.12.1 dwarf_srcfiles()

This works for for all line tables.

int dwarf_srcfiles(

Dwarf_Die die,

char ***srcfiles,

Dwarf_Signed *srccount,

Dwarf_Error *error)

When it succeeds dwarf_srcfiles() returns DW_DLV_OK and puts the number of source files named

in the statement program prologue indicated by the given die into *srccount. Source files defined in

the statement program are ignored. The given die should have the tag DW_TAG_compile_unit,

DW_TAG_partial_unit, or DW_TAG_type_unit The location pointed to by srcfiles is set to

point to a list of pointers to null-terminated strings that name the source files.

On a successful return from dwarf_srcfiles() each of the strings returned should be individually

freed using dwarf_dealloc() with the allocation type DW_DLA_STRING when no longer of interest.

This should be followed by free-ing the list using dwarf_dealloc() with the allocation type

DW_DLA_LIST. It returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no

corresponding statement program (i.e., if there is no line information).

Figure 17. Exampled dwarf_srcfiles()

rev 2.58, May 18, 2017 - 74 -



- 75 -

void examplee(Dwarf_Debug dbg,Dwarf_Die somedie)

{

Dwarf_Signed count = 0;

char **srcfiles = 0;

Dwarf_Signed i = 0;

Dwarf_Error error = 0;

int res = 0;

res = dwarf_srcfiles(somedie, &srcfiles,&count,&error);

if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use srcfiles[i] */

dwarf_dealloc(dbg, srcfiles[i], DW_DLA_STRING);

}

dwarf_dealloc(dbg, srcfiles, DW_DLA_LIST);

}

}

}

6.13 Get Information About a Single Line Table Line

The following functions can be used on the Dwarf_Line descriptors returned by dwarf_srclines()

or dwarf_srclines_from_linecontext() to obtain information about the source lines.

6.13.1 dwarf_linebeginstatement()

int dwarf_linebeginstatement(

Dwarf_Line line,

Dwarf_Bool *return_bool,

Dwarf_Error *error)

The function dwarf_linebeginstatement() returns DW_DLV_OK and sets *return_bool to

non-zero (if line represents a line number entry that is marked as beginning a statement). or zero ((if

line represents a line number entry that is not marked as beginning a statement). It returns

DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.13.2 dwarf_lineendsequence()

int dwarf_lineendsequence(

Dwarf_Line line,

Dwarf_Bool *return_bool,

Dwarf_Error *error)

The function dwarf_lineendsequence() returns DW_DLV_OK and sets *return_bool non-zero

(in which case line represents a line number entry that is marked as ending a text sequence) or zero (in

which case line represents a line number entry that is not marked as ending a text sequence). A line

number entry that is marked as ending a text sequence is an entry with an address one beyond the highest

address used by the current sequence of line table entries (that is, the table entry is a

DW_LNE_end_sequence entry (see the DWARF specification)).

The function dwarf_lineendsequence() returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

rev 2.58, May 18, 2017 - 75 -



- 76 -

6.13.3 dwarf_lineno()

int dwarf_lineno(

Dwarf_Line line,

Dwarf_Unsigned * returned_lineno,

Dwarf_Error * error)

The function dwarf_lineno() returns DW_DLV_OK and sets *return_lineno to the source

statement line number corresponding to the descriptor line. It returns DW_DLV_ERROR on error. It

never returns DW_DLV_NO_ENTRY.

6.13.4 dwarf_line_srcfileno()

int dwarf_line_srcfileno(

Dwarf_Line line,

Dwarf_Unsigned * returned_fileno,

Dwarf_Error * error)

The function dwarf_line_srcfileno() returns DW_DLV_OK and sets *returned_fileno to the

source statement line number corresponding to the descriptor file number. When the number returned

through *returned_fileno is zero it means the file name is unknown (see the DWARF2/3 line table

specification). When the number returned through *returned_fileno is non-zero it is a file number:

subtract 1 from this file number to get an index into the array of strings returned by dwarf_srcfiles()

(verify the resulting index is in range for the array of strings before indexing into the array of strings). The

file number may exceed the size of the array of strings returned by dwarf_srcfiles() because

dwarf_srcfiles() does not return files names defined with the DW_DLE_define_file operator.

The function dwarf_line_srcfileno() returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

6.13.5 dwarf_lineaddr()

int dwarf_lineaddr(

Dwarf_Line line,

Dwarf_Addr *return_lineaddr,

Dwarf_Error *error)

The function dwarf_lineaddr() returns DW_DLV_OK and sets *return_lineaddr to the address

associated with the descriptor line. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

6.13.6 dwarf_lineoff()

int dwarf_lineoff(

Dwarf_Line line,

Dwarf_Signed * return_lineoff,

Dwarf_Error *error)

The function dwarf_lineoff() returns DW_DLV_OK and sets *return_lineoff to the column

number at which the statement represented by line begins.

rev 2.58, May 18, 2017 - 76 -



- 77 -

It sets return_lineoff to zero if the column number of the statement is not represented (meaning the

producer library call was given zero as the column number). Zero is the correct value meaning "left edge"

as defined in the DWARF2/3/4 specication (section 6.2.2).

Before December 2011 zero was not returned through the return_lineoff pointer, -1 was returned

through the pointer. The reason for this oddity is unclear, lost in history. But there is no good reason for -1.

The type of return_lineoff is a pointer-to-signed, but there is no good reason for the value to be

signed, the DWARF specification does not deal with negative column numbers. However, changing the

declaration would cause compilation errors for little benefit, so the pointer-to-signed is left unchanged.

On error it returns DW_DLV_ERROR. It nev er returns DW_DLV_NO_ENTRY.

6.13.7 dwarf_lineoff_b()

int dwarf_lineoff_b(

Dwarf_Line line,

Dwarf_Unsigned * return_lineoff,

Dwarf_Error *error)

The function dwarf_lineoff_b() returns exactly the same as dwarf_lineoff() except the line

offset returned through return_lineoff() is an unsigned value. The signed return offset never made

much sense but was harmless since line lengths are limited by most language standards.

6.13.8 dwarf_linesrc()

int dwarf_linesrc(

Dwarf_Line line,

char ** return_linesrc,

Dwarf_Error *error)

The function dwarf_linesrc() returns DW_DLV_OK and sets *return_linesrc to a pointer to a

null-terminated string of characters that represents the name of the source-file where line occurs. It

returns DW_DLV_ERROR on error.

If the applicable file name in the line table Statement Program Prolog does not start with a ’/’ character the

string in DW_AT_comp_dir (if applicable and present) or the applicable directory name from the line

Statement Program Prolog is prepended to the file name in the line table Statement Program Prolog to make

a full path.

The storage pointed to by a successful return of dwarf_linesrc() should be freed using

dwarf_dealloc() with the allocation type DW_DLA_STRING when no longer of interest. It never

returns DW_DLV_NO_ENTRY.

6.13.9 dwarf_lineblock()

int dwarf_lineblock(

Dwarf_Line line,

Dwarf_Bool *return_bool,

Dwarf_Error *error)

The function dwarf_lineblock() returns DW_DLV_OK and sets *return_linesrc to non-zero

(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line is marked as not

beginning a basic block). It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

rev 2.58, May 18, 2017 - 77 -



- 78 -

6.13.10 dwarf_is_addr_set()

int dwarf_line_is_addr_set(

Dwarf_Line line,

Dwarf_Bool *return_bool,

Dwarf_Error *error)

The function dwarf_line_is_addr_set() returns DW_DLV_OK and sets *return_bool to non-

zero (i.e. true)(if the line is marked as being a DW_LNE_set_address operation) or zero (i.e. false) (if the

line is marked as not being a DW_LNE_set_address operation). It returns DW_DLV_ERROR on error. It

never returns DW_DLV_NO_ENTRY.

This is intended to allow consumers to do a more useful job printing and analyzing DWARF data, it is not

strictly necessary.

6.13.11 dwarf_prologue_end_etc()

int dwarf_prologue_end_etc(Dwarf_Line line,

Dwarf_Bool * prologue_end,

Dwarf_Bool * epilogue_begin,

Dwarf_Unsigned * isa,

Dwarf_Unsigned * discriminator,

Dwarf_Error * error)

The function dwarf_prologue_end_etc() returns DW_DLV_OK and sets the returned fields to

values currently set. While it is pretty safe to assume that the isa and discriminator values returned

are very small integers, there is no restriction in the standard. It returns DW_DLV_ERROR on error. It nev er

returns DW_DLV_NO_ENTRY.

This function is new in December 2011.

6.14 Global Name Space Operations

These operations operate on the .debug_pubnames section of the debugging information.

6.14.1 Debugger Interface Operations

6.14.1.1 dwarf_get_globals()

int dwarf_get_globals(

Dwarf_Debug dbg,

Dwarf_Global **globals,

Dwarf_Signed * return_count,

Dwarf_Error *error)

The function dwarf_get_globals() returns DW_DLV_OK and sets *return_count to the count of

pubnames represented in the section containing pubnames i.e. .debug_pubnames. It also stores at

*globals, a pointer to a list of Dwarf_Global descriptors, one for each of the pubnames in the

.debug_pubnames section. The returned results are for the entire section. It returns DW_DLV_ERROR on

rev 2.58, May 18, 2017 - 78 -



- 79 -

error. It returns DW_DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return from dwarf_get_globals(), the Dwarf_Global descriptors should be freed

using dwarf_globals_dealloc(). dwarf_globals_dealloc() is new as of July 15, 2005 and

is the preferred approach to freeing this memory..

Global names refer exclusively to names and offsets in the .debug_info section. See section 6.1.1 "Lookup

by Name" in the dwarf standard.

Figure 18. Exampled dwarf_get_globals()

void examplef(Dwarf_Debug dbg)

{

Dwarf_Signed count = 0;

Dwarf_Global *globs = 0;

Dwarf_Signed i = 0;

Dwarf_Error error = 0;

int res = 0;

res = dwarf_get_globals(dbg, &globs,&count, &error);

if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use globs[i] */

}

dwarf_globals_dealloc(dbg, globs, count);

}

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach

still works as well as it ever did. On a successful return from dwarf_get_globals(), the

Dwarf_Global descriptors should be individually freed using dwarf_dealloc() with the allocation

type DW_DLA_GLOBAL_CONTEXT, (or DW_DLA_GLOBAL, an older name, supported for compatibility)

followed by the deallocation of the list itself with the allocation type DW_DLA_LIST when the descriptors

are no longer of interest.

Dwarf_Signed cnt;

Dwarf_Global *globs;

int res;

res = dwarf_get_globals(dbg, &globs,&cnt, &error);

if (res == DW_DLV_OK) {

/* OBSOLETE: DO NOT USE to deallocate*/

for (i = 0; i < cnt; ++i) {

/* use globs[i] */

dwarf_dealloc(dbg, globs[i], DW_DLA_GLOBAL_CONTEXT);

}

dwarf_dealloc(dbg, globs, DW_DLA_LIST);

}

6.14.1.2 dwarf_globname()

rev 2.58, May 18, 2017 - 79 -



- 80 -

int dwarf_globname(

Dwarf_Global global,

char ** return_name,

Dwarf_Error *error)

The function dwarf_globname() returns DW_DLV_OK and sets *return_name to a pointer to a

null-terminated string that names the pubname represented by the Dwarf_Global descriptor, global.

It returns DW_DLV_ERROR on error. On a successful return from this function, the string should be freed

using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no longer of interest. It

never returns DW_DLV_NO_ENTRY.

6.14.1.3 dwarf_global_die_offset()

int dwarf_global_die_offset(

Dwarf_Global global,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_global_die_offset() returns DW_DLV_OK and sets *return_offset to

the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the pubname that is

described by the Dwarf_Global descriptor, glob. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

6.14.1.4 dwarf_global_cu_offset()

int dwarf_global_cu_offset(

Dwarf_Global global,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_global_cu_offset() returns DW_DLV_OK and sets *return_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-

unit that contains the pubname described by the Dwarf_Global descriptor, global. It returns

DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.14.1.5 dwarf_get_cu_die_offset_given_cu_header_offset()

int dwarf_get_cu_die_offset_given_cu_header_offset_b(

Dwarf_Debug dbg,

Dwarf_Off in_cu_header_offset,

Dwarf_Bool is_info,

Dwarf_Off * out_cu_die_offset,

Dwarf_Error *error)

The function dwarf_get_cu_die_offset_given_cu_header_offset() returns DW_DLV_OK

and sets *out_cu_die_offset to the offset of the compilation-unit DIE given the offset

in_cu_header_offset of a compilation-unit header. It returns DW_DLV_ERROR on error. It nev er

returns DW_DLV_NO_ENTRY.

If is_info is non-zero the in_cu_header_offset must refer to a .debug_info section offset. If

is_info zero the in_cu_header_offset must refer to a .debug_types section offset. Chaos may

result if the is_info flag is incorrect.

rev 2.58, May 18, 2017 - 80 -



- 81 -

This effectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the

size of the applicable CU header). This function is also sometimes useful with the

dwarf_weak_cu_offset(), dwarf_func_cu_offset(), dwarf_type_cu_offset(), and

int dwarf_var_cu_offset() functions, though for those functions the data is only in .debug_info

by definition.

6.14.1.6 dwarf_get_cu_die_offset_given_cu_header_offset()

int dwarf_get_cu_die_offset_given_cu_header_offset(

Dwarf_Debug dbg,

Dwarf_Off in_cu_header_offset,

Dwarf_Off * out_cu_die_offset,

Dwarf_Error *error)

This function is superseded by dwarf_get_cu_die_offset_given_cu_header_offset_b(),

a function which is still supported thought it refers only to the .debug_info section.

dwarf_get_cu_die_offset_given_cu_header_offset() added Rev 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT

predicate may be used at run time to determine if the version of libdwarf linked into an application has this

function.

6.14.1.7 dwarf_global_name_offsets()

int dwarf_global_name_offsets(

Dwarf_Global global,

char **return_name,

Dwarf_Off *die_offset,

Dwarf_Off *cu_offset,

Dwarf_Error *error)

The function dwarf_global_name_offsets() returns DW_DLV_OK and sets *return_name to a

pointer to a null-terminated string that gives the name of the pubname described by the Dwarf_Global

descriptor global. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. It also

returns in the locations pointed to by die_offset, and cu_offset, the offset of the DIE representing

the pubname, and the offset of the DIE representing the compilation-unit containing the pubname,

respectively. On a successful return from dwarf_global_name_offsets() the storage pointed to by

return_name should be freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING

when no longer of interest.

6.15 DWARF3 Type Names Operations

Section ".debug_pubtypes" is new in DWARF3.

These functions operate on the .debug_pubtypes section of the debugging information. The

.debug_pubtypes section contains the names of file-scope user-defined types, the offsets of the DIEs that

represent the definitions of those types, and the offsets of the compilation-units that contain the definitions

of those types.

rev 2.58, May 18, 2017 - 81 -



- 82 -

6.15.1 Debugger Interface Operations

6.15.1.1 dwarf_get_pubtypes()

int dwarf_get_pubtypes(

Dwarf_Debug dbg,

Dwarf_Type **types,

Dwarf_Signed *typecount,

Dwarf_Error *error)

The function dwarf_get_pubtypes() returns DW_DLV_OK and sets *typecount to the count of

user-defined type names represented in the section containing user-defined type names, i.e.

.debug_pubtypes. It also stores at *types, a pointer to a list of Dwarf_Type descriptors, one for each of

the user-defined type names in the .debug_pubtypes section. The returned results are for the entire section.

It returns DW_DLV_NOCOUNT on error. It returns DW_DLV_NO_ENTRY if the .debug_pubtypes section

does not exist.

On a successful return from dwarf_get_pubtypes(), the Dwarf_Type descriptors should be freed

using dwarf_types_dealloc(). dwarf_types_dealloc() is used for both

dwarf_get_pubtypes() and dwarf_get_types() as the data types are the same.

Global type names refer exclusively to names and offsets in the .debug_info section. See section 6.1.1

"Lookup by Name" in the dwarf standard.

Figure 19. Exampled dwarf_get_pubtypes()

void exampleg(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Type *types = 0;

Dwarf_Signed i = 0;

int res = 0;

res = dwarf_get_pubtypes(dbg, &types,&count, &error);

if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use types[i] */

}

dwarf_types_dealloc(dbg, types, count);

}

}

6.15.1.2 dwarf_pubtypename()

int dwarf_pubtypename(

Dwarf_Type type,

char **return_name,

Dwarf_Error *error)

rev 2.58, May 18, 2017 - 82 -



- 83 -

The function dwarf_pubtypename() returns DW_DLV_OK and sets *return_name to a pointer to a

null-terminated string that names the user-defined type represented by the Dwarf_Type descriptor, type.

It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On a successful return from

this function, the string should be freed using dwarf_dealloc(), with the allocation type

DW_DLA_STRING when no longer of interest.

6.15.1.3 dwarf_pubtype_type_die_offset()

int dwarf_pubtype_type_die_offset(

Dwarf_Type type,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_pubtype_type_die_offset() returns DW_DLV_OK and sets

*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing

the user-defined type that is described by the Dwarf_Type descriptor, type. It returns DW_DLV_ERROR

on error. It nev er returns DW_DLV_NO_ENTRY.

6.15.1.4 dwarf_pubtype_cu_offset()

int dwarf_pubtype_cu_offset(

Dwarf_Type type,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_pubtype_cu_offset() returns DW_DLV_OK and sets *return_offset to

the offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the

compilation-unit that contains the user-defined type described by the Dwarf_Type descriptor, type. It

returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.15.1.5 dwarf_pubtype_name_offsets()

int dwarf_pubtype_name_offsets(

Dwarf_Type type,

char ** returned_name,

Dwarf_Off * die_offset,

Dwarf_Off * cu_offset,

Dwarf_Error *error)

The function dwarf_pubtype_name_offsets() returns DW_DLV_OK and sets *returned_name

to a pointer to a null-terminated string that gives the name of the user-defined type described by the

Dwarf_Type descriptor type. It also returns in the locations pointed to by die_offset, and

cu_offset, the offsets of the DIE representing the user-defined type, and the DIE representing the

compilation-unit containing the user-defined type, respectively. It returns DW_DLV_ERROR on error. It

never returns DW_DLV_NO_ENTRY. On a successful return from

dwarf_pubtype_name_offsets() the storage pointed to by returned_name should be freed

using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no longer of interest.

rev 2.58, May 18, 2017 - 83 -



- 84 -

6.16 User Defined Static Variable Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug_varnames section of the debugging information. The

.debug_varnames section contains the names of file-scope static variables, the offsets of the DIEs that

represent the definitions of those variables, and the offsets of the compilation-units that contain the

definitions of those variables.

6.17 Weak Name Space Operations

These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standard DWARF.

6.17.1 Debugger Interface Operations

6.17.1.1 dwarf_get_weaks()

int dwarf_get_weaks(

Dwarf_Debug dbg,

Dwarf_Weak **weaks,

Dwarf_Signed *weak_count,

Dwarf_Error *error)

The function dwarf_get_weaks() returns DW_DLV_OK and sets *weak_count to the count of weak

names represented in the section containing weak names i.e. .debug_weaknames. It returns

DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if the section does not exist. It also stores in

*weaks, a pointer to a list of Dwarf_Weak descriptors, one for each of the weak names in the

.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, the Dwarf_Weak descriptors should be freed using

dwarf_weaks_dealloc() when the data is no longer of interest. dwarf_weaks_dealloc()is

new as of July 15, 2005.

Figure 20. Exampleh dwarf_get_weaks()

rev 2.58, May 18, 2017 - 84 -



- 85 -

void exampleh(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Weak *weaks = 0;

Dwarf_Signed i = 0;

int res = 0;

res = dwarf_get_weaks(dbg, &weaks, &count, &error);

if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use weaks[i] */

}

dwarf_weaks_dealloc(dbg, weaks, count);

}

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach

still works as well as it ever did. On a successful return from dwarf_get_weaks() the Dwarf_Weak

descriptors should be individually freed using dwarf_dealloc() with the allocation type

DW_DLA_WEAK_CONTEXT, (or DW_DLA_WEAK, an older name, supported for compatibility) followed by

the deallocation of the list itself with the allocation type DW_DLA_LIST when the descriptors are no

longer of interest.

Figure 21. Examplei dwarf_get_weaks() obsolete

void examplei(Dwarf_Debug dbg)

{

/* Obsolete. See exampleh instead. */

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Weak *weaks = 0;

Dwarf_Signed i = 0;

int res = 0;

res = dwarf_get_weaks(dbg, &weaks, &count, &error);

if (res == DW_DLV_OK) {

/* OBSOLETE: do not use dealloc for this.

See above */

for (i = 0; i < count; ++i) {

/* use weaks[i] */

dwarf_dealloc(dbg, weaks[i], DW_DLA_WEAK);

}

dwarf_dealloc(dbg, weaks, DW_DLA_LIST);

}

}

6.17.1.2 dwarf_weakname()

rev 2.58, May 18, 2017 - 85 -



- 86 -

int dwarf_weakname(

Dwarf_Weak weak,

char ** return_name,

Dwarf_Error *error)

The function dwarf_weakname() returns DW_DLV_OK and sets *return_name to a pointer to a

null-terminated string that names the weak name represented by the Dwarf_Weak descriptor, weak. It

returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On a successful return from

this function, the string should be freed using dwarf_dealloc(), with the allocation type

DW_DLA_STRING when no longer of interest.

int dwarf_weak_die_offset(

Dwarf_Weak weak,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_weak_die_offset() returns DW_DLV_OK and sets *return_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the weak name that is

described by the Dwarf_Weak descriptor, weak. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

6.17.1.3 dwarf_weak_cu_offset()

int dwarf_weak_cu_offset(

Dwarf_Weak weak,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_weak_cu_offset() returns DW_DLV_OK and sets *return_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-

unit that contains the weak name described by the Dwarf_Weak descriptor, weak. It returns

DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.17.1.4 dwarf_weak_name_offsets()

int dwarf_weak_name_offsets(

Dwarf_Weak weak,

char ** weak_name,

Dwarf_Off *die_offset,

Dwarf_Off *cu_offset,

Dwarf_Error *error)

The function dwarf_weak_name_offsets() returns DW_DLV_OK and sets *weak_name to a

pointer to a null-terminated string that gives the name of the weak name described by the Dwarf_Weak

descriptor weak. It also returns in the locations pointed to by die_offset, and cu_offset, the

offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the

weakname, respectively. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On

a successful return from dwarf_weak_name_offsets() the storage pointed to by weak_name

should be freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no longer

of interest.

rev 2.58, May 18, 2017 - 86 -



- 87 -

6.18 Static Function Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These function operate on the .debug_funcnames section of the debugging information. The

.debug_funcnames section contains the names of static functions defined in the object, the offsets of the

DIEs that represent the definitions of the corresponding functions, and the offsets of the start of the

compilation-units that contain the definitions of those functions.

6.18.1 Debugger Interface Operations

6.18.1.1 dwarf_get_funcs()

int dwarf_get_funcs(

Dwarf_Debug dbg,

Dwarf_Func **funcs,

Dwarf_Signed *func_count,

Dwarf_Error *error)

The function dwarf_get_funcs() returns DW_DLV_OK and sets *func_count to the count of static

function names represented in the section containing static function names, i.e. .debug_funcnames. It also

stores, at *funcs, a pointer to a list of Dwarf_Func descriptors, one for each of the static functions in

the .debug_funcnames section. The returned results are for the entire section. It returns DW_DLV_ERROR

on error. It returns DW_DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return from dwarf_get_funcs(), the Dwarf_Func descriptors should be freed using

dwarf_funcs_dealloc(). dwarf_funcs_dealloc() is new as of July 15, 2005.

Figure 22. Examplej dwarf_get_funcs()

void examplej(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Func *funcs = 0;

Dwarf_Signed i = 0;

int fres = 0;

fres = dwarf_get_funcs(dbg, &funcs, &count, &error);

if (fres == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use funcs[i] */

}

dwarf_funcs_dealloc(dbg, funcs, count);

}

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach

still works as well as it ever did. On a successful return from dwarf_get_funcs(), the Dwarf_Func

descriptors should be individually freed using dwarf_dealloc() with the allocation type

DW_DLA_FUNC_CONTEXT, (or DW_DLA_FUNC, an older name, supported for compatibility) followed by

rev 2.58, May 18, 2017 - 87 -



- 88 -

the deallocation of the list itself with the allocation type DW_DLA_LIST when the descriptors are no

longer of interest.

Figure 23. Examplek dwarf_get_funcs() obsolete

void examplek(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Func *funcs = 0;

Dwarf_Signed count = 0;

Dwarf_Signed i = 0;

int fres = 0;

fres = dwarf_get_funcs(dbg, &funcs,&count, &error);

if (fres == DW_DLV_OK) {

/* OBSOLETE: see dwarf_funcs_dealloc() examplei */

for (i = 0; i < count; ++i) {

/* use funcs[i] */

dwarf_dealloc(dbg, funcs[i], DW_DLA_FUNC);

}

dwarf_dealloc(dbg, funcs, DW_DLA_LIST);

}

}

6.18.1.2 dwarf_funcname()

int dwarf_funcname(

Dwarf_Func func,

char ** return_name,

Dwarf_Error *error)

The function dwarf_funcname() returns DW_DLV_OK and sets *return_name to a pointer to a

null-terminated string that names the static function represented by the Dwarf_Func descriptor, func. It

returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On a successful return from

this function, the string should be freed using dwarf_dealloc(), with the allocation type

DW_DLA_STRING when no longer of interest.

6.18.1.3 dwarf_func_die_offset()

int dwarf_func_die_offset(

Dwarf_Func func,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_func_die_offset(), returns DW_DLV_OK and sets *return_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the static function that is

described by the Dwarf_Func descriptor, func. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

6.18.1.4 dwarf_func_cu_offset()

rev 2.58, May 18, 2017 - 88 -



- 89 -

int dwarf_func_cu_offset(

Dwarf_Func func,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_func_cu_offset() returns DW_DLV_OK and sets *return_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-

unit that contains the static function described by the Dwarf_Func descriptor, func. It returns

DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.18.1.5 dwarf_func_name_offsets()

int dwarf_func_name_offsets(

Dwarf_Func func,

char **func_name,

Dwarf_Off *die_offset,

Dwarf_Off *cu_offset,

Dwarf_Error *error)

The function dwarf_func_name_offsets() returns DW_DLV_OK and sets *func_name to a

pointer to a null-terminated string that gives the name of the static function described by the Dwarf_Func

descriptor func. It also returns in the locations pointed to by die_offset, and cu_offset, the

offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing

the static function, respectively. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY. On a successful return from dwarf_func_name_offsets() the storage

pointed to by func_name should be freed using dwarf_dealloc(), with the allocation type

DW_DLA_STRING when no longer of interest.

6.19 User Defined Type Names Operations

Section "debug_typenames" is SGI specific and is not part of standard DWARF version 2. (However, an

identical section is part of DWARF version 3 named ".debug_pubtypes", see dwarf_get_pubtypes()

above.)

These functions operate on the .debug_typenames section of the debugging information. The

.debug_typenames section contains the names of file-scope user-defined types, the offsets of the DIEs that

represent the definitions of those types, and the offsets of the compilation-units that contain the definitions

of those types.

6.19.1 Debugger Interface Operations

6.19.1.1 dwarf_get_types()

int dwarf_get_types(

Dwarf_Debug dbg,

Dwarf_Type **types,

Dwarf_Signed *typecount,

Dwarf_Error *error)

The function dwarf_get_types() returns DW_DLV_OK and sets *typecount to the count of user-

defined type names represented in the section containing user-defined type names, i.e. .debug_typenames.

It also stores at *types, a pointer to a list of Dwarf_Type descriptors, one for each of the user-defined

rev 2.58, May 18, 2017 - 89 -



- 90 -

type names in the .debug_typenames section. The returned results are for the entire section. It returns

DW_DLV_NOCOUNT on error. It returns DW_DLV_NO_ENTRY if the .debug_typenames section does not

exist.

On a successful return from dwarf_get_types(), the Dwarf_Type descriptors should be freed using

dwarf_types_dealloc(). dwarf_types_dealloc() is new as of July 15, 2005 and frees all

memory allocated by dwarf_get_types().

Figure 24. Examplel dwarf_get_types()

void examplel(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Type *types = 0;

Dwarf_Signed i = 0;

int res = 0;

res = dwarf_get_types(dbg, &types,&count, &error);

if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use types[i] */

}

dwarf_types_dealloc(dbg, types, count);

}

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach

still works as well as it ever did. On a successful return from dwarf_get_types(), the Dwarf_Type

descriptors should be individually freed using dwarf_dealloc() with the allocation type

DW_DLA_TYPENAME_CONTEXT, (or DW_DLA_TYPENAME, an older name, supported for compatibility)

followed by the deallocation of the list itself with the allocation type DW_DLA_LIST when the descriptors

are no longer of interest.

Figure 25. Examplel dwarf_get_types() obsolete

rev 2.58, May 18, 2017 - 90 -



- 91 -

void examplem(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Type *types = 0;

Dwarf_Signed i = 0;

int res = 0;

/* OBSOLETE: see dwarf_types_dealloc() examplel above */

res = dwarf_get_types(dbg, &types,&count, &error);

if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use types[i] */

dwarf_dealloc(dbg, types[i], DW_DLA_TYPENAME);

}

dwarf_dealloc(dbg, types, DW_DLA_LIST);

}

}

6.19.1.2 dwarf_typename()

int dwarf_typename(

Dwarf_Type type,

char **return_name,

Dwarf_Error *error)

The function dwarf_typename() returns DW_DLV_OK and sets *return_name to a pointer to a

null-terminated string that names the user-defined type represented by the Dwarf_Type descriptor, type.

It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On a successful return from

this function, the string should be freed using dwarf_dealloc(), with the allocation type

DW_DLA_STRING when no longer of interest.

6.19.1.3 dwarf_type_die_offset()

int dwarf_type_die_offset(

Dwarf_Type type,

Dwarf_Off *return_offset,

Dwarf_Error *error)

The function dwarf_type_die_offset() returns DW_DLV_OK and sets *return_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the user-defined type that is

described by the Dwarf_Type descriptor, type. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

6.19.1.4 dwarf_type_cu_offset()

int dwarf_type_cu_offset(

Dwarf_Type type,

Dwarf_Off *return_offset,

Dwarf_Error *error)

rev 2.58, May 18, 2017 - 91 -



- 92 -

The function dwarf_type_cu_offset() returns DW_DLV_OK and sets *return_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-

unit that contains the user-defined type described by the Dwarf_Type descriptor, type. It returns

DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.19.1.5 dwarf_type_name_offsets()

int dwarf_type_name_offsets(

Dwarf_Type type,

char ** returned_name,

Dwarf_Off * die_offset,

Dwarf_Off * cu_offset,

Dwarf_Error *error)

The function dwarf_type_name_offsets() returns DW_DLV_OK and sets *returned_name to a

pointer to a null-terminated string that gives the name of the user-defined type described by the

Dwarf_Type descriptor type. It also returns in the locations pointed to by die_offset, and

cu_offset, the offsets of the DIE representing the user-defined type, and the DIE representing the

compilation-unit containing the user-defined type, respectively. It returns DW_DLV_ERROR on error. It

never returns DW_DLV_NO_ENTRY. On a successful return from dwarf_type_name_offsets() the

storage pointed to by returned_name should be freed using dwarf_dealloc(), with the allocation

type DW_DLA_STRING when no longer of interest.

6.20 User Defined Static Variable Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug_varnames section of the debugging information. The

.debug_varnames section contains the names of file-scope static variables, the offsets of the DIEs that

represent the definitions of those variables, and the offsets of the compilation-units that contain the

definitions of those variables.

6.20.1 Debugger Interface Operations

6.20.1.1 dwarf_get_vars()

int dwarf_get_vars(

Dwarf_Debug dbg,

Dwarf_Var **vars,

Dwarf_Signed *var_count,

Dwarf_Error *error)

The function dwarf_get_vars() returns DW_DLV_OK and sets *var_count to the count of file-

scope static variable names represented in the section containing file-scope static variable names, i.e.

.debug_varnames. It also stores, at *vars, a pointer to a list of Dwarf_Var descriptors, one for each of

the file-scope static variable names in the .debug_varnames section. The returned results are for the entire

section. It returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if the .debug_varnames

section does not exist.

The following is new as of July 15, 2005. On a successful return from dwarf_get_vars(), the

rev 2.58, May 18, 2017 - 92 -



- 93 -

Dwarf_Var descriptors should be freed using dwarf_vars_dealloc().

Figure 26. Examplen dwarf_get_vars()

void examplen(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Var *vars = 0;

Dwarf_Signed i = 0;

int res = 0;

res = dwarf_get_vars(dbg, &vars,&count,&error);

if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use vars[i] */

}

dwarf_vars_dealloc(dbg, vars, count);

}

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach

still works as well as it ever did. On a successful return from dwarf_get_vars(), the Dwarf_Var

descriptors should be individually freed using dwarf_dealloc() with the allocation type

DW_DLA_VAR_CONTEXT, (or DW_DLA_VAR, an older name, supported for compatibility) followed by the

deallocation of the list itself with the allocation type DW_DLA_LIST when the descriptors are no longer of

interest.

Figure 27. Exampleo dwarf_get_vars() obsolete

void exampleo(Dwarf_Debug dbg)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Var *vars = 0;

Dwarf_Signed i = 0;

int res = 0;

res = dwarf_get_vars(dbg, &vars,&count,&error);

if (res == DW_DLV_OK) {

/* DO NOT USE: see dwarf_vars_dealloc() examplen above */

for (i = 0; i < count; ++i) {

/* use vars[i] */

dwarf_dealloc(dbg, vars[i], DW_DLA_VAR);

}

dwarf_dealloc(dbg, vars, DW_DLA_LIST);

}

}

6.20.1.2 dwarf_varname()

rev 2.58, May 18, 2017 - 93 -



- 94 -

int dwarf_varname(

Dwarf_Var var,

char ** returned_name,

Dwarf_Error *error)

The function dwarf_varname() returns DW_DLV_OK and sets *returned_name to a pointer to a

null-terminated string that names the file-scope static variable represented by the Dwarf_Var descriptor,

var. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On a successful return

from this function, the string should be freed using dwarf_dealloc(), with the allocation type

DW_DLA_STRING when no longer of interest.

6.20.1.3 dwarf_var_die_offset()

int dwarf_var_die_offset(

Dwarf_Var var,

Dwarf_Off *returned_offset,

Dwarf_Error *error)

The function dwarf_var_die_offset() returns DW_DLV_OK and sets *returned_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the file-scope static variable

that is described by the Dwarf_Var descriptor, var. It returns DW_DLV_ERROR on error. It nev er

returns DW_DLV_NO_ENTRY.

6.20.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_offset(

Dwarf_Var var,

Dwarf_Off *returned_offset,

Dwarf_Error *error)

The function dwarf_var_cu_offset() returns DW_DLV_OK and sets *returned_offset to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-

unit that contains the file-scope static variable described by the Dwarf_Var descriptor, var. It returns

DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.20.1.5 dwarf_var_name_offsets()

int dwarf_var_name_offsets(

Dwarf_Var var,

char **returned_name,

Dwarf_Off *die_offset,

Dwarf_Off *cu_offset,

Dwarf_Error *error)

The function dwarf_var_name_offsets() returns DW_DLV_OK and sets *returned_name to a

pointer to a null-terminated string that gives the name of the file-scope static variable described by the

Dwarf_Var descriptor var. It also returns in the locations pointed to by die_offset, and

cu_offset, the offsets of the DIE representing the

representing the compilation-unit containing the file-scope static variable, respectively. It returns

DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On a successful return from

dwarf_var_name_offsets() the storage pointed to by returned_name should be freed using

rev 2.58, May 18, 2017 - 94 -



- 95 -

dwarf_dealloc(), with the allocation type DW_DLA_STRING when no longer of interest.

6.21 Names Fast Access (DWARF5) .debug_names

The section .debug_names section is new in DWARF5 so a new set of functions is defined to access this

section. This section replaces .debug_pubnames and .debug_pubtypes as those older sections

were not found to be useful in practice. FIXME

6.21.1 dwarf_debugnames_header()

int dwarf_debugnames_header(

Dwarf_Debug dbg,

Dwarf_Dnames_Head * dn_out,

Dwarf_Unsigned * dn_index_count_out,

Dwarf_Error *error)

The function dwarf_debugnames_header() allocates an opaque data structure used in all the other

debugnames calls.

Many of the function calls here let one extract the entire content of the section, which is useful if one

wishes to dump the section or to use its data to create one’s own internal data structures.

To free space allocated when one has finished with these data structures, call

Debug_Dnames_Head dn /* Assume set somehow */;

...

dwarf_dealloc(dbg,dn,DW_DLA_DNAMES_HEAD);

which will free up all data allocated for dwarf_debugnames_header().

FIXME describe arguments.

void exampledebugnames(Dwarf_Debug dbg)

{

FIXME need extended example of debugnames use.

}

FIXME

6.21.2 dwarf_debugnames_sizes()

rev 2.58, May 18, 2017 - 95 -



- 96 -

int dwarf_debugnames_sizes(Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned * section_offsets,

Dwarf_Unsigned * version,

Dwarf_Unsigned * offset_size,

/* The counts are entry counts, not byte sizes. */

Dwarf_Unsigned * comp_unit_count,

Dwarf_Unsigned * local_type_unit_count,

Dwarf_Unsigned * foreign_type_unit_count,

Dwarf_Unsigned * bucket_count,

Dwarf_Unsigned * name_count,

/* The following are counted in bytes */

Dwarf_Unsigned * indextable_overall_length,

Dwarf_Unsigned * abbrev_table_size,

Dwarf_Unsigned * entry_pool_size,

Dwarf_Unsigned * augmentation_string_size,

Dwarf_Error * error*/)

FIXME

6.21.3 dwarf_debugnames_cu_entry()

int dwarf_debugnames_cu_entry(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned offset_number,

Dwarf_Unsigned * offset_count,

Dwarf_Unsigned * offset,

Dwarf_Error * error)

FIXME

6.21.4 dwarf_debugnames_local_tu_entry()

int dwarf_debugnames_local_tu_entry(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned offset_number,

Dwarf_Unsigned * offset_count,

Dwarf_Unsigned * offset,

Dwarf_Error * error)

FIXME

6.21.5 dwarf_debugnames_foreign_tu_entry()

rev 2.58, May 18, 2017 - 96 -



- 97 -

int dwarf_debugnames_foreign_tu_entry(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned sig_number,

Dwarf_Unsigned * sig_minimum,

Dwarf_Unsigned * sig_count,

Dwarf_Sig8 * signature,

Dwarf_Error * error)

FIXME

6.21.6 dwarf_debugnames_bucket()

int dwarf_debugnames_bucket(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned bucket_number,

Dwarf_Unsigned * bucket_count,

Dwarf_Unsigned * index_of_name_entry,

Dwarf_Error * error)

FIXME

6.21.7 dwarf_debugnames_name()

int dwarf_debugnames_bucket(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned name_entry,

Dwarf_Unsigned * names_count,

Dwarf_Sig8 * signature,

Dwarf_Unsigned * offset_to_debug_str,

Dwarf_Unsigned * offset_in_entrypool,

Dwarf_Error * error)

FIXME

6.21.8 dwarf_debugnames_abbrev_by_index()"

int dwarf_debugnames_abbrev_by_index(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned abbrev_entry,

Dwarf_Unsigned * abbrev_code,

Dwarf_Unsigned * tag,

Dwarf_Unsigned * number_of_abbrev,

Dwarf_Unsigned * number_of_attr_form_entries,

Dwarf_Error * error)

FIXME

6.21.9 dwarf_debugnames_abbrev_by_code()

rev 2.58, May 18, 2017 - 97 -



- 98 -

int dwarf_debugnames_abbrev_by_code(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned abbrev_code,

Dwarf_Unsigned * tag,

Dwarf_Unsigned * index_of_abbrev,

Dwarf_Unsigned * index_of_attr_form_entries,

Dwarf_Error * error)

FIXME

6.21.10 dwarf_debugnames_form_by_index()

int dwarf_debugnames_form_by_index(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned abbrev_entry_index,

Dwarf_Unsigned abbrev_form_index,

Dwarf_Unsigned * name_attr_index,

Dwarf_Unsigned * form,

Dwarf_Unsigned * number_of_attr_form_entries,

Dwarf_Error * error)

FIXME

6.21.11 dwarf_debugnames_entrypool()

int dwarf_debugnames_entrypool(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned offset_in_entrypool,

Dwarf_Unsigned * abbrev_code,

Dwarf_Unsigned * tag,

Dwarf_Unsigned * value_count,

Dwarf_Unsigned * index_of_abbrev,

Dwarf_Unsigned * offset_of_initial_value,

Dwarf_Error * error)

FIXME

6.21.12 dwarf_debugnames_entrypool_values()

rev 2.58, May 18, 2017 - 98 -



- 99 -

int dwarf_debugnames_entrypool_values(

Dwarf_Dnames_Head dn,

Dwarf_Unsigned index_number,

Dwarf_Unsigned index_of_abbrev,

Dwarf_Unsigned offset_in_entrypool_of_values,

Dwarf_Unsigned * array_dw_idx_number,

Dwarf_Unsigned * array_form,

Dwarf_Unsigned * array_of_offsets,

Dwarf_Sig8 * array_of_signatures,

Dwarf_Error * error)

FIXME

6.22 Macro Information Operations (DWARF4, DWARF5)

This section refers to DWARF4 and later macro information from the .debug_macro section. While

standard operations are supported there is as yet no support for implementation-defined extensions. Once

someone has defined such things it will make sense to design an interface for extensions.

6.22.1 Getting access

The opaque struct pointer Dwarf_Macro_Context is allocated by either

dwarf_get_macro_context() or dwarf_get_macro_context_by_offset() and once the

context is no longer needed one frees up all its storage by dwarf_dealloc_macro_context().

6.22.1.1 dwarf_get_macro_context()

int dwarf_get_macro_context(Dwarf_Die die,

Dwarf_Unsigned * version_out,

Dwarf_Macro_Context * macro_context,

Dwarf_Unsigned * macro_unit_offset_out,

Dwarf_Unsigned * macro_ops_count_out,

Dwarf_Unsigned * macro_ops_data_length_out,

Dwarf_Error * error);

Given a Compilation Unit (CU) die, on success dwarf_get_macro_context() opens a

Dwarf_Macro_Context and returns a pointer to it and some data from the macro unit for that CU. The

Dwarf_Macro_Context is used to get at the details of the macros.

The value version_out is set to the DWARF version number of the macro data. Version 5 means

DWARF5 version information. Version 4 means the DWARF5 format macro data is present as an extension

of DWARF4.

The value macro_unit_offset_out is set to the offset in the .debug_macro section of the first byte of

macro data for this CU.

The value macro_ops_count_out is set to the number of macro entries in the macro data data for this

CU. The count includes the final zero entry (which is not really a macro, it is a terminator, a zero byte

ending the macro unit).

The value macro_ops_data_length_out is set to the number of bytes of data in the macro unit,

including the macro unit header.

rev 2.58, May 18, 2017 - 99 -



- 100 -

If DW_DLV_NO_ENTRY is returned the CU has no macro data attribute or there is no .debug_macro section

present.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.22.1.2 dwarf_get_macro_context_by_offset()

int dwarf_get_macro_context_by_offset(Dwarf_Die die,

Dwarf_Unsigned offset,

Dwarf_Unsigned * version_out,

Dwarf_Macro_Context * macro_context,

Dwarf_Unsigned * macro_ops_count_out,

Dwarf_Unsigned * macro_ops_total_byte_len,

Dwarf_Error * error);

Given a Compilation Unit (CU) die and the offset of an imported macro unit

dwarf_get_macro_context_by_offset() opens a Dwarf_Macro_Context and returns a

pointer to it and some data from the macro unit for that CU on success.

On success the function produces the same output values as dwarf_get_macro_context() except

there is no offset returned ( the caller provides it).

If DW_DLV_NO_ENTRY is returned there is no .debug_macro section present.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.22.1.3 dwarf_dealloc_macro_context()

void dwarf_dealloc_macro_context(Dwarf_Macro_Context macro_context);

The function dwarf_dealloc_macro_context() cleans up memory allocated by a successful call

to dwarf_get_macro_context() or dwarf_get_macro_context_by_offset().

Figure 28. Examplep5 dwarf_dealloc_macro_context()

rev 2.58, May 18, 2017 - 100 -



- 101 -

/* This builds an list or some other data structure

(not defined) to give an import somewhere to list

the import offset and then later to enquire

if the list has unexamined offsets.

A candidate set of hypothetical functions that

callers would write:

has_unchecked_import_in_list()

get_next_import_from_list()

mark_this_offset_as_examined(macro_unit_offset);

add_offset_to_list(offset);

*/

void examplep5(Dwarf_Debug dbg, Dwarf_Die cu_die)

{

int lres = 0;

Dwarf_Unsigned version = 0;

Dwarf_Macro_Context macro_context = 0;

Dwarf_Unsigned macro_unit_offset = 0;

Dwarf_Unsigned number_of_ops = 0;

Dwarf_Unsigned ops_total_byte_len = 0;

Dwarf_Bool is_primary = TRUE;

unsigned k = 0;

Dwarf_Error err = 0;

for(;;) {

if (is_primary) {

lres = dwarf_get_macro_context(cu_die,

&version,&macro_context,

&macro_unit_offset,

&number_of_ops,

&ops_total_byte_len,

&err);

is_primary = FALSE;

} else {

if (has_unchecked_import_in_list()) {

macro_unit_offset = get_next_import_from_list();

} else {

/* We are done */

break;

}

lres = dwarf_get_macro_context_by_offset(cu_die,

macro_unit_offset,

&version,

&macro_context,

&number_of_ops,

&ops_total_byte_len,

&err);

mark_this_offset_as_examined(macro_unit_offset);

}

if (lres == DW_DLV_ERROR) {

/* Something is wrong. */

return;

}

if (lres == DW_DLV_NO_ENTRY) {

rev 2.58, May 18, 2017 - 101 -



- 102 -

/* We are done. */

break;

}

/* lres == DW_DLV_OK) */

for (k = 0; k < number_of_ops; ++k) {

Dwarf_Unsigned section_offset = 0;

Dwarf_Half macro_operator = 0;

Dwarf_Half forms_count = 0;

const Dwarf_Small *formcode_array = 0;

Dwarf_Unsigned line_number = 0;

Dwarf_Unsigned index = 0;

Dwarf_Unsigned offset =0;

const char * macro_string =0;

int lres = 0;

lres = dwarf_get_macro_op(macro_context,

k, &section_offset,&macro_operator,

&forms_count, &formcode_array,&err);

if (lres != DW_DLV_OK) {

print_error(dbg,

"ERROR from dwarf_get_macro_op()",

lres,err);

dwarf_dealloc_macro_context(macro_context);

return;

}

switch(macro_operator) {

case 0:

/* Nothing to do. */

break;

case DW_MACRO_end_file:

/* Do something */

break;

case DW_MACRO_define:

case DW_MACRO_undef:

case DW_MACRO_define_strp:

case DW_MACRO_undef_strp:

case DW_MACRO_define_strx:

case DW_MACRO_undef_strx:

case DW_MACRO_define_sup:

case DW_MACRO_undef_sup: {

lres = dwarf_get_macro_defundef(macro_context,

k,

&line_number,

&index,

&offset,

&forms_count,

&macro_string,

&err);

if (lres != DW_DLV_OK) {

print_error(dbg,

"ERROR from sup dwarf_get_macro_defundef()",

lres,err);

dwarf_dealloc_macro_context(macro_context);

return;

rev 2.58, May 18, 2017 - 102 -



- 103 -

}

/* do something */

}

break;

case DW_MACRO_start_file: {

lres = dwarf_get_macro_startend_file(macro_context,

k,&line_number,

&index,

&macro_string,&err);

if (lres != DW_DLV_OK) {

print_error(dbg,

"ERROR from dwarf_get_macro_startend_file()(sup)",

lres,err);

dwarf_dealloc_macro_context(macro_context);

return;

}

/* do something */

}

break;

case DW_MACRO_import: {

lres = dwarf_get_macro_import(macro_context,

k,&offset,&err);

if (lres != DW_DLV_OK) {

print_error(dbg,

"ERROR from dwarf_get_macro_import()(sup)",

lres,err);

dwarf_dealloc_macro_context(macro_context);

return;

}

add_offset_to_list(offset);

}

break;

case DW_MACRO_import_sup: {

lres = dwarf_get_macro_import(macro_context,

k,&offset,&err);

if (lres != DW_DLV_OK) {

print_error(dbg,

"ERROR from dwarf_get_macro_import()(sup)",

lres,err);

dwarf_dealloc_macro_context(macro_context);

return;

}

/* do something */

}

break;

}

}

dwarf_dealloc_macro_context(macro_context);

macro_context = 0;

}

}

rev 2.58, May 18, 2017 - 103 -



- 104 -

6.22.2 Getting Macro Unit Header Data

6.22.2.1 dwarf_macro_context_head()

int dwarf_macro_context_head(Dwarf_Macro_Context macro_context,

Dwarf_Half * version,

Dwarf_Unsigned * mac_offset,

Dwarf_Unsigned * mac_len,

Dwarf_Unsigned * mac_header_len,

unsigned * flags,

Dwarf_Bool * has_line_offset,

Dwarf_Unsigned * line_offset,

Dwarf_Bool * has_offset_size_64,

Dwarf_Bool * has_operands_table,

Dwarf_Half * opcode_count,

Dwarf_Error * error);

Given a Dwarf_Macro_Context pointer this function returns the basic fields of a macro unit header

(Macro Information Header) on success.

The value version is set to the DWARF version number of the macro unit header. Version 5 means

DWARF5 version information. Version 4 means the DWARF5 format macro data is present as an extension

of DWARF4.

The value mac_offset is set to the offset in the .debug_macro section of the first byte of macro data for

this CU.

The value mac_len is set to the number of bytes of data in the macro unit, including the macro unit

header.

The value mac_header_len is set to the number of bytes in the macro unit header (not a field that is

generally useful).

The value flags is set to the value of the flags field of the macro unit header.

The value has_line_offset is set to non-zero if the debug_line_offset_flag bit is set in the

flags field of the macro unit header. If has_line_offset is set then line_offset is set to the

value of the debug_line_offset field in the macro unit header. If has_line_offset is not set

there is no debug_line_offset field present in the macro unit header.

The value has_offset_size_64 is set non-zero if the offset_size_flag bit is set in the flags

field of the macro unit header and in this case offset fields in this macro unit are 64 bits. If

has_offset_size_64 is not set then offset fields in this macro unit are 32 bits.

The value has_operands_table is set to non-zero if the opcod_operands_table_flag bit is

set in the flags field of the macro unit header.

If has_operands_table is set non-zero then The value opcode_count is set to the number of

opcodes in the macro unit header opcode_operands_table. See dwarf_get_macro_op().

DW_DLV_NO_ENTRY is not returned.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.22.2.2 dwarf_macro_operands_table()

rev 2.58, May 18, 2017 - 104 -



- 105 -

int dwarf_macro_operands_table(Dwarf_Macro_Context macro_context,

Dwarf_Half index, /* 0 to opcode_count -1 */

Dwarf_Half * opcode_number,

Dwarf_Half * operand_count,

const Dwarf_Small ** operand_array,

Dwarf_Error * error);

dwarf_macro_operands_table() is used to index through the operands table in a macro unit

header if the operands table exists in the macro unit header. The operands table provides the mechanism

for implementations to add extensions to the macro operations while allowing clients to skip macro

operations the client code does not recognize.

The macro_context field passed in identifies the macro unit involved. The index field passed in

identifies which macro operand to look at. Valid index values are zero through the opcode_count-1

(returned by dwarf_macro_context_head()).

The opcode_number value returned through the pointer is the the macro operation code. The operation

code could be one of the standard codes or if there are user extensions there would be an extension code in

the DW_MACRO_lo_user to DW_MACRO_hi_user range.

The operand_count returned is the number of form codes in the form codes array of unsigned bytes

operand_array.

DW_DLV_NO_ENTRY is not returned.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.22.3 Getting Individual Macro Operations Data

6.22.3.1 dwarf_get_macro_op()

int dwarf_get_macro_op(Dwarf_Macro_Context macro_context,

Dwarf_Unsigned op_number,

Dwarf_Unsigned * op_start_section_offset,

Dwarf_Half * macro_operator,

Dwarf_Half * forms_count,

const Dwarf_Small ** formcode_array,

Dwarf_Error * error);

Use dwarf_get_macro_op() to access the macro operations of this macro unit.

The macro_context field passed in identifies the macro unit involved. The op_number field passed

in identifies which macro operand to look at. Valid index values are zero through

macro_ops_count_out-1 (field returned by dwarf_get_macro_context() or

dwarf_get_macro_context_by_offset())

On success the function returns values through the pointers.

The op_start_section_offset returned is useful for debugging but otherwise is not normally

useful. It is the byte offset of the beginning of this macro operator’s data.

The macro_operator returned is one of the defined macro operations such as DW_MACRO_define.

This is the field you will use to choose what call to use to get the data for a macro operator. For example,

for DW_MACRO_undef one would call dwarf_get_macro_defundef() (see below) to get the

details about the undefine.

The forms_count returned is useful for debugging but otherwise is not normally useful. It is the number

rev 2.58, May 18, 2017 - 105 -



- 106 -

of bytes of form numbers in the formcode_array of this macro operator’s applicable forms.

DW_DLV_NO_ENTRY is not returned.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.22.3.2 dwarf_get_macro_defundef()

int dwarf_get_macro_defundef(Dwarf_Macro_Context macro_context,

Dwarf_Unsigned op_number,

Dwarf_Unsigned * line_number,

Dwarf_Unsigned * index,

Dwarf_Unsigned * offset,

Dwarf_Half * forms_count,

const char ** macro_string,

Dwarf_Error * error);

Call dwarf_get_macro_defundef for any of the macro define/undefine operators. Which fields are

set through the pointers depends on the particular operator.

The macro_context field passed in identifies the macro unit involved. The op_number field passed

in identifies which macro operand to look at. Valid index values are zero through

macro_ops_count_out-1 (field returned by dwarf_get_macro_context() or

dwarf_get_macro_context_by_offset()).

The line_number field is set with the source line number of the macro.

The index field only set meaningfully if the macro operator is DW_MACRO_define_strx or

DW_MACRO_undef_strx. If set it is an index into an array of offsets in the .debug_str_offsets section.

The offset field only set meaningfully if the macro operator is DW_MACRO_define_strx,

DW_MACRO_undef_strx DW_MACRO_define_strp, or DW_MACRO_undef_strp If set it is an

offset of a string in the .debug_str section.

The forms_count is set to the number of forms that apply to the macro operator.

The macro_string pointer is used to return a pointer to the macro string. If the actual string cannot be

found (as when section with the string is in a different object, see set_tied_dbg()) the string returned

may be "<:No string available>" or "<.debug_str_offsets not available>" (without the quotes).

The function returns DW_DLV_NO_ENTRY if the macro operation is not one of the define/undef operations.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.22.3.3 dwarf_get_macro_startend_file()

int dwarf_get_macro_startend_file(Dwarf_Macro_Context macro_context,

Dwarf_Unsigned op_number,

Dwarf_Unsigned * line_number,

Dwarf_Unsigned * name_index_to_line_tab,

const char ** src_file_name,

Dwarf_Error * error);

Call dwarf_get_macro_startend_file for operators DW_MACRO_start_file or

DW_MACRO_end_file.

The macro_context field passed in identifies the macro unit involved.

The op_number field passed in identifies which macro operand to look at. Valid index values are zero

rev 2.58, May 18, 2017 - 106 -



- 107 -

through macro_ops_count_out-1 (field returned by dwarf_get_macro_context() or

dwarf_get_macro_context_by_offset())

For DW_MACRO_end_file none of the following fields are set on successful return, they are only set for.

DW_MACRO_start_file

The line_number field is set with the source line number of the macro.

The name_index_to_line_tab field is set with the index into the file name table of the line table

section. For DWARF2, DWARF3, DWARF4 line tables the index value assumes DWARF2 line table

header rules (identical to DWARF3, DWARF4 line table header rules). For DWARF5 the index value

assumes DWARF5 line table header rules. The src_file_name is set with the source file name. If the

index seems wrong or the line table is unavailable the name returned is "<no-source-file-name-available>");

The function returns DW_DLV_NO_ENTRY if the macro operation is not one of the start/end operations.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.22.3.4 dwarf_get_macro_import()

int dwarf_get_macro_import(Dwarf_Macro_Context macro_context,

Dwarf_Unsigned op_number,

Dwarf_Unsigned * target_offset,

Dwarf_Error * error);

Call dwarf_get_macro_import for operators DW_MACRO_import or DW_MACRO_import_sup.

The macro_context field passed in identifies the macro unit involved. The op_number field passed

in identifies which macro operand to look at. Valid index values are zero through

macro_ops_count_out-1 (field returned by dwarf_get_macro_context() or

dwarf_get_macro_context_by_offset())

On success the target_offset field is set to the offset in the referenced section. For

DW_MACRO_import the referenced section is the same section as the macro operation referenced here.

For DW_MACRO_import_sup the referenced section is in a supplementary object.

The function returns DW_DLV_NO_ENTRY if the macro operation is not one of the import operations.

On error DW_DLV_ERROR is returned and the error details are returned through the pointer error.

6.23 Macro Information Operations (DWARF2, DWARF3, DWARF4)

This section refers to DWARF2,DWARF3,and DWARF4 macro information from the .debug_macinfo

section. These do not apply to DWARF5 macro data.

6.23.1 General Macro Operations

6.23.1.1 dwarf_find_macro_value_start()

char *dwarf_find_macro_value_start(char * macro_string);

Given a macro string in the standard form defined in the DWARF document ("name <space> value" or

"name(args)<space>value") this returns a pointer to the first byte of the macro value. It does not alter the

string pointed to by macro_string or copy the string: it returns a pointer into the string whose address was

passed in.

rev 2.58, May 18, 2017 - 107 -



- 108 -

6.23.2 Debugger Interface Macro Operations

Macro information is accessed from the .debug_info section via the DW_AT_macro_info attribute (whose

value is an offset into .debug_macinfo).

No Functions yet defined.

6.23.3 Low Lev el Macro Information Operations

6.23.3.1 dwarf_get_macro_details()

int dwarf_get_macro_details(Dwarf_Debug /*dbg*/,

Dwarf_Off macro_offset,

Dwarf_Unsigned maximum_count,

Dwarf_Signed * entry_count,

Dwarf_Macro_Details ** details,

Dwarf_Error * err);

dwarf_get_macro_details() returns DW_DLV_OK and sets entry_count to the number of

details records returned through the details pointer. The data returned through details should

be freed by a call to dwarf_dealloc() with the allocation type DW_DLA_STRING. If DW_DLV_OK is

returned, the entry_count will be at least 1, since a compilation unit with macro information but no

macros will have at least one macro data byte of 0.

dwarf_get_macro_details() begins at the macro_offset offset you supply and ends at the end

of a compilation unit or at maximum_count detail records (whichever comes first). If

maximum_count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf_get_macro_details() attempts to set dmd_fileindex to the correct file in every

details record. If it is unable to do so (or whenever the current file index is unknown, it sets

dmd_fileindex to -1.

dwarf_get_macro_details() returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY

if there is no more macro information at that macro_offset. If macro_offset is passed in as 0, a

DW_DLV_NO_ENTRY return means there is no macro information.

Figure 29. Examplep2 dwarf_get_macro_details()

rev 2.58, May 18, 2017 - 108 -



- 109 -

void examplep2(Dwarf_Debug dbg, Dwarf_Off cur_off)

{

Dwarf_Error error = 0;

Dwarf_Signed count = 0;

Dwarf_Macro_Details *maclist = 0;

Dwarf_Signed i = 0;

Dwarf_Unsigned max = 500000; /* sanity limit */

int errv = 0;

/* Given an offset from a compilation unit,

start at that offset (from DW_AT_macroinfo)

and get its macro details. */

errv = dwarf_get_macro_details(dbg, cur_off,max,

&count,&maclist,&error);

if (errv == DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use maclist[i] */

}

dwarf_dealloc(dbg, maclist, DW_DLA_STRING);

}

/* Loop through all the compilation units macro info from zero.

This is not guaranteed to work because DWARF does not

guarantee every byte in the section is meaningful:

there can be garbage between the macro info

for CUs. But this loop will sometimes work.

*/

cur_off = 0;

while((errv = dwarf_get_macro_details(dbg, cur_off,max,

&count,&maclist,&error))== DW_DLV_OK) {

for (i = 0; i < count; ++i) {

/* use maclist[i] */

}

cur_off = maclist[count-1].dmd_offset + 1;

dwarf_dealloc(dbg, maclist, DW_DLA_STRING);

}

}

6.24 Low Lev el Frame Operations

These functions provide information about stack frames to be used to perform stack traces. The

information is an abstraction of a table with a row per instruction and a column per register and a column

for the canonical frame address (CFA, which corresponds to the notion of a frame pointer), as well as a

column for the return address.

From 1993-2006 the interface we’ll here refer to as DWARF2 made the CFA be a column in the matrix, but

left DW_FRAME_UNDEFINED_VAL, and DW_FRAME_SAME_VAL out of the matrix (giving them

high numbers). As of the DWARF3 interfaces introduced in this document in April 2006, there are *two*

interfaces (the original set and a new set). Several frame functions work transparently for either set, we will

focus on the ones that are not equally suitable now.

The original DWARF2 interface set still exists (dwarf_get_fde_info_for_reg(),

dwarf_get_fde_info_for_cfa_reg(), and dwarf_get_fde_info_for_all_regs()) and works adequately for

MIPS/IRIX DWARF2 and ABI/ISA sets that are sufficiently similar to MIPS. These functions not a good

choice for non-MIPS architectures nor were they a good design for MIPS either. It’s better to switch

rev 2.58, May 18, 2017 - 109 -



- 110 -

entirely to the new functions mentioned in the next paragraph. This DWARF2 interface set assumes and

uses DW_FRAME_CFA_COL and that is assumed when libdwarf is configured with --enable-oldframecol

.

A new DWARF3 interface set of dwarf_get_fde_info_for_reg3(), dwarf_get_fde_info_for_cfa_reg3(),

dwarf_get_fde_info_for_all_regs3(), dwarf_set_frame_rule_table_size() dwarf_set_frame_cfa_value(),

dwarf_set_frame_same_value(), dwarf_set_frame_undefined_value(), and

dwarf_set_frame_rule_initial_value() is more flexible and will work for many more architectures. It is also

entirely suitable for use with DWARF2 and DWARF4. The setting of the ’frame cfa column number’

defaults to DW_FRAME_CFA_COL3 and it can be set at runtime with dwarf_set_frame_cfa_value().

Mixing use of the DWARF2 interface set with use of the new DWARF3 interface set on a single open

Dwarf_Debug instance is a mistake. Do not do it.

We will pretend, from here on unless otherwise specified, that DW_FRAME_CFA_COL3,

DW_FRAME_UNDEFINED_VAL, and DW_FRAME_SAME_VAL are the synthetic column numbers.

These columns may be user-chosen by calls of dwarf_set_frame_cfa_value()

dwarf_set_frame_undefined_value(), and dwarf_set_frame_same_value() respectively.

Each cell in the table contains one of the following:

1. A register + offset(a)(b)

2. A register(c)(d)

3. A marker (DW_FRAME_UNDEFINED_VAL) meaning register value undefined

4. A marker (DW_FRAME_SAME_VAL) meaning register value same as in caller

(a old DWARF2 interface) When the column is DW_FRAME_CFA_COL: the register number is a real

hardware register, not a reference to DW_FRAME_CFA_COL, not DW_FRAME_UNDEFINED_VAL,

and not DW_FRAME_SAME_VAL. The CFA rule value should be the stack pointer plus offset 0 when no

other value makes sense. A value of DW_FRAME_SAME_VAL would be semi-logical, but since the CFA

is not a real register, not really correct. A value of DW_FRAME_UNDEFINED_VAL would imply the

CFA is undefined -- this seems to be a useless notion, as the CFA is a means to finding real registers, so

those real registers should be marked DW_FRAME_UNDEFINED_VAL, and the CFA column content

(whatever register it specifies) becomes unreferenced by anything.

(a new April 2006 DWARF2/3 interface): The CFA is separately accessible and not part of the table. The

’rule number’ for the CFA is a number outside the table. So the CFA is a marker, not a register number.

See DW_FRAME_CFA_COL3 in libdwarf.h and dwarf_get_fde_info_for_cfa_reg3() and

dwarf_set_frame_rule_cfa_value().

(b) When the column is not DW_FRAME_CFA_COL3, the ’register’ will and must be

DW_FRAME_CFA_COL3(COL), implying that to get the final location for the column one must add the

offset here plus the DW_FRAME_CFA_COL3 rule value.

(c) When the column is DW_FRAME_CFA_COL3, then the ’register’ number is (must be) a real hardware

register . (This paragraph does not apply to the April 2006 new interface). If it were

DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL it would be a marker, not a register

number.

(d) When the column is not DW_FRAME_CFA_COL3, the register may be a hardware register. It will not

be DW_FRAME_CFA_COL3.

rev 2.58, May 18, 2017 - 110 -



- 111 -

There is no ’column’ for DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL. Nor for

DW_FRAME_CFA_COL3.

Figure 4 is machine dependent and represents MIPS CPU register assignments. The

DW_FRAME_CFA_COL define in dwarf.h is historical and really belongs in libdwarf.h, not dwarf.h.

NAME value PURPOSE

DW_FRAME_CFA_COL 0 column used for CFA

DW_FRAME_REG1 1 integer register 1

DW_FRAME_REG2 2 integer register 2

--- obvious names and values here

DW_FRAME_REG30 30 integer register 30

DW_FRAME_REG31 31 integer register 31

DW_FRAME_FREG0 32 floating point register 0

DW_FRAME_FREG1 33 floating point register 1

--- obvious names and values here

DW_FRAME_FREG30 62 floating point register 30

DW_FRAME_FREG31 63 floating point register 31

DW_FRAME_RA_COL 64 column recording ra

DW_FRAME_UNDEFINED_VAL 1034 register val undefined

DW_FRAME_SAME_VAL 1035 register same as in caller

Figure 30. Frame Information Rule Assignments MIPS

The following table shows SGI/MIPS specific special cell values: these values mean that the cell has the

value undefined or same value respectively, rather than containing a register or register+offset. It assumes

DW_FRAME_CFA_COL is a table rule, which is not readily accomplished or even sensible for some

architectures.

NAME value PURPOSE

DW_FRAME_UNDEFINED_VAL 1034 means undefined value.

Not a column or register value

DW_FRAME_SAME_VAL 1035 means ’same value’ as

caller had. Not a column or

register value

DW_FRAME_CFA_COL 0 means register zero is

usurped by the CFA column.

Figure 31. Frame Information Special Values any architecture

The following table shows more general special cell values. These values mean that the cell register-

number refers to the cfa-register or undefined-value or same-value respectively, rather than referring to a

register in the table. The generality arises from making DW_FRAME_CFA_COL3 be outside the set of

registers and making the cfa rule accessible from outside the rule-table.

rev 2.58, May 18, 2017 - 111 -



- 112 -

NAME value PURPOSE

DW_FRAME_UNDEFINED_VAL 1034 means undefined

value. Not a column or register value

DW_FRAME_SAME_VAL 1035 means ’same value’ as

caller had. Not a column or

register value

DW_FRAME_CFA_COL3 1436 means ’cfa register’

is referred to, not a real register, not

a column, but the cfa (the cfa does have

a value, but in the DWARF3 libdwarf interface

it does not have a ’real register number’).

6.24.1 dwarf_get_frame_section_name()

int dwarf_get_frame_section_name(Dwarf_Debug dbg,

const char ** sec_name,

Dwarf_Error *error)

dwarf_get_string_section_name() lets consumers access the object string section name. This

is useful for applications wanting to print the name, but of course the object section name is not really a

part of the DWARF information. Most applications will probably not call this function. It can be called at

any time after the Dwarf_Debug initialization is done. See also

dwarf_get_frame_section_name_eh_gnu().

The function dwarf_get_frame_section_name() operates on the the .debug_frame section.

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.24.2 dwarf_get_frame_section_name_eh_gnu()

int dwarf_get_frame_section_name_eh_gnu(Dwarf_Debug dbg

const char ** sec_name,

Dwarf_Error *error)

dwarf_get_frame_section_name_eh_gnu() lets consumers access the object string section

name. This is useful for applications wanting to print the name, but of course the object section name is not

really a part of the DWARF information. Most applications will probably not call this function. It can be

called at any time after the Dwarf_Debug initialization is done. See also

dwarf_get_frame_section_name().

The function dwarf_get_frame_section_name_eh_ghu() operates on the the .eh_frame section.

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

rev 2.58, May 18, 2017 - 112 -



- 113 -

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.24.3 dwarf_get_fde_list()

int dwarf_get_fde_list(

Dwarf_Debug dbg,

Dwarf_Cie **cie_data,

Dwarf_Signed *cie_element_count,

Dwarf_Fde **fde_data,

Dwarf_Signed *fde_element_count,

Dwarf_Error *error);

dwarf_get_fde_list() stores a pointer to a list of Dwarf_Cie descriptors in *cie_data, and the

count of the number of descriptors in *cie_element_count. There is a descriptor for each CIE in the

.debug_frame section. Similarly, it stores a pointer to a list of Dwarf_Fde descriptors in *fde_data,

and the count of the number of descriptors in *fde_element_count. There is one descriptor per FDE

in the .debug_frame section. dwarf_get_fde_list() returns DW_DLV_ERROR on error. It returns

DW_DLV_NO_ENTRY if it cannot find frame entries. It returns DW_DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using

dwarf_fde_cie_list_dealloc(). This dealloc approach is new as of July 15, 2005.

Figure 32. Exampleq dwarf_get_fde_list()

void exampleq(Dwarf_Debug dbg)

{

Dwarf_Signed cnt = 0;

Dwarf_Cie *cie_data = 0;

Dwarf_Signed cie_count = 0;

Dwarf_Fde *fde_data = 0;

Dwarf_Signed fde_count = 0;

int fres = 0;

fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,

&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {

dwarf_fde_cie_list_dealloc(dbg, cie_data, cie_count,

fde_data,fde_count);

}

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach

still works as well as it ever did.

Figure 33. Exampleqb dwarf_get_fde_list() obsolete

rev 2.58, May 18, 2017 - 113 -



- 114 -

/* OBSOLETE EXAMPLE */

void exampleqb(Dwarf_Debug dbg)

{

Dwarf_Signed cnt = 0;

Dwarf_Cie *cie_data = 0;

Dwarf_Signed cie_count = 0;

Dwarf_Fde *fde_data = 0;

Dwarf_Signed fde_count = 0;

int fres = 0;

fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,

&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {

for (i = 0; i < cie_count; ++i) {

/* use cie[i] */

dwarf_dealloc(dbg, cie_data[i], DW_DLA_CIE);

}

for (i = 0; i < fde_count; ++i) {

/* use fde[i] */

dwarf_dealloc(dbg, fde_data[i], DW_DLA_FDE);

}

dwarf_dealloc(dbg, cie_data, DW_DLA_LIST);

dwarf_dealloc(dbg, fde_data, DW_DLA_LIST);

}

}

6.24.4 dwarf_get_fde_list_eh()

int dwarf_get_fde_list_eh(

Dwarf_Debug dbg,

Dwarf_Cie **cie_data,

Dwarf_Signed *cie_element_count,

Dwarf_Fde **fde_data,

Dwarf_Signed *fde_element_count,

Dwarf_Error *error);

dwarf_get_fde_list_eh() is identical to dwarf_get_fde_list() except that

dwarf_get_fde_list_eh() reads the GNU gcc section named .eh_frame (C++ exception handling

information).

dwarf_get_fde_list_eh() stores a pointer to a list of Dwarf_Cie descriptors in *cie_data,

and the count of the number of descriptors in *cie_element_count. There is a descriptor for each

CIE in the .debug_frame section. Similarly, it stores a pointer to a list of Dwarf_Fde descriptors in

*fde_data, and the count of the number of descriptors in *fde_element_count. There is one

descriptor per FDE in the .debug_frame section. dwarf_get_fde_list() returns DW_DLV_ERROR

on error. It returns DW_DLV_NO_ENTRY if it cannot find exception handling entries. It returns

DW_DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using

dwarf_fde_cie_list_dealloc(). This dealloc approach is new as of July 15, 2005.

Figure 34. Exampler dwarf_get_fde_list_eh()

rev 2.58, May 18, 2017 - 114 -



- 115 -

void exampler(Dwarf_Debug dbg,Dwarf_Addr mypcval)

{

/* Given a pc value

for a function find the FDE and CIE data for

the function.

Example shows basic access to FDE/CIE plus

one way to access details given a PC value.

dwarf_get_fde_n() allows accessing all FDE/CIE

data so one could build up an application-specific

table of information if that is more useful. */

Dwarf_Signed count = 0;

Dwarf_Cie *cie_data = 0;

Dwarf_Signed cie_count = 0;

Dwarf_Fde *fde_data = 0;

Dwarf_Signed fde_count = 0;

Dwarf_Error error = 0;

int fres = 0;

fres = dwarf_get_fde_list_eh(dbg,&cie_data,&cie_count,

&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {

Dwarf_Fde myfde = 0;

Dwarf_Addr low_pc = 0;

Dwarf_Addr high_pc = 0;

fres = dwarf_get_fde_at_pc(fde_data,mypcval,

&myfde,&low_pc,&high_pc,

&error);

if (fres == DW_DLV_OK) {

Dwarf_Cie mycie = 0;

fres = dwarf_get_cie_of_fde(myfde,&mycie,&error);

if (fres == DW_DLV_OK) {

/* Now we can access a range of information

about the fde and cie applicable. */

}

}

dwarf_fde_cie_list_dealloc(dbg, cie_data, cie_count,

fde_data,fde_count);

}

/* ERROR or NO ENTRY. Do something */

}

6.24.5 dwarf_get_cie_of_fde()

int dwarf_get_cie_of_fde(Dwarf_Fde fde,

Dwarf_Cie *cie_returned,

Dwarf_Error *error);

dwarf_get_cie_of_fde() stores a Dwarf_Cie into the Dwarf_Cie that cie_returned points

at.

If one has called dwarf_get_fde_list and does not wish to dwarf_dealloc() all the individual FDEs

immediately, one must also avoid dwarf_dealloc-ing the CIEs for those FDEs not immediately dealloc’d.

rev 2.58, May 18, 2017 - 115 -



- 116 -

Failing to observe this restriction will cause the FDE(s) not dealloc’d to become invalid: an FDE contains

(hidden in it) a CIE pointer which will be be invalid (stale, pointing to freed memory) if the CIE is

dealloc’d. The invalid CIE pointer internal to the FDE cannot be detected as invalid by libdwarf. If one

later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result

will be failure of the call (returning DW_DLV_ERROR) at best and it is possible a coredump or worse will

happen (eventually).

dwarf_get_cie_of_fde() returns DW_DLV_OK if it is successful (it will be unless fde is the NULL

pointer). It returns DW_DLV_ERROR if the fde is invalid (NULL).

Each Dwarf_Fde descriptor describes information about the frame for a particular subroutine or function.

int dwarf_get_fde_for_die is SGI/MIPS specific.

6.24.6 dwarf_get_fde_for_die()

int dwarf_get_fde_for_die(

Dwarf_Debug dbg,

Dwarf_Die die,

Dwarf_Fde * return_fde,

Dwarf_Error *error)

When it succeeds, dwarf_get_fde_for_die() returns DW_DLV_OK and sets *return_fde to a

Dwarf_Fde descriptor representing frame information for the given die. It looks for the

DW_AT_MIPS_fde attribute in the given die. If it finds it, is uses the value of the attribute as the offset

in the .debug_frame section where the FDE begins. If there is no DW_AT_MIPS_fde it returns

DW_DLV_NO_ENTRY. If there is an error it returns DW_DLV_ERROR.

6.24.7 dwarf_get_fde_range()

int dwarf_get_fde_range(

Dwarf_Fde fde,

Dwarf_Addr *low_pc,

Dwarf_Unsigned *func_length,

Dwarf_Ptr *fde_bytes,

Dwarf_Unsigned *fde_byte_length,

Dwarf_Off *cie_offset,

Dwarf_Signed *cie_index,

Dwarf_Off *fde_offset,

Dwarf_Error *error);

On success, dwarf_get_fde_range() returns DW_DLV_OK.

The location pointed to by low_pc is set to the low pc value for this function.

The location pointed to by func_length is set to the length of the function in bytes. This is essentially

the length of the text section for the function.

The location pointed to by fde_bytes is set to the address where the FDE begins in the .debug_frame

section.

rev 2.58, May 18, 2017 - 116 -



- 117 -

The location pointed to by fde_byte_length is set to the length in bytes of the portion of

.debug_frame for this FDE. This is the same as the value returned by dwarf_get_fde_range.

The location pointed to by cie_offset is set to the offset in the .debug_frame section of the CIE used by

this FDE.

The location pointed to by cie_index is set to the index of the CIE used by this FDE. The index is the

index of the CIE in the list pointed to by cie_data as set by the function dwarf_get_fde_list().

However, if the function dwarf_get_fde_for_die() was used to obtain the given fde, this index

may not be correct.

The location pointed to by fde_offset is set to the offset of the start of this FDE in the .debug_frame

section.

dwarf_get_fde_range() returns DW_DLV_ERROR on error.

6.24.8 dwarf_get_cie_info()

int dwarf_get_cie_info(

Dwarf_Cie cie,

Dwarf_Unsigned *bytes_in_cie,

Dwarf_Small *version,

char **augmenter,

Dwarf_Unsigned *code_alignment_factor,

Dwarf_Signed *data_alignment_factor,

Dwarf_Half *return_address_register_rule,

Dwarf_Ptr *initial_instructions,

Dwarf_Unsigned *initial_instructions_length,

Dwarf_Error *error);

dwarf_get_cie_info() is primarily for Internal-level Interface consumers. If successful, it returns

DW_DLV_OK and sets *bytes_in_cie to the number of bytes in the portion of the frames section for

the CIE represented by the given Dwarf_Cie descriptor, cie. The other fields are directly taken from the

cie and returned, via the pointers to the caller. It returns DW_DLV_ERROR on error.

6.24.9 dwarf_get_cie_index()

int dwarf_get_cie_index(

Dwarf_Cie cie,

Dwarf_Signed *cie_index,

Dwarf_Error *error);

On success, dwarf_get_cie_index() returns DW_DLV_OK. On error this function returns

DW_DLV_ERROR.

The location pointed to by cie_index is set to the index of the CIE of this FDE. The index is the index

of the CIE in the list pointed to by cie_data as set by the function dwarf_get_fde_list().

So one must have used dwarf_get_fde_list() or dwarf_get_fde_list_eh() to get a cie list

before this is meaningful.

This function is occasionally useful, but is little used.

rev 2.58, May 18, 2017 - 117 -



- 118 -

6.24.10 dwarf_get_fde_instr_bytes()

int dwarf_get_fde_instr_bytes(

Dwarf_Fde fde,

Dwarf_Ptr *outinstrs,

Dwarf_Unsigned *outlen,

Dwarf_Error *error);

dwarf_get_fde_instr_bytes() returns DW_DLV_OK and sets *outinstrs to a pointer to a set

of bytes which are the actual frame instructions for this fde. It also sets *outlen to the length, in bytes,

of the frame instructions. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

The intent is to allow low-level consumers like a dwarf-dumper to print the bytes in some fashion. The

memory pointed to by outinstrs must not be changed and there is nothing to free.

6.24.11 dwarf_get_fde_info_for_reg()

This interface is suitable for DWARF2 but is not sufficient for DWARF3. See int

dwarf_get_fde_info_for_reg3.

int dwarf_get_fde_info_for_reg(

Dwarf_Fde fde,

Dwarf_Half table_column,

Dwarf_Addr pc_requested,

Dwarf_Signed *offset_relevant,

Dwarf_Signed *register_num,

Dwarf_Signed *offset,

Dwarf_Addr *row_pc,

Dwarf_Error *error);

dwarf_get_fde_info_for_reg() returns DW_DLV_OK and sets *offset_relevant to non-

zero if the offset is relevant for the row specified by pc_requested and column specified by

table_column, for the FDE specified by fde. The intent is to return the rule for the given pc value and

register. The location pointed to by register_num is set to the register value for the rule. The location

pointed to by offset is set to the offset value for the rule. If offset is not relevant for this rule,

*offset_relevant is set to zero. Since more than one pc value will have rows with identical entries,

the user may want to know the earliest pc value after which the rules for all the columns remained

unchanged. Recall that in the virtual table that the frame information represents there may be one or more

table rows with identical data (each such table row at a different pc value). Given a pc_requested

which refers to a pc in such a group of identical rows, the location pointed to by row_pc is set to the

lowest pc value within the group of identical rows. The value put in *register_num any of the

DW_FRAME_* table columns values specified in libdwarf.h or dwarf.h.

dwarf_get_fde_info_for_reg returns DW_DLV_ERROR if there is an error.

It is usable with either dwarf_get_fde_n() or dwarf_get_fde_at_pc().

dwarf_get_fde_info_for_reg() is tailored to MIPS, please use

dwarf_get_fde_info_for_reg3() instead for all architectures.

6.24.12 dwarf_get_fde_info_for_all_regs()

rev 2.58, May 18, 2017 - 118 -



- 119 -

int dwarf_get_fde_info_for_all_regs(

Dwarf_Fde fde,

Dwarf_Addr pc_requested,

Dwarf_Regtable *reg_table,

Dwarf_Addr *row_pc,

Dwarf_Error *error);

dwarf_get_fde_info_for_all_regs() returns DW_DLV_OK and sets *reg_table for the row

specified by pc_requested for the FDE specified by fde.

The intent is to return the rules for decoding all the registers, given a pc value. reg_table is an array of

rules, one for each register specified in dwarf.h. The rule for each register contains three items -

dw_regnum which denotes the register value for that rule, dw_offset which denotes the offset value for

that rule and dw_offset_relevant which is set to zero if offset is not relevant for that rule. See

dwarf_get_fde_info_for_reg() for a description of row_pc.

dwarf_get_fde_info_for_all_regs returns DW_DLV_ERROR if there is an error.

int dwarf_get_fde_info_for_all_regs is tailored to SGI/MIPS, please use

dwarf_get_fde_info_for_all_regs3() instead for all architectures.

6.24.13 dwarf_fde_section_offset()

int dwarf_fde_section_offset(

Dwarf_Debug /*dbg*/,

Dwarf_Fde /*in_fde*/,

Dwarf_Off * /*fde_off*/,

Dwarf_Off * /*cie_off*/,

Dwarf_Error *error);

On success dwarf_fde_section_offset() returns the .dwarf_line section offset of the fde passed

in and also the offset of its CIE.

It returns DW_DLV_ERROR if there is an error.

It returns DW_DLV_ERROR if there is an error.

when such want to print the offsets of CIEs and FDEs.

6.24.14 dwarf_cie_section_offset()

int dwarf_cie_section_offset(

Dwarf_Debug /*dbg*/,

Dwarf_Cie /*in_cie*/,

Dwarf_Off * /*cie_off*/,

Dwarf_Error * /*err*/);

Dwarf_Error *error);

On success dwarf_cie_section_offset() returns the .dwarf_line section offset of the cie passed

in.

It returns DW_DLV_ERROR if there is an error.

when such want to print the offsets of CIEs.

rev 2.58, May 18, 2017 - 119 -



- 120 -

6.24.15 dwarf_set_frame_rule_table_size()

This allows consumers to set the size of the (internal to libdwarf) rule table when using the ’reg3’ interfaces

(these interfaces are strongly preferred over the older ’reg’ interfaces). It should be at least as large as the

number of real registers in the ABI which is to be read in for the dwarf_get_fde_info_for_reg3() or

dwarf_get_fde_info_for_all_regs3() functions to work properly.

The frame rule table size must be less than the marker values DW_FRAME_UNDEFINED_VAL,

DW_FRAME_SAME_VAL, DW_FRAME_CFA_COL3 (dwarf_set_frame_rule_undefined_value()

dwarf_set_frame_same_value() dwarf_set_frame_cfa_value() effectively set these markers so the frame

rule table size can actually be any value regardless of the macro values in libdwarf.h as long as the table

size does not overlap these markers).

Dwarf_Half

dwarf_set_frame_rule_table_size(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_table_size() sets the value value as the size of libdwarf-internal

rules tables of dbg.

The function returns the previous value of the rules table size setting (taken from the dbg structure).

6.24.16 dwarf_set_frame_rule_initial_value()

This allows consumers to set the initial value for rows in the frame tables. By default it is taken from

libdwarf.h and is DW_FRAME_REG_INITIAL_VALUE (which itself is either

DW_FRAME_SAME_VAL or DW_FRAME_UNDEFINED_VAL). The MIPS/IRIX default is

DW_FRAME_SAME_VAL. Consumer code should set this appropriately and for many architectures (but

probably not MIPS) DW_FRAME_UNDEFINED_VAL is an appropriate setting. Note: an earlier spelling

of dwarf_set_frame_rule_inital_value() is still supported as an interface, but please change to use the new

correctly spelled name.

Dwarf_Half

dwarf_set_frame_rule_initial_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_initial_value() sets the value value as the initial value for this dbg

when initializing rules tables.

The function returns the previous value of initial value (taken from the dbg structure).

6.24.17 dwarf_set_frame_cfa_value()

This allows consumers to set the number of the CFA register for rows in the frame tables. By default it is

taken from libdwarf.h and is DW_FRAME_CFA_COL. Consumer code should set this appropriately and for

nearly all architectures DW_FRAME_CFA_COL3 is an appropriate setting.

Dwarf_Half

dwarf_set_frame_rule_cfa_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_cfa_value() sets the value value as the number of the cfa ’register

rule’ for this dbg when initializing rules tables.

The function returns the previous value of the pseudo-register (taken from the dbg structure).

rev 2.58, May 18, 2017 - 120 -



- 121 -

6.24.18 dwarf_set_frame_same_value()

This allows consumers to set the number of the pseudo-register when DW_CFA_same_value is the

operation. By default it is taken from libdwarf.h and is DW_FRAME_SAME_VAL. Consumer code should

set this appropriately, though for many architectures DW_FRAME_SAME_VAL is an appropriate setting.

Dwarf_Half

dwarf_set_frame_rule_same_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_same_value() sets the value value as the number of the register that

is the pseudo-register set by the DW_CFA_same_value frame operation.

The function returns the previous value of the pseudo-register (taken from the dbg structure).

6.24.19 dwarf_set_frame_undefined_value()

This allows consumers to set the number of the pseudo-register

when DW_CFA_undefined_value is the operation. By default it is taken from libdwarf.h and is

DW_FRAME_UNDEFINED_VAL. Consumer code should set this appropriately, though for many

architectures DW_FRAME_UNDEFINED_VAL is an appropriate setting.

Dwarf_Half

dwarf_set_frame_rule_undefined_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_undefined_value() sets the value value as the number of the

register that is the pseudo-register set by the DW_CFA_undefined_value frame operation.

The function returns the previous value of the pseudo-register (taken from the dbg structure).

6.24.20 dwarf_set_default_address_size()

This allows consumers to set a default address size. When one has an object where the default address_size

does not match the frame address size where there is no debug_info available to get a frame-specific

address-size, this function is useful. For example, if an Elf64 object has a .debug_frame whose real

address_size is 4 (32 bits). This a very rare situation.

Dwarf_Small

dwarf_set_default_address_size(Dwarf_Debug dbg,

Dwarf_Small value);

dwarf_set_default_address_size() sets the value value as the default address size for this

activation of the reader, but only if value is greater than zero (otherwise the default address size is not

changed).

The function returns the previous value of the default address size (taken from the dbg structure).

6.24.21 dwarf_get_fde_info_for_reg3()

This interface is suitable for DWARF3 and DWARF2. It returns the values for a particular real register

(Not for the CFA register, see dwarf_get_fde_info_for_cfa_reg3() below). If the application is going to

rev 2.58, May 18, 2017 - 121 -



- 122 -

retrieve the value for more than a few table_column values at this pc_requested (by calling this

function multiple times) it is much more efficient to call dwarf_get_fde_info_for_all_regs3() (in spite of the

additional setup that requires of the caller).

int dwarf_get_fde_info_for_reg3(

Dwarf_Fde fde,

Dwarf_Half table_column,

Dwarf_Addr pc_requested,

Dwarf_Small *value_type,

Dwarf_Signed *offset_relevant,

Dwarf_Signed *register_num,

Dwarf_Signed *offset_or_block_len,

Dwarf_Ptr *block_ptr,

Dwarf_Addr *row_pc,

Dwarf_Error *error);

dwarf_get_fde_info_for_reg3() returns DW_DLV_OK on success. It sets *value_type to

one of DW_EXPR_OFFSET (0), DW_EXPR_VAL_OFFSET(1), DW_EXPR_EXPRESSION(2) or

DW_EXPR_VAL_EXPRESSION(3). On call, table_column must be set to the register number of a

real register. Not the cfa ’register’ or DW_FRAME_SAME_VALUE or

DW_FRAME_UNDEFINED_VALUE.

if *value_type has the value DW_EXPR_OFFSET (0) then:

It sets *offset_relevant to non-zero if the offset is relevant for the row specified by

pc_requested and column specified by table_column or, for the FDE specified by fde.

In this case the *register_num will be set to DW_FRAME_CFA_COL3 (. This is an

offset(N) rule as specified in the DWARF3/2 documents. Adding the value of

*offset_or_block_len to the value of the CFA register gives the address of a location

holding the previous value of register table_column.

If offset is not relevant for this rule, *offset_relevant is set to zero. *register_num

will be set to the number of the real register holding the value of the table_column register.

This is the register(R) rule as specified in DWARF3/2 documents.

The intent is to return the rule for the given pc value and register. The location pointed to by

register_num is set to the register value for the rule. The location pointed to by offset is

set to the offset value for the rule. Since more than one pc value will have rows with identical

entries, the user may want to know the earliest pc value after which the rules for all the columns

remained unchanged. Recall that in the virtual table that the frame information represents there

may be one or more table rows with identical data (each such table row at a different pc value).

Given a pc_requested which refers to a pc in such a group of identical rows, the location

pointed to by row_pc is set to the lowest pc value within the group of identical rows.

If *value_type has the value DW_EXPR_VAL_OFFSET (1) then:

This will be a val_offset(N) rule as specified in the DWARF3/2 documents so

*offset_relevant will be non zero. The calculation is identical to the

DW_EXPR_OFFSET (0) calculation with *offset_relevant non-zero, but the value

resulting is the actual table_column value (rather than the address where the value may be

found).

If *value_type has the value DW_EXPR_EXPRESSION (1) then:

*offset_or_block_len is set to the length in bytes of a block of memory with a DWARF

rev 2.58, May 18, 2017 - 122 -



- 123 -

expression in the block. *block_ptr is set to point at the block of memory. The consumer

code should evaluate the block as a DWARF-expression. The result is the address where the

previous value of the register may be found. This is a DWARF3/2 expression(E) rule.

If *value_type has the value DW_EXPR_VAL_EXPRESSION (1) then:

The calculation is exactly as for DW_EXPR_EXPRESSION (1) but the result of the DWARF-

expression evaluation is the value of the table_column (not the address of the value). This

is a DWARF3/2 val_expression(E) rule.

dwarf_get_fde_info_for_reg returns DW_DLV_ERROR if there is an error and if there is an error

only the error pointer is set, none of the other output arguments are touched.

It is usable with either dwarf_get_fde_n() or dwarf_get_fde_at_pc().

6.24.22 dwarf_get_fde_info_for_cfa_reg3()

int dwarf_get_fde_info_for_cfa_reg3(Dwarf_Fde fde,

Dwarf_Addr pc_requested,

Dwarf_Small * value_type,

Dwarf_Signed* offset_relevant,

Dwarf_Signed* register_num,

Dwarf_Signed* offset_or_block_len,

Dwarf_Ptr * block_ptr ,

Dwarf_Addr * row_pc_out,

Dwarf_Error * error)

This is identical to dwarf_get_fde_info_for_reg3() except the returned values are for the CFA

rule. So register number *register_num will be set to a real register, not one of the pseudo registers

(which are usually DW_FRAME_CFA_COL3, DW_FRAME_SAME_VALUE, or

DW_FRAME_UNDEFINED_VALUE).

Applications like dwarfdump which access the register rules for every pc value in a function may find the

following function a slight performance improvement if the new arguments are used appropriately. See

dwarfdump for an example of use.

6.24.23 dwarf_get_fde_info_for_cfa_reg3_b()

int dwarf_get_fde_info_for_cfa_reg3_b(Dwarf_Fde fde,

Dwarf_Addr pc_requested,

Dwarf_Small * value_type,

Dwarf_Signed* offset_relevant,

Dwarf_Signed* register_num,

Dwarf_Signed* offset_or_block_len,

Dwarf_Ptr * block_ptr ,

Dwarf_Addr * row_pc_out,

Dwarf_Bool * has_more_rows,

Dwarf_Addr * subsequent_pc,

Dwarf_Error * error)

This is identical to dwarf_get_fde_info_for_cfa_reg3() except for the new arguments

has_more_rows and subsequent_pc which allow dwarfdump to print the frame information for an

entire function using about 10 percent less cpu time. The two new arguments may be passed in as NULL if

rev 2.58, May 18, 2017 - 123 -



- 124 -

their values are not needed by the caller.

For a tool just wanting the frame information for a single pc_value this interface is no more useful nore

more efficient than dwarf_get_fde_info_for_cfa_reg3().

The essential difference is that when using dwarf_get_fde_info_for_cfa_reg3() for all pc

values for a function the caller has no idea what is the next pc value that might have new frame data and

iterating through pc values (calling dwarf_get_fde_info_for_cfa_reg3() on each) is a waste of

cpu cycles. With dwarf_get_fde_info_for_cfa_reg3_b() the has_more_rows and

subsequent_pc arguments let the caller know whether there are further changes and if so at what pc

value.

If has_more_rows is non-null then 0 is returned through the pointer if, for the pc_requested there is

frame data for addresses after pc_requested in the frame. And if there are no more rows in the frame

data then 1 is set through the has_more_rows pointer.

If subsequent_pc is non-null then the pc-value which has the next frame operator is returned through

the pointer.

6.24.24 dwarf_get_fde_info_for_all_regs3()

6.24.25 dwarf_get_fde_info_for_all_regs3()

int dwarf_get_fde_info_for_all_regs3(

Dwarf_Fde fde,

Dwarf_Addr pc_requested,

Dwarf_Regtable3 *reg_table,

Dwarf_Addr *row_pc,

Dwarf_Error *error)

dwarf_get_fde_info_for_all_regs3() returns

6.24.26 dwarf_get_fde_info_for_all_regs3()

6.24.27 dwarf_get_fde_info_for_all_regs3()

int dwarf_get_fde_info_for_all_regs3(

Dwarf_Fde fde,

Dwarf_Addr pc_requested,

Dwarf_Regtable3 *reg_table,

Dwarf_Addr *row_pc,

Dwarf_Error *error)

dwarf_get_fde_info_for_all_regs3() returns DW_DLV_OK and sets *reg_table for the

rev 2.58, May 18, 2017 - 124 -



- 125 -

row specified by pc_requested for the FDE specified by fde. The intent is to return the rules for

decoding all the registers, given a pc value. reg_table is an array of rules, the array size specified by

the caller. plus a rule for the CFA. The rule for the cfa returned in *reg_table defines the CFA value

at pc_requested The rule for each register contains several values that enable the consumer to

determine the previous value of the register (see the earlier documentation of Dwarf_Regtable3).

dwarf_get_fde_info_for_reg3() and the Dwarf_Regtable3 documentation above for a

description of the values for each row.

dwarf_get_fde_info_for_all_regs3 returns DW_DLV_ERROR if there is an error.

It is up to the caller to allocate space for *reg_table and initialize it properly.

6.24.28 dwarf_get_fde_n()

int dwarf_get_fde_n(

Dwarf_Fde *fde_data,

Dwarf_Unsigned fde_index,

Dwarf_Fde *returned_fde

Dwarf_Error *error)

dwarf_get_fde_n() returns DW_DLV_OK and sets returned_fde to the Dwarf_Fde descriptor

whose index is fde_index in the table of Dwarf_Fde descriptors pointed to by fde_data. The index

starts with 0. The table pointed to by fde_data is required to contain at least one entry. If the table has no

entries at all the error checks may refer to uninitialized memory. Returns DW_DLV_NO_ENTRY if the

index does not exist in the table of Dwarf_Fde descriptors. Returns DW_DLV_ERROR if there is an error.

This function cannot be used unless the block of Dwarf_Fde descriptors has been created by a call to

dwarf_get_fde_list().

6.24.29 dwarf_get_fde_at_pc()

int dwarf_get_fde_at_pc(

Dwarf_Fde *fde_data,

Dwarf_Addr pc_of_interest,

Dwarf_Fde *returned_fde,

Dwarf_Addr *lopc,

Dwarf_Addr *hipc,

Dwarf_Error *error)

dwarf_get_fde_at_pc() returns DW_DLV_OK and sets returned_fde to a Dwarf_Fde

descriptor for a function which contains the pc value specified by pc_of_interest. In addition, it sets

the locations pointed to by lopc and hipc to the low address and the high address covered by this FDE,

respectively. The table pointed to by fde_data is required to contain at least one entry. If the table has no

entries at all the error checks may refer to uninitialized memory. It returns DW_DLV_ERROR on error. It

returns DW_DLV_NO_ENTRY if pc_of_interest is not in any of the FDEs represented by the block of

Dwarf_Fde descriptors pointed to by fde_data. This function cannot be used unless the block of

Dwarf_Fde descriptors has been created by a call to dwarf_get_fde_list().

rev 2.58, May 18, 2017 - 125 -



- 126 -

6.24.30 dwarf_expand_frame_instructions()

int dwarf_expand_frame_instructions(

Dwarf_Cie cie,

Dwarf_Ptr instruction,

Dwarf_Unsigned i_length,

Dwarf_Frame_Op **returned_op_list,

Dwarf_Signed * returned_op_count,

Dwarf_Error *error);

dwarf_expand_frame_instructions() is a High-level interface function which expands a frame

instruction byte stream into an array of Dwarf_Frame_Op structures. To indicate success, it returns

DW_DLV_OK. The address where the byte stream begins is specified by instruction, and the length of

the byte stream is specified by i_length. The location pointed to by returned_op_list is set to

point to a table of returned_op_count pointers to Dwarf_Frame_Op which contain the frame

instructions in the byte stream. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY. After a successful return, the array of structures should be freed using

dwarf_dealloc() with the allocation type DW_DLA_FRAME_BLOCK (when they are no longer of

interest).

Not all CIEs have the same address-size, so it is crucial that a CIE pointer to the frame’s CIE be passed in.

Figure 35. Examples dwarf_expand_frame_instructions()

void examples(Dwarf_Cie cie,Dwarf_Ptr instruction,Dwarf_Unsigned len))

{

Dwarf_Signed cnt = 0;

Dwarf_Frame_Op *frameops = 0;

int res = 0;

res = expand_frame_instructions(dbg,instruction,len,

&frameops,&cnt, &error);

if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {

/* use frameops[i] */

}

dwarf_dealloc(dbg, frameops, DW_DLA_FRAME_BLOCK);

}

}

6.24.31 dwarf_get_fde_exception_info()

int dwarf_get_fde_exception_info(

Dwarf_Fde fde,

Dwarf_Signed * offset_into_exception_tables,

Dwarf_Error * error);

dwarf_get_fde_exception_info() is an IRIX specific function which returns an exception table

signed offset through offset_into_exception_tables. The function never returns

DW_DLV_NO_ENTRY. If DW_DLV_NO_ENTRY is NULL the function returns DW_DLV_ERROR. For

non-IRIX objects the offset returned will always be zero. For non-C++ objects the offset returned will

always be zero. The meaning of the offset and the content of the tables is not defined in this document.

The applicable CIE augmentation string (see above) determines whether the value returned has meaning.

rev 2.58, May 18, 2017 - 126 -



- 127 -

6.25 Location Expression Evaluation

An "interpreter" which evaluates a location expression is required in any debugger. There is no interface

defined here at this time.

One problem with defining an interface is that operations are machine dependent: they depend on the

interpretation of register numbers and the methods of getting values from the environment the expression is

applied to.

It would be desirable to specify an interface.

6.25.1 Location List Internal-level Interface

6.25.1.1 dwarf_get_loclist_entry()

int dwarf_get_loclist_entry(

Dwarf_Debug dbg,

Dwarf_Unsigned offset,

Dwarf_Addr *hipc_offset,

Dwarf_Addr *lopc_offset,

Dwarf_Ptr *data,

Dwarf_Unsigned *entry_len,

Dwarf_Unsigned *next_entry,

Dwarf_Error *error)

This function is ill suited to use with 21st century DWARF as there is just not enough data provided in the

interface. Do not use this interface.

The function reads a location list entry starting at offset and returns through pointers (when successful)

the high pc hipc_offset, low pc lopc_offset, a pointer to the location description data data, the

length of the location description data entry_len, and the offset of the next location description entry

next_entry.

This function will often work correctly (meaning with most objects compiled for DWARF3 or DWARF3)

but will not work correctly (and can crash an application calling it) if either some location list applies to a

compilation unit with an address_size different from the overall address_size of the object file being read or

if the .debug_loc section being read has random padding bytes between loclists. Neither of these

characteristics necessarily represents a bug in the compiler/linker toolset that produced the object file being

read. The DWARF standard allows both characteristics.

dwarf_dwarf_get_loclist_entry() returns DW_DLV_OK if successful. DW_DLV_NO_ENTRY is

returned when the offset passed in is beyond the end of the .debug_loc section (expected if you start at

offset zero and proceed through all the entries). DW_DLV_ERROR is returned on error.

The hipc_offset, low pc lopc_offset are offsets from the beginning of the current procedure, not

genuine pc values.

Figure 36. Examples dwarf_get_loclist_entry()

rev 2.58, May 18, 2017 - 127 -



- 128 -

void examplet(Dwarf_Debug dbg,Dwarf_Unsigned offset)

{

/* Looping through the dwarf_loc section finding loclists:

an example. */

int res;

Dwarf_Unsigned next_entry = 0;

Dwarf_Addr hipc_off = 0;

Dwarf_Addr lowpc_off = 0;

Dwarf_Ptr data = 0;

Dwarf_Unsigned entry_len = 0;

Dwarf_Error err = 0;

for(;;) {

res = dwarf_get_loclist_entry(dbg,offset,&hipc_off,

&lowpc_off, &data, &entry_len,&next_entry,&err);

if (res == DW_DLV_OK) {

/* A valid entry. */

offset = next_entry;

continue;

} else if (res ==DW_DLV_NO_ENTRY) {

/* Done! */

break;

} else {

/* Error! */

break;

}

}

}

6.26 Abbreviations access

These are Internal-level Interface functions. Debuggers can ignore this.

6.26.1 dwarf_get_abbrev()

int dwarf_get_abbrev(

Dwarf_Debug dbg,

Dwarf_Unsigned offset,

Dwarf_Abbrev *returned_abbrev,

Dwarf_Unsigned *length,

Dwarf_Unsigned *attr_count,

Dwarf_Error *error)

The function dwarf_get_abbrev() returns DW_DLV_OK and sets *returned_abbrev to

Dwarf_Abbrev descriptor for an abbreviation at offset *offset in the abbreviations section (i.e

.debug_abbrev) on success. The user is responsible for making sure that a valid abbreviation begins at

offset in the abbreviations section. The location pointed to by length is set to the length in bytes of

the abbreviation in the abbreviations section. The location pointed to by attr_count is set to the

number of attributes in the abbreviation. An abbreviation entry with a length of 1 is the 0 byte of the last

abbreviation entry of a compilation unit. dwarf_get_abbrev() returns DW_DLV_ERROR on error. If

the call succeeds, the storage pointed to by *returned_abbrev should be freed, using

rev 2.58, May 18, 2017 - 128 -



- 129 -

dwarf_dealloc() with the allocation type DW_DLA_ABBREV when no longer needed.

6.26.2 dwarf_get_abbrev_tag()

int dwarf_get_abbrev_tag(

Dwarf_abbrev abbrev,

Dwarf_Half *return_tag,

Dwarf_Error *error);

If successful, dwarf_get_abbrev_tag() returns DW_DLV_OK and sets *return_tag to the tag of

the given abbreviation. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.26.3 dwarf_get_abbrev_code()

int dwarf_get_abbrev_code(

Dwarf_abbrev abbrev,

Dwarf_Unsigned *return_code,

Dwarf_Error *error);

If successful, dwarf_get_abbrev_code() returns DW_DLV_OK and sets *return_code to the

abbreviation code of the given abbreviation. It returns DW_DLV_ERROR on error. It nev er returns

DW_DLV_NO_ENTRY.

6.26.4 dwarf_get_abbrev_children_flag()

int dwarf_get_abbrev_children_flag(

Dwarf_Abbrev abbrev,

Dwarf_Signed *returned_flag,

Dwarf_Error *error)

The function dwarf_get_abbrev_children_flag() returns DW_DLV_OK and sets

returned_flag to DW_children_no (if the given abbreviation indicates that a die with that

abbreviation has no children) or DW_children_yes (if the given abbreviation indicates that a die with

that abbreviation has a child). It returns DW_DLV_ERROR on error.

6.26.5 dwarf_get_abbrev_entry()

int dwarf_get_abbrev_entry(

Dwarf_Abbrev abbrev,

Dwarf_Signed index,

Dwarf_Half *attr_num,

Dwarf_Signed *form,

Dwarf_Off *offset,

Dwarf_Error *error)

If successful, dwarf_get_abbrev_entry() returns DW_DLV_OK and sets *attr_num to the

attribute code of the attribute whose index is specified by index in the given abbreviation. The index

rev 2.58, May 18, 2017 - 129 -



- 130 -

starts at 0. The location pointed to by form is set to the form of the attribute. The location pointed to by

offset is set to the byte offset of the attribute in the abbreviations section. It returns

DW_DLV_NO_ENTRY if the index specified is outside the range of attributes in this abbreviation. It returns

DW_DLV_ERROR on error.

6.27 String Section Operations

The .debug_str section contains only strings. Debuggers need never use this interface: it is only for

debugging problems with the string section itself.

int dwarf_get_string_section_name(Dwarf_Debug dbg,

const char ** sec_name,

Dwarf_Error *error)

dwarf_get_string_section_name() lets consumers access the object string section name. This

is useful for applications wanting to print the name, but of course the object section name is not really a

part of the DWARF information. Most applications will probably not call this function. It can be called at

any time after the Dwarf_Debug initialization is done. See also

dwarf_get_die_section_name_b().

The function dwarf_get_string_section_name() operates on the the .debug_string[.dwo]

section.

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.27.1 dwarf_get_str()

int dwarf_get_str(

Dwarf_Debug dbg,

Dwarf_Off offset,

char **string,

Dwarf_Signed *returned_str_len,

Dwarf_Error *error)

The function dwarf_get_str() returns DW_DLV_OK and sets *returned_str_len to the length

of the string, not counting the null terminator, that begins at the offset specified by offset in the

.debug_str section. The location pointed to by string is set to a pointer to this string. The next string in

the .debug_str section begins at the previous offset + 1 + *returned_str_len. A zero-length string

is NOT the end of the section. If there is no .debug_str section, DW_DLV_NO_ENTRY is returned. If there

is an error, DW_DLV_ERROR is returned. If we are at the end of the section (that is, offset is one past

the end of the section) DW_DLV_NO_ENTRY is returned. If the offset is some other too-large value then

DW_DLV_ERROR is returned.

6.28 Address Range Operations

These functions provide information about address ranges. Address ranges map ranges of pc values to the

corresponding compilation-unit die that covers the address range.

rev 2.58, May 18, 2017 - 130 -



- 131 -

6.28.1 dwarf_get_aranges_section_name()

int dwarf_get_aranges_section_name(Dwarf_Debug dbg,

const char ** sec_name,

Dwarf_Error *error)

*dwarf_get_aranges_section_name() retrieves the object file section name of the applicable

aranges section. This is useful for applications wanting to print the name, but of course the object section

name is not really a part of the DWARF information. Most applications will probably not call this function.

It can be called at any time after the Dwarf_Debug initialization is done.

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.28.2 dwarf_get_aranges()

int dwarf_get_aranges(

Dwarf_Debug dbg,

Dwarf_Arange **aranges,

Dwarf_Signed * returned_arange_count,

Dwarf_Error *error)

The function dwarf_get_aranges() returns DW_DLV_OK and sets *returned_arange_count

to the count of the number of address ranges in the .debug_aranges section (for all compilation units). It

sets *aranges to point to a block of Dwarf_Arange descriptors, one for each address range. It returns

DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no .debug_aranges section.

Figure 37. Exampleu dwarf_get_aranges()

void exampleu(Dwarf_Debug dbg)

{

Dwarf_Signed cnt = 0;

Dwarf_Arange *arang = 0;

int res = 0;

Dwarf_Error error = 0;

res = dwarf_get_aranges(dbg, &arang,&cnt, &error);

if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {

/* use arang[i] */

dwarf_dealloc(dbg, arang[i], DW_DLA_ARANGE);

}

dwarf_dealloc(dbg, arang, DW_DLA_LIST);

}

}

rev 2.58, May 18, 2017 - 131 -



- 132 -

6.28.3 dwarf_get_arange()

int dwarf_get_arange(

Dwarf_Arange *aranges,

Dwarf_Unsigned arange_count,

Dwarf_Addr address,

Dwarf_Arange *returned_arange,

Dwarf_Error *error);

The function dwarf_get_arange() takes as input a pointer to a block of Dwarf_Arange pointers,

and a count of the number of descriptors in the block. It then searches for the descriptor that covers the

given address. If it finds one, it returns DW_DLV_OK and sets *returned_arange to the descriptor.

It returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no .debug_aranges entry

covering that address.

6.28.4 dwarf_get_cu_die_offset()

int dwarf_get_cu_die_offset(

Dwarf_Arange arange,

Dwarf_Off *returned_cu_die_offset,

Dwarf_Error *error);

The function dwarf_get_cu_die_offset() takes a Dwarf_Arange descriptor as input, and if

successful returns DW_DLV_OK and sets *returned_cu_die_offset to the offset in the .debug_info

section of the compilation-unit DIE for the compilation-unit represented by the given address range. It

returns DW_DLV_ERROR on error.

6.28.5 dwarf_get_arange_cu_header_offset()

int dwarf_get_arange_cu_header_offset(

Dwarf_Arange arange,

Dwarf_Off *returned_cu_header_offset,

Dwarf_Error *error)

The function dwarf_get_arange_cu_header_offset() takes a Dwarf_Arange descriptor as

input, and if successful returns DW_DLV_OK and sets *returned_cu_header_offset to the offset

in the .debug_info section of the compilation-unit header for the compilation-unit represented by the given

address range. It returns DW_DLV_ERROR on error.

This function added Rev 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT

predicate may be used at run time to determine if the version of libdwarf linked into an application has this

function.

rev 2.58, May 18, 2017 - 132 -



- 133 -

6.28.6 dwarf_get_arange_info()

int dwarf_get_arange_info(

Dwarf_Arange arange,

Dwarf_Addr *start,

Dwarf_Unsigned *length,

Dwarf_Off *cu_die_offset,

Dwarf_Error *error)

The function dwarf_get_arange_info() returns DW_DLV_OK and stores the starting value of the

address range in the location pointed to by start, the length of the address range in the location pointed

to by length, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-

unit represented by the address range. It returns DW_DLV_ERROR on error.

6.29 General Low Lev el Operations

This function is low-level and intended for use only by programs such as dwarf-dumpers.

6.29.1 dwarf_get_offset_size()

int dwarf_get_offset_size(Dwarf_Debug dbg,

Dwarf_Half *offset_size,

Dwarf_Error *error)

The function dwarf_get_offset_size() returns DW_DLV_OK on success and sets the

*offset_size to the size in bytes of an offset. In case of error, it returns DW_DLV_ERROR and does

not set *offset_size.

The offset size returned is the overall address size, which can be misleading if different compilation units

have different address sizes. Many ABIs have only a single address size per executable, but differing

address sizes are becoming more common.

6.29.2 dwarf_get_address_size()

int dwarf_get_address_size(Dwarf_Debug dbg,

Dwarf_Half *addr_size,

Dwarf_Error *error)

The function dwarf_get_address_size() returns DW_DLV_OK on success and sets the

*addr_size to the size in bytes of an address. In case of error, it returns DW_DLV_ERROR and does not

set *addr_size.

The address size returned is the overall address size, which can be misleading if different compilation units

have different address sizes. Many ABIs have only a single address size per executable, but differing

address sizes are becoming more common.

Use dwarf_get_die_address_size() instead whenever possible.

rev 2.58, May 18, 2017 - 133 -



- 134 -

6.29.3 dwarf_get_die_address_size()

int dwarf_get_die_address_size(Dwarf_Die die,

Dwarf_Half *addr_size,

Dwarf_Error *error)

The function dwarf_get_die_address_size() returns DW_DLV_OK on success and sets the

*addr_size to the size in bytes of an address. In case of error, it returns DW_DLV_ERROR and does not

set *addr_size.

The address size returned is the address size of the compilation unit owning the die

This is the preferred way to get address size when the Dwarf_Die is known.

6.30 Ranges Operations (.debug_ranges)

These functions provide information about the address ranges indicated by a DW_AT_ranges attribute

(the ranges are recorded in the .debug_ranges section) of a DIE. Each call of

dwarf_get_ranges_a() or dwarf_get_ranges() returns a an array of Dwarf_Ranges structs,

each of which represents a single ranges entry. The struct is defined in libdwarf.h.

6.30.1 dwarf_get_ranges_section_name()

int dwarf_get_ranges_section_name(Dwarf_Debug dbg,

const char ** sec_name,

Dwarf_Error *error)

*dwarf_get_ranges_section_name() retrieves the object file section name of the applicable

ranges section. This is useful for applications wanting to print the name, but of course the object section

name is not really a part of the DWARF information. Most applications will probably not call this function.

It can be called at any time after the Dwarf_Debug initialization is done.

If the function succeeds, *sec_name is set to a pointer to a string with the object section name and the

function returns DW_DLV_OK. Do not free the string whose pointer is returned. For non-Elf objects it is

possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling

application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the *error pointer.

6.30.2 dwarf_get_ranges()

This is the original call and it will work fine when all compilation units have the same address_size. There

is no die argument to this original version of the function. Other arguments (and deallocation) match the

use of dwarf_get_ranges_a() ( described next).

6.30.3 dwarf_get_ranges_a()

rev 2.58, May 18, 2017 - 134 -



- 135 -

int dwarf_get_ranges_a(

Dwarf_Debug dbg,

Dwarf_Off offset,

Dwarf_Die die,

Dwarf_Ranges **ranges,

Dwarf_Signed * returned_ranges_count,

Dwarf_Unsigned * returned_byte_count,

Dwarf_Error *error)

The function dwarf_get_ranges_a() returns DW_DLV_OK and sets *returned_ranges_count

to the count of the number of address ranges in the group of ranges in the .debug_ranges section at offset

offset (which ends with a pair of zeros of pointer-size). This function is new as of 27 April 2009.

The offset argument should be the value of a DW_AT_ranges attribute of a Debugging Information

Entry.

The die argument should be the value of a Dwarf_Die pointer of a Dwarf_Die with the attribute

containing this range set offset. Because each compilation unit has its own address_size field this argument

is necessary to to correctly read ranges. (Most executables have the same address_size in every compilation

unit, but some ABIs allow multiple address sized in an executable). If a NULL pointer is passed in

libdwarf assumes a single address_size is appropriate for all ranges records.

The call sets *ranges to point to a block of Dwarf_Ranges structs, one for each address range. It

returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no .debug_ranges

section or if offset is past the end of the .debug_ranges section.

If the *returned_byte_count pointer is passed as non-NULL the number of bytes that the returned

ranges were taken from is returned through the pointer (for example if the returned_ranges_count is 2 and

the pointer-size is 4, then returned_byte_count will be 8). If the *returned_byte_count pointer is

passed as NULL the parameter is ignored. The *returned_byte_count is only of use to certain

dumper applications, most applications will not use it.

Figure 38. Examplev dwarf_get_ranges_a()

void examplev(Dwarf_Debug dbg,Dwarf_Unsigned offset,Dwarf_Die die)

{

Dwarf_Signed cnt = 0;

Dwarf_Ranges *ranges = 0;

Dwarf_Unsigned bytes = 0;

Dwarf_Error error = 0;

int res = 0;

res = dwarf_get_ranges_a(dbg,offset,die,

&ranges,&cnt,&bytes,&error);

if (res == DW_DLV_OK) {

Dwarf_Signed i;

for( i = 0; i < cnt; ++i ) {

Dwarf_Ranges *cur = ranges+i;

/* Use cur. */

}

dwarf_ranges_dealloc(dbg,ranges,cnt);

}

}

rev 2.58, May 18, 2017 - 135 -



- 136 -

6.30.4 dwarf_ranges_dealloc()

int dwarf_ranges_dealloc(

Dwarf_Debug dbg,

Dwarf_Ranges *ranges,

Dwarf_Signed range_count,

);

The function dwarf_ranges_dealloc() takes as input a pointer to a block of Dwarf_Ranges array

and the number of structures in the block. It frees all the data in the array of structures.

6.31 Gdb Index operations

These functions get access to the fast lookup tables defined by gdb and gcc and stored in the .gdb_index

section. The section is of sufficient complexity that a number of function interfaces are needed. For

additional information see "https://sourceware.org/gdb/onlinedocs/gdb/Index-Section-Format.html#Index-

Section-Format".

6.31.1 dwarf_gdbindex_header()

int dwarf_gdbindex_header(Dwarf_Debug dbg,

Dwarf_Gdbindex * gdbindexptr,

Dwarf_Unsigned * version,

Dwarf_Unsigned * cu_list_offset,

Dwarf_Unsigned * types_cu_list_offset,

Dwarf_Unsigned * address_area_offset,

Dwarf_Unsigned * symbol_table_offset,

Dwarf_Unsigned * constant_pool_offset,

Dwarf_Unsigned * section_size,

Dwarf_Unsigned * unused_reserved,

const char ** section_name,

Dwarf_Error * error);

The function dwarf_gdbindex_header() takes as input a pointer to a Dwarf_Debug structure and

returns fields through various pointers.

If the function returns DW_DLV_NO_ENTRY there is no .gdb_index section and none of the return-

pointer argument values are set.

If the function returns DW_DLV_ERROR error is set to indicate the specific error, but no other return-

pointer arguments are touched.

If successful, the function returns DW_DLV_OK and other values are set. The other values are set as

follows:

The field *gdbindexptr is set to an opaque pointer to a libdwarf_internal structure used as an argument

to other .gdbindex functions below.

The remaining fields are set to values that are mostly of interest to a pretty-printer application. See the

detailed layout specification for specifics. The values returned are recorded in the Dwarf_Gdbindex opaque

structure for the other gdbindex functions documented below.

The field *version is set to the version of the gdb index header (2)..

The field *cu_list_offset is set to the offset (in the .gdb_index section) of the cu-list.

rev 2.58, May 18, 2017 - 136 -



- 137 -

The field *types_cu_list_offset is set to the offset (in the .gdb_index section) of the types-list.

The field *address_area_offset is set to the offset (in the .gdb_index section) of the address area.

The field *symbol_table_offset is set to the offset (in the .gdb_index section) of the symbol table.

The field *constant_pool_offset is set to the offset (in the .gdb_index section) of the constant

pool.

The field *section_size is set to the length of the .gdb_index section.

The field *unused_reserved is set to zero.

The field *section_name is set to the Elf object file section name (.gdb_index). If a non-Elf object file

has such a section the value set might be NULL or might point to an empty string (NUL terminated), so

code to account for NULL or empty.

The field *error is not set.

Here we show a use of the set of cu_list functions (using all the functions in one example makes it rather

too long).

Figure 39. Examplew dwarf_get_gdbindex_header()

rev 2.58, May 18, 2017 - 137 -



- 138 -

void examplew(Dwarf_Debug dbg,Dwarf_Unsigned offset,Dwarf_Die die)

{

Dwarf_Gdbindex gindexptr = 0;

Dwarf_Unsigned version = 0;

Dwarf_Unsigned cu_list_offset = 0;

Dwarf_Unsigned types_cu_list_offset = 0;

Dwarf_Unsigned address_area_offset = 0;

Dwarf_Unsigned symbol_table_offset = 0;

Dwarf_Unsigned constant_pool_offset = 0;

Dwarf_Unsigned section_size = 0;

Dwarf_Unsigned reserved = 0;

Dwarf_Error error = 0;

const char * section_name = 0;

int res = 0;

res = dwarf_gdbindex_header(dbg,&gindexptr,

&version,&cu_list_offset, &types_cu_list_offset,

&address_area_offset,&symbol_table_offset,

&constant_pool_offset, &section_size,

&reserved,&section_name,&error);

if (res == DW_DLV_NO_ENTRY) {

return;

} else if (res == DW_DLV_ERROR) {

return;

}

{

/* do something with the data */

Dwarf_Unsigned length = 0;

Dwarf_Unsigned typeslength = 0;

Dwarf_Unsigned i = 0;

res = dwarf_gdbindex_culist_array(gindexptr,

&length,&error);

/* Example actions. */

if (res == DW_DLV_OK) {

for(i = 0; i < length; ++i) {

Dwarf_Unsigned cuoffset = 0;

Dwarf_Unsigned culength = 0;

res = dwarf_gdbindex_culist_entry(gindexptr,

i,&cuoffset,&culength,&error);

if (res == DW_DLV_OK) {

/* Do something with cuoffset, culength */

}

}

}

res = dwarf_gdbindex_types_culist_array(gindexptr,

&typeslength,&error);

if (res == DW_DLV_OK) {

for(i = 0; i < typeslength; ++i) {

Dwarf_Unsigned cuoffset = 0;

Dwarf_Unsigned tuoffset = 0;

Dwarf_Unsigned culength = 0;

Dwarf_Unsigned type_signature = 0;

res = dwarf_gdbindex_types_culist_entry(gindexptr,

i,&cuoffset,&tuoffset,&type_signature,&error);

if (res == DW_DLV_OK) {

rev 2.58, May 18, 2017 - 138 -



- 139 -

/* Do something with cuoffset etc. */

}

}

}

dwarf_gdbindex_free(gindexptr);

}

}

6.31.2 dwarf_gdbindex_culist_array()

int dwarf_gdbindex_culist_array(Dwarf_Gdbindex gdbindexptr,

Dwarf_Unsigned * list_length,

Dwarf_Error * error);

The function dwarf_gdbindex_culist_array() takes as input valid Dwarf_Gdbindex pointer.

While currently only DW_DLV_OK is returned one should test for DW_DLV_NO_ENTRY and

DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returns DW_DLV_OK and returns the number of entries in the culist through

thelist_length pointer.

6.31.3 dwarf_gdbindex_culist_entry()

int dwarf_gdbindex_culist_entry(Dwarf_Gdbindex gdbindexptr,

Dwarf_Unsigned entryindex,

Dwarf_Unsigned * cu_offset,

Dwarf_Unsigned * cu_length,

Dwarf_Error * error);

The function dwarf_gdbindex_culist_entry() takes as input valid Dwarf_Gdbindex pointer and

an index into the culist array. Valid indexes are 0 through list_length -1 .

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind and the error is indicated by the vale returned through the error pointer.

On success it returns DW_DLV_OK and returns the cu_offset (the section global offset of the CU in

.debug_info)) and cu_length (the length of the CU in .debug_info) values through the pointers.

6.31.4 dwarf_gdbindex_types_culist_array()

int dwarf_gdbindex_types_culist_array(Dwarf_Gdbindex /*gdbindexptr*/,

Dwarf_Unsigned * /*types_list_length*/,

Dwarf_Error * /*error*/);

The function dwarf_gdbindex_types_culist_array() takes as input valid Dwarf_Gdbindex

pointer.

rev 2.58, May 18, 2017 - 139 -



- 140 -

While currently only DW_DLV_OK is returned one should test for DW_DLV_NO_ENTRY and

DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returns DW_DLV_OK and returns the number of entries in the types culist

through thelist_length

6.31.5 dwarf_gdbindex_types_culist_entry()

int dwarf_gdbindex_types_culist_entry(

Dwarf_Gdbindex gdbindexptr,

Dwarf_Unsigned entryindex,

Dwarf_Unsigned * cu_offset,

Dwarf_Unsigned * tu_offset,

Dwarf_Unsigned * type_signature,

Dwarf_Error * error);

The function dwarf_gdbindex_types_culist_entry() takes as input valid Dwarf_Gdbindex

pointer and an index into the types culist array. Valid indexes are 0 through types_list_length -1 .

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

On success it returns DW_DLV_OK and returns the tu_offset (the section global offset of the CU in

.debug_types)) and tu_length (the length of the CU in .debug_types) values through the pointers. It

also returns the type signature (a 64bit value) through the type_signature pointer.

6.31.6 dwarf_gdbindex_addressarea()

int dwarf_gdbindex_addressarea(Dwarf_Gdbindex /*gdbindexptr*/,

Dwarf_Unsigned * /*addressarea_list_length*/,

Dwarf_Error * /*error*/);

The function dwarf_addressarea() takes as input valid Dwarf_Gdbindex pointer and returns the

length of the address area through addressarea_list_length.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the number of entries in the address area

through the addressarea_list_length pointer.

6.31.7 dwarf_gdbindex_addressarea_entry()

int dwarf_gdbindex_addressarea_entry(

Dwarf_Gdbindex gdbindexptr,

Dwarf_Unsigned entryindex,

Dwarf_Unsigned * low_address,

Dwarf_Unsigned * high_address,

Dwarf_Unsigned * cu_index,

Dwarf_Error * error);

The function dwarf_addressarea_entry() takes as input valid Dwarf_Gdbindex pointer and an

rev 2.58, May 18, 2017 - 140 -



- 141 -

index into the address area (valid indexes are zero through addressarea_list_length - 1.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns The low_address high_address and

cu_index through the pointers.

Given an open Dwarf_Gdbindex one uses the function as follows:

Figure 40. Examplewgdbindex dwarf_gdbindex_addressarea()

void examplewgdbindex(Dwarf_Gdbindex gdbindex)

{

Dwarf_Unsigned list_len = 0;

Dwarf_Unsigned i = 0;

int res = 0;

Dwarf_Error err = 0;

res = dwarf_gdbindex_addressarea(gdbindex, &list_len,&err);

if (res != DW_DLV_OK) {

/* Something wrong, ignore the addressarea */

}

/* Iterate through the address area. */

for( i = 0; i < list_len; i++) {

Dwarf_Unsigned lowpc = 0;

Dwarf_Unsigned highpc = 0;

Dwarf_Unsigned cu_index,

res = dwarf_gdbindex_addressarea_entry(gdbindex,i,

&lowpc,&highpc,

&cu_index,

&err);

if (res != DW_DLV_OK) {

/* Something wrong, ignore the addressarea */

return;

}

/* We have a valid address area entry, do something

with it. */

}

}

6.31.8 dwarf_gdbindex_symboltable_array()

int dwarf_gdbindex_symboltable_array(Dwarf_Gdbindex gdbindexptr,

Dwarf_Unsigned * symtab_list_length,

Dwarf_Error * error);

One can look at the symboltable as a two-level table (with The outer level indexes through symbol names

and the inner level indexes through all the compilation units that define that symbol (each symbol having a

different number of compilation units, this is not a simple rectangular table).

The function dwarf_gdbindex_symboltable_array() takes as input valid Dwarf_Gdbindex

pointer.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

rev 2.58, May 18, 2017 - 141 -



- 142 -

If successful, the function returns DW_DLV_OK and returns The symtab_list_length through the

pointer.

Given a valid Dwarf_Gdbindex pointer, one can access the entire symbol table as follows (using ’return’

here to indicate we are giving up due to a problem while keeping the example code fairly short):

rev 2.58, May 18, 2017 - 142 -



- 143 -

Figure 41. Examplex dwarf_gdbindex_symboltable_array()

void examplex(Dwarf_Gdbindex gdbindexr)

{

Dwarf_Unsigned symtab_list_length = 0;

Dwarf_Unsigned i = 0;

Dwarf_Error err = 0;

int res = dwarf_gdbindex_symboltable_array(gdbindex,

&symtab_list_length,err);

if (res != DW_DLV_OK) {

return;

}

for( i = 0; i < symtab_list_length; i++) {

Dwarf_Unsigned symnameoffset = 0;

Dwarf_Unsigned cuvecoffset = 0;

Dwarf_Unsigned ii = 0;

const char *name = 0;

res = dwarf_gdbindex_symboltable_entry(gdbindex,i,

&symnameoffset,&cuvecoffset,

err);

if (res != DW_DLV_OK) {

return;

}

res = dwarf_gdbindex_string_by_offset(gdbindex,

symnameoffset,&name,err);

if(res != DW_DLV_OK) {

return;

}

res = dwarf_gdbindex_cuvector_length(gdbindex,

cuvecoffset,&cuvec_len,err);

if( res != DW_DLV_OK) {

return;

}

for(ii = 0; ii < cuvec_len; ++ii ) {

Dwarf_Unsigned attributes = 0;

Dwarf_Unsigned cu_index = 0;

Dwarf_Unsigned reserved1 = 0;

Dwarf_Unsigned symbol_kind = 0;

Dwarf_Unsigned is_static = 0;

res = dwarf_gdbindex_cuvector_inner_attributes(

gdbindex,cuvecoffset,ii,

&attributes,err);

if( res != DW_DLV_OK) {

return;

}

/* ’attributes’ is a value with various internal

fields so we expand the fields. */

res = dwarf_gdbindex_cuvector_instance_expand_value(gdbindex,

attributes, &cu_index,&reserved1,&symbol_kind, &is_static,

err);

if( res != DW_DLV_OK) {

return;

}

/* Do something with the attributes. */

rev 2.58, May 18, 2017 - 143 -



- 144 -

}

}

}

6.31.9 dwarf_gdbindex_symboltable_entry()

int dwarf_gdbindex_symboltable_entry(

Dwarf_Gdbindex gdbindexptr,

Dwarf_Unsigned entryindex,

Dwarf_Unsigned * string_offset,

Dwarf_Unsigned * cu_vector_offset,

Dwarf_Error * error);

The function dwarf_gdbindex_symboltable_entry() takes as input valid Dwarf_Gdbindex

pointer and an entry index(valid index values being zero through symtab_list_length -1).

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns The string_offset and

cu_vector_offset through the pointers. See the example above which uses this function.

6.31.10 dwarf_gdbindex_cuvector_length()

int dwarf_gdbindex_cuvector_length(

Dwarf_Gdbindex gdbindex,

Dwarf_Unsigned cuvector_offset,

Dwarf_Unsigned * innercount,

Dwarf_Error * error);

The function dwarf_gdbindex_cuvector_length() takes as input valid Dwarf_Gdbindex pointer

and an a cu vector offset.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the inner_count through the pointer. The

inner_count is the number of compilation unit vectors for this array of vectors. See the example above

which uses this function.

6.31.11 dwarf_gdbindex_cuvector_inner_attributes()

rev 2.58, May 18, 2017 - 144 -



- 145 -

int dwarf_gdbindex_cuvector_inner_attributes(

Dwarf_Gdbindex gdbindex,

Dwarf_Unsigned cuvector_offset,

Dwarf_Unsigned innerindex,

/* The attr_value is a field of bits. For expanded version

use dwarf_gdbindex_cuvector_expand_value() */

Dwarf_Unsigned * attr_value,

Dwarf_Error * error);

The function dwarf_gdbindex_cuvector_inner_attributes() takes as input valid

Dwarf_Gdbindex pointer and an a cu vector offset and a inner_index (valid inner_index values are

zero through inner_count - 1.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns The attr_value through the pointer. The

attr_value is actually composed of several fields, see the next function which expands the value. See

the example above which uses this function.

6.31.12 dwarf_gdbindex_cuvector_instance_expand_value()

int dwarf_gdbindex_cuvector_instance_expand_value(

Dwarf_Gdbindex gdbindex,

Dwarf_Unsigned attr_value,

Dwarf_Unsigned * cu_index,

Dwarf_Unsigned * reserved1,

Dwarf_Unsigned * symbol_kind,

Dwarf_Unsigned * is_static,

Dwarf_Error * error);

The function dwarf_gdbindex_cuvector_instance_expand_value() takes as input valid

Dwarf_Gdbindex pointer and an attr_value.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns DW_DLV_ERROR there is an

error of some kind. and the error is indicated by the value returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:

The cu_index field is the index in the applicable CU list of a compilation unit. For the purpose of

indexing the CU list and the types CU list form a single array so the cu_index can be indicating either

list.

The symbol_kind field is a small integer with the symbol kind( zero is reserved, one is a type, 2 is a

variable or enum value, etc).

The reserved1 field should have the value zero and is the value of a bit field defined as reserved for

future use.

The is_static field is zero if the CU indexed is global and one if the CU indexed is static.

See the example above which uses this function.

rev 2.58, May 18, 2017 - 145 -



- 146 -

6.31.13 dwarf_gdbindex_string_by_offset()

int dwarf_gdbindex_string_by_offset(

Dwarf_Gdbindex gdbindexptr,

Dwarf_Unsigned stringoffset,

const char ** string_ptr,

Dwarf_Error * error);

The function dwarf_gdbindex_string_by_offset() takes as input valid Dwarf_Gdbindex

pointer and a stringoffset If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns

DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value returned through

the error pointer.

If it succeeds, the call returns a pointer to a string from the ’constant pool’ through the string_ptr. The

string pointed to must never be free()d.

See the example above which uses this function.

6.32 Debug Fission (.debug_tu_index, .debug_cu_index) operations

We name things "xu" as these sections have the same format so we let "x" stand for either section. These

functions get access to the index functions needed to access and print the contents of an object file which is

an aggregate of .dwo objects. These sections are implemented in gcc/gdb and are proposed to be part of

DWARF5 (As of July 2014 DWARF5 is not finished). The idea is that much debug information can be

separated off into individual .dwo Elf objects and then aggregated simply into a single .dwp object so the

executable need not have the complete debug information in it at runtime yet allow good debugging.

For additional information, see "https://gcc.gnu.org/wiki/DebugFissionDWP",

"https://gcc.gnu.org/wiki/DebugFission", and

"http://www.bayarea.net/˜cary/dwarf/Accelerated%20Access%20Diagram.png" and sometime in 2015, the

DWARF5 standard.

There are FORM access functions related to Debug Fission. See dwarf_formaddr() and

dwarf_get_debug_addr_index() and dwarf_get_debug_str_index().

The FORM with the hash value (for a reference to a type unit ) is DW_FORM_ref_sig8.

In a compilation unit of Debug Fission object (or a .dwp Package FIle) DW_AT_dwo_id the hash is

expected to be DW_FORM_data8.

The DWARF5 standard defines the hash as an 8 byte value which we could use Dwarf_Unsigned.

Instead (and mostly for type safety) we define the value as a structure whose type name is Dwarf_Sig8.

To look up a name in the hash (to find which CU(s) it exists in). use

dwarf_get_debugfission_for_key()fP, defined below.

The second group of interfaces here beginning with

dwarf_get_xu_index_header() are useful if one wants to print a

.debug_tu_index or .debug_cu_index section.

To access DIE, macro, etc information the support is built into DIE,

Macro, etc operations so applications usually won’t need to use these

operations at all.

rev 2.58, May 18, 2017 - 146 -



- 147 -

6.32.1 Dwarf_Debug_Fission_Per_CU

#define DW_FISSION_SECT_COUNT 12

struct Dwarf_Debug_Fission_Per_CU_s {

/* Do not free the string. It contains "cu" or "tu". */

/* If this is not set (ie, not a CU/TU in DWP Package File)

then pcu_type will be NULL. */

const char * pcu_type;

/* pcu_index is the index (range 1 to N )

into the tu/cu table of offsets and the table

of sizes. 1 to N as the zero index is reserved

for special purposes. Not a value one

actually needs. */

Dwarf_Unsigned pcu_index;

Dwarf_Sig8 pcu_hash; /* 8 byte */

/* [0] has offset and size 0.

[1]-[8] are DW_SECT_* indexes and the

values are the offset and size

of the respective section contribution

of a single .dwo object. When pcu_size[n] is

zero the corresponding section is not present. */

Dwarf_Unsigned pcu_offset[DW_FISSION_SECT_COUNT];

Dwarf_Unsigned pcu_size[DW_FISSION_SECT_COUNT];

Dwarf_Unsigned unused1;

Dwarf_Unsigned unused2;

};

The structure is used to return data to callers with the data from either .debug_tu_index or .debug_cu_index

that is applicable to a single compilation unit or type unit.

Callers to the applicable functions (see below) should allocate the structure and zero all the bytes in it. The

structure has a few fields that are presently unused. These are reserved for future use since it is impossible

to alter the structure without breaking binary compatibility.

6.32.2 dwarf_die_from_hash_signature()

int dwarf_die_from_hash_signature(Dwarf_Debug dbg,

Dwarf_Sig8 * hash_sig,

const char * sig_type,

Dwarf_Die* returned_die,

Dwarf_Error* error);

The function dwarf_die_from_hash_signature() is the most direct way to go from the hash data

from a DW_FORM_ref_sig8 or a DW_AT_dwo_id (form DW_FORM_data8) to a DIE from a .dwp

package file or a .dwo object file ( .dwo access not supported yet).

The caller passes in dbg which should be Dwarf_Debug open/initialized on a .dwp package file (or a

.dwo object file).

The caller also passes in hash_sig, a pointer to the hash signature for which the caller wishes to find a

DIE.

The caller also passes in sig_type which must contain either "tu" (identifying the hash referring to a

type unit) or "cu" (identifying the hash as referring to a compilation unit).

rev 2.58, May 18, 2017 - 147 -



- 148 -

On success the function returns DW_DLV_OK and sets *returned_die to be a pointer to a valid DIE for

the compilation unit or type unit. If the type is "tu" the DIE returned is the specific type DIE that the hash

refers to. If the type is "cu" the DIE returned is the compilation unit DIE of the compilation unit referred

to.

When appropriate the caller should free the space of the returned DIE by a call something like

dwarf_dealloc(dbg,die,DW_DLA_DIE);

If there is no DWP Package File section or the hash cannot be found the function returns

DW_DLV_NO_ENTRY and leaves returned_die untouched. Only .dwo objects and .dwp package files

have the package file index sections.

If there is an error of some sort the function returns DW_DLV_ERROR, leaves returned_die untouched,

and sets *error to indicate the precise error encountered.

6.32.3 dwarf_get_debugfission_for_die()

int dwarf_get_debugfission_for_die(Dwarf_Die die,

Dwarf_Debug_Fission_Per_CU * percu_out,

Dwarf_Error * error);

The function dwarf_get_debugfission_for_die() returns the debug fission for the compilation

unit the DIE is a part of. Any DIE in the compilation (or type) unit will get the same result.

On a call to this function ensure the pointed-to space is fully initialized.

On success the function returns DW_DLV_OK and fills in the fields of *percu_out for which it has data.

If there is no DWP Package File section the function returns DW_DLV_NO_ENTRY and leaves

*percu_out untouched. Only .dwp package files have the package file index sections.

If there is an error of some sort the function returns DW_DLV_ERROR, leaves *percu_out untouched,

and sets *error to indicate the precise error encountered.

6.32.4 dwarf_get_debugfission_for_key()

int dwarf_get_debugfission_for_key(Dwarf_Debug dbg,

Dwarf_Sig8 * key,

const char * key_type ,

Dwarf_Debug_Fission_Per_CU * percu_out,

Dwarf_Error * error);

The function dwarf_get_debugfission_for_key() returns the debug fission data for the

compilation unit in a .dwp package file.

If there is no DWP Package File section the function returns DW_DLV_NO_ENTRY and leaves

*percu_out untouched. Only .dwp package files have the package file index sections.

If there is an error of some sort the function returns DW_DLV_ERROR, leaves *percu_out untouched,

and sets *error to indicate the precise error encountered.

rev 2.58, May 18, 2017 - 148 -



- 149 -

6.32.5 dwarf_get_xu_index_header()

int dwarf_get_xu_index_header(Dwarf_Debug dbg,

const char * section_type, /* "tu" or "cu" */

Dwarf_Xu_Index_Header * xuhdr,

Dwarf_Unsigned * version_number,

Dwarf_Unsigned * offsets_count /* L*/,

Dwarf_Unsigned * units_count /* N*/,

Dwarf_Unsigned * hash_slots_count /* M*/,

const char ** sect_name,

Dwarf_Error * err);

The function dwarf_get_xu_index_header() takes as input a valid Dwarf_Debug pointer and an

section_type value, which must one of the strings tu or cu.

It returns DW_DLV_NO_ENTRY if the section requested is not in the object file.

It returns DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value

returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:

The xuhdr field is a pointer usable in other operations (see below).

The version_number field is a the index version number. For gcc before DWARF5 the version number

is 2. For DWARF5 the version number is 5.

The offsets_count field is a the number of columns in the table of section offsets. Sometimes known

as L.

The units_count field is a the number of compilation units or type units in the index. Sometimes

known as N.

The hash_slots_count field is a the number of slots in the hash table. Sometimes known as M.

The sect_name field is the name of the section in the object file. Because non-Elf objects may not use

section names callers must recognize that the sect_name may be set to NULL (zero) or to point to the

empty string and this is not considered an error.

An example of initializing and disposing of a Dwarf_Xu_Index_Header follows.

rev 2.58, May 18, 2017 - 149 -



- 150 -

Figure 42. Exampley dwarf_get_xu_index_header()

void exampley(Dwarf_Debug dbg, const char *type)

{

/* type is "tu" or "cu" */

int res = 0;

Dwarf_Xu_Index_Header xuhdr = 0;

Dwarf_Unsigned version_number = 0;

Dwarf_Unsigned offsets_count = 0; /*L */

Dwarf_Unsigned units_count = 0; /* M */

Dwarf_Unsigned hash_slots_count = 0; /* N */

Dwarf_Error err = 0;

const char * ret_type = 0;

const char * section_name = 0;

res = dwarf_get_xu_index_header(dbg,

type,

&xuhdr,

&version_number,

&offsets_count,

&units_count,

&hash_slots_count,

&section_name,

&err);

if (res == DW_DLV_NO_ENTRY) {

/* No such section. */

return;

}

if (res == DW_DLV_ERROR) {

/* Something wrong. */

return;

}

if (res == DW_DLV_ERROR) {

/* Impossible error. */

dwarf_xu_header_free(xuhdr);

return;

}

/* Do something with the xuhdr here . */

dwarf_xu_header_free(xuhdr);

}

6.32.6 dwarf_get_xu_index_section_type()

int dwarf_get_xu_index_section_type(

Dwarf_Xu_Index_Header xuhdr,

const char ** typename,

const char ** sectionname,

Dwarf_Error * error);

The function dwarf_get_xu_section_type() takes as input a valid

Dwarf_Xu_Index_Header. It is only useful when one already as an open xuhdr but one does not

know if this is a type unit or compilation unit index section.

If it returns DW_DLV_NO_ENTRY something is wrong (should never happen). If it returns

DW_DLV_ERROR something is wrong and the error field is set to indicate a specific error.

rev 2.58, May 18, 2017 - 150 -



- 151 -

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

typename is set to the string tu or cu to indcate the index is of a type unit or a compilation unit,

respectively.

sectionname is set to name of the object file section. Because non-Elf objects may not use section

names callers must recognize that the sect_name may be set to NULL (zero) or to point to the empty string

and this is not considered an error.

Neither string should be free()d.

6.32.7 dwarf_get_xu_header_free()

void dwarf_xu_header_free(Dwarf_Xu_Index_Header xuhdr);

The function dwarf_get_xu_header_free() takes as input a valid Dwarf_Xu_Index_Header

and frees all the special data allocated for this access type. Once called, any pointers returned by use of the

xuhdr should be considered stale and unusable.

6.32.8 dwarf_get_xu_hash_entry()

int dwarf_get_xu_hash_entry(

Dwarf_Xu_Index_Header xuhdr,

Dwarf_Unsigned index,

Dwarf_Sig8 * hash_value,

Dwarf_Unsigned * index_to_sections,

Dwarf_Error * error);

The function dwarf_get_xu_hash_entry() takes as input a valid Dwarf_Xu_Index_Header

and an index of a hash slot entry (valid hash slot index values are zero (0) through

hash_slots_count -1 (M-1)).

If it returns DW_DLV_NO_ENTRY something is wrong

If it returns DW_DLV_ERROR something is wrong and the error field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

hash_value is set to the 64bit hash of of the symbol name.

index_to_sections is set to the index into offset-size tables of this hash entry.

If both hash_value and index_to_sections are zero (0) then the hash slot is unused.

index_to_sections is used in calls to the function dwarf_get_xu_section_offset() as the

row_index.

An example of use follows.

rev 2.58, May 18, 2017 - 151 -



- 152 -

Figure 43. Examplez dwarf_get_xu_hash_entry()

void examplez( Dwarf_Xu_Index_Header xuhdr,

Dwarf_Unsigned hash_slots_count)

{

/* hash_slots_count returned by

dwarf_get_xu_index_header(), see above. */

static Dwarf_Sig8 zerohashval;

Dwarf_Error err = 0;

Dwarf_Unsigned h = 0;

for( h = 0; h < hash_slots_count; h++) {

Dwarf_Sig8 hashval;

Dwarf_Unsigned index = 0;

Dwarf_Unsigned col = 0;

int res = 0;

res = dwarf_get_xu_hash_entry(xuhdr,h,

&hashval,&index,&err);

if (res == DW_DLV_ERROR) {

/* Oops. hash_slots_count wrong. */

return;

} else if (res == DW_DLV_NO_ENTRY) {

/* Impossible */

return;

} else if (!memcmp(&hashval,&zerohashval,sizeof(Dwarf_Sig8))

&& index == 0 ) {

/* An unused hash slot */

continue;

}

/*Here, hashval and index (a row index into offsets and lengths)

are valid. */

}

}

6.32.9 dwarf_get_xu_section_names()

int dwarf_get_xu_section_names(

Dwarf_Xu_Index_Header xuhdr,

Dwarf_Unsigned column_index,

Dwarf_Unsigned* number,

const char ** name,

Dwarf_Error * err);

The function dwarf_get_xu_section_names() takes as input a valid

Dwarf_Xu_Index_Header and a column_index of a hash slot entry (valid column_index values

are zero (0) through offsets_count -1 (L-1)).

If it returns DW_DLV_NO_ENTRY something is wrong

If it returns DW_DLV_ERROR something is wrong and the error field is set to indicate a specific error.

rev 2.58, May 18, 2017 - 152 -



- 153 -

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

number is set to a number identifying which section this column applies to. For example, if the value is

DW_SECT_INFO (1) the column came from a .debug_info.dwo section. See the table of DW_SECT_

identifiers and asigned numbers in DWARF5.

name is set to the applicable spelling of the section identifier, for example DW_SECT_INFO.

6.32.10 dwarf_get_xu_section_offset()

int dwarf_get_xu_section_offset(

Dwarf_Xu_Index_Header xuhdr,

Dwarf_Unsigned row_index,

Dwarf_Unsigned column_index,

Dwarf_Unsigned* sec_offset,

Dwarf_Unsigned* sec_size,

Dwarf_Error * error);

The function dwarf_get_xu_section_offset() takes as input a valid

Dwarf_Xu_Index_Header and a row_index (see dwarf_get_xu_hash_entry() above) and

a column_index. Valid row_index values are one (1) through units_count (N) but one uses

dwarf_get_xu_hash_entry() (above) to get row index. Valid column_index values are zero (0)

through offsets_count -1 (L-1).

If it returns DW_DLV_NO_ENTRY something is wrong.

If it returns DW_DLV_ERROR something is wrong and the error field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

sec_offset, (base offset) is set to the base offset of the initial compilation-unit-header section

taken from a .dwo object. The base offset is the data from a single section of a .dwo object.

sec_size is set to the length of the original section taken from a .dwo object. This is the length in the

applicable section in the .dwp over which the base offset applies.

An example of use of dwarf_get_xu_section_names() and

dwarf_get_xu_section_offset() follows.

rev 2.58, May 18, 2017 - 153 -



- 154 -

Figure 44. Exampleza dwarf_get_xu_section_names()

void exampleza(Dwarf_Xu_Index_Header xuhdr,

Dwarf_Unsigned offsets_count, Dwarf_Unsigned index )

{

Dwarf_Error err = 0;

Dwarf_Unsigned col = 0;

/* We use ’offsets_count’ returned by

a dwarf_get_xu_index_header() call.

We use ’index’ returned by a

dwarf_get_xu_hash_entry() call. */

for (col = 0; col < offsets_count; col++) {

Dwarf_Unsigned off = 0;

Dwarf_Unsigned len = 0;

const char * name = 0;

Dwarf_Unsigned num = 0;

int res = 0;

res = dwarf_get_xu_section_names(xuhdr,

col,&num,&name,&err);

if (res != DW_DLV_OK) {

break;

}

res = dwarf_get_xu_section_offset(xuhdr,

index,col,&off,&len,&err);

if (res != DW_DLV_OK) {

break;

}

/* Here we have the DW_SECT_ name and number

and the base offset and length of the

section data applicable to the hash

that got us here.

Use the values.*/

}

}

6.33 TAG ATTR etc names as strings

These functions turn a value into a string. So applications wanting the string "DW_TAG_compile_unit"

given the value 0x11 (the value defined for this TAG) can do so easily.

The general form is

int dwarf_get_<something>_name(

unsigned value,

char **s_out,

);

If the value passed in is known, the function returns DW_DLV_OK and places a pointer to the appropriate

string into *s_out. The string is in static storage and applications must never free the string. If the

value is not known, DW_DLV_NO_ENTRY is returned and *s_out is not set. DW_DLV_ERROR is never

returned.

Libdwarf generates these functions at libdwarf build time by reading dwarf.h.

rev 2.58, May 18, 2017 - 154 -



- 155 -

All these follow this pattern rigidly, so the details of each are not repeated for each function.

The choice of ’unsigned’ for the value type argument (the code value) argument is somewhat arbitrary, ’int’

could have been used.

The library simply assumes the value passed in is applicable. So, for example, passing a TAG value code to

dwarf_get_ACCESS_name() is a coding error which libdwarf will process as if it was an accessibility

code value. Examples of bad and good usage are:

Figure 45. Examplezb dwarf_get_TAG_name()

void examplezb(void)

{

const char * out = 0;

int res = 0;

/* The following is wrong, do not do it! */

res = dwarf_get_ACCESS_name(DW_TAG_entry_point,&out);

/* Nothing one does here with ’res’ or ’out’

is meaningful. */

/* The following is meaningful.*/

res = dwarf_get_TAG_name(DW_TAG_entry_point,&out);

if( res == DW_DLV_OK) {

/* Here ’out’ is a pointer one can use which

points to the string "DW_TAG_entry_point". */

} else {

/* Here ’out’ has not been touched, it is

uninitialized. Do not use it. */

}

}

6.33.1 dwarf_get_ACCESS_name()

Returns an accessibility code name through the s_out pointer.

6.33.2 dwarf_get_AT_name()

Returns an attribute code name through the s_out pointer.

6.33.3 dwarf_get_ATE_name()

Returns a base type encoding name through the s_out pointer.

6.33.4 dwarf_get_ADDR_name()

Returns an address type encoding name through the s_out pointer. As of this writing only

DW_ADDR_none is defined in dwarf.h.

6.33.5 dwarf_get_ATCF_name()

Returns a SUN code flag encoding name through the s_out pointer. This code flag is entirely a DWARF

extension.

rev 2.58, May 18, 2017 - 155 -



- 156 -

6.33.6 dwarf_get_CHILDREN_name()

Returns a child determination name (which is seen in the abbreviations section data) through the s_out

pointer. The only value this recognizes for a ’yes’ value is 1. As a flag value this is not quite correct (any

non-zero value means yes) but dealing with this is left up to client code (normally compilers really do emit

a value of 1 for a flag).

6.33.7 dwarf_get_children_name()

Returns a child determination name through the s_out pointer, though this version is really a libdwarf

artifact. The standard function is dwarf_get_CHILDREN_name() which appears just above. As a

flag value this is not quite correct (any non-zero value means yes) but dealing with this is left up to client

code (normally compilers really do emit a value of 1 for a flag).

6.33.8 dwarf_get_CC_name()

Returns a calling convention case code name through the s_out pointer.

6.33.9 dwarf_get_CFA_name()

Returns a call frame information instruction name through the s_out pointer.

6.33.10 dwarf_get_DS_name()

Returns a decimal sign code name through the s_out pointer.

6.33.11 dwarf_get_DSC_name()

Returns a discriminant descriptor code name through the s_out pointer.

6.33.12 dwarf_get_EH_name()

Returns a GNU exception header code name through the s_out pointer.

6.33.13 dwarf_get_END_name()

Returns an endian code name through the s_out pointer.

6.33.14 dwarf_get_FORM_name()

Returns an form code name through the s_out pointer.

6.33.15 dwarf_get_FRAME_name()

Returns a frame code name through the s_out pointer. These are dependent on the particular ABI, so

unless the dwarf.h used to generate libdwarf matches your ABI these names are unlikely to be very

useful and certainly won’t be entirely appropriate.

6.33.16 dwarf_get_ID_name()

Returns an identifier case code name through the s_out pointer.

6.33.17 dwarf_get_INL_name()

Returns an inline code name through the s_out pointer.

6.33.18 dwarf_get_LANG_name()

Returns a language code name through the s_out pointer.

6.33.19 dwarf_get_LLE_name()

Returns a split-dwarf loclist code name through the s_out pointer.

rev 2.58, May 18, 2017 - 156 -



- 157 -

6.33.20 dwarf_get_LNE_name()

Returns a line table extended opcode code name through the s_out pointer.

6.33.21 dwarf_get_LNS_name()

Returns a line table standard opcode code name through the s_out pointer.

6.33.22 dwarf_get_MACINFO_name()

Returns a macro information macinfo code name through the s_out pointer.

6.33.23 dwarf_get_MACRO_name()

Returns a DWARF5 macro information macro code name through the s_out pointer.

6.33.24 dwarf_get_OP_name()

Returns a DWARF expression operation code name through the s_out pointer.

6.33.25 dwarf_get_ORD_name()

Returns an array ordering code name through the s_out pointer.

6.33.26 dwarf_get_TAG_name()

Returns a TA G name through the s_out pointer.

6.33.27 dwarf_get_VIRTUALITY_name()

Returns a virtuality code name through the s_out pointer.

6.33.28 dwarf_get_VIS_name()

Returns a visibility code name through the s_out pointer.

6.34 Section Operations

In checking DWARF in linkonce sections for correctness it has been found useful to have certain section-

oriented operations when processing object files. Normally these operations are not needed or useful in a

fully-linked executable or shared library.

While the code is written with Elf sections in mind, it is quite possible to process non-Elf objects with code

that implements certain function pointers (see struct Dwarf_Obj_Access_interface_s).

So far no one with such non-elf code has come forward to open-source it.

6.34.1 dwarf_get_section_count()

int dwarf_get_section_count(

Dwarf_Debug dbg)

Returns a count of the number of object sections found.

If there is an incomplete or damaged dbg passed in this can return -1;

rev 2.58, May 18, 2017 - 157 -



- 158 -

6.34.2 dwarf_get_section_info_by_name()

int dwarf_get_section_info_by_name(

const char *section_name,

Dwarf_Addr *section_addr,

Dwarf_Unsigned *section_size,

Dwarf_Error *error)

The function dwarf_get_section_info_by_name() returns DW_DLV_OK if the section given by

section_name was seen by libdwarf. On success it sets *section_addr to the virtual address

assigned to the section by the linker or compiler and *section_size to the size of the object section.

It returns DW_DLV_ERROR on error.

6.34.3 dwarf_get_section_info_by_index()

int dwarf_get_section_info_by_index(

int section_index,

const char **section_name,

Dwarf_Addr *section_addr,

Dwarf_Unsigned *section_size,

Dwarf_Error *error)

The function dwarf_get_section_info_by_index() returns DW_DLV_OK if the section given by

section_index was seen by libdwarf. *section_addr to the virtual address assigned to the section

by the linker or compiler and *section_size to the size of the object section.

No free or deallocate of information returned should be done by callers.

6.35 Utility Operations

These functions aid in the management of errors encountered when using functions in the libdwarf library

and releasing memory allocated as a result of a libdwarf operation.

For clients that wish to encode LEB numbers two interfaces are provided to the producer code’s internal

LEB function.

6.35.1 dwarf_errno()

Dwarf_Unsigned dwarf_errno(

Dwarf_Error error)

The function dwarf_errno() returns the error number corresponding to the error specified by error.

6.35.2 dwarf_errmsg()

const char* dwarf_errmsg(

Dwarf_Error error)

The function dwarf_errmsg() returns a pointer to a null-terminated error message string corresponding

rev 2.58, May 18, 2017 - 158 -



- 159 -

to the error specified by error. The string should not be deallocated using dwarf_dealloc().

The string should be considered to be a temporary string. That is, the returned pointer may become stale if

you do libdwarf calls on the Dwarf_Debug instance other than dwarf_errmsg() or

dwarf_errno(). So copy the errmsg string ( or print it) but do not depend on the pointer remaining

valid past other libdwarf calls to the Dwarf_Debug instance that detected an error

6.35.3 dwarf_get_harmless_error_list()

int dwarf_get_harmless_error_list(Dwarf_Debug dbg,

unsigned count,

const char ** errmsg_ptrs_array,

unsigned * newerr_count);

The harmless errors are not denoted by error returns from the other libdwarf functions. Instead, this

function returns strings of any harmless errors that have been seen in the current object. Clients never need

call this, but if a client wishes to report any such errors it may call.

Only a fixed number of harmless errors are recorded. It is a circular list, so if more than the current

maximum is encountered older harmless error messages are lost.

The caller passes in a pointer to an array of pointer-to-char as the argument errmsg_ptrs_array. The

caller must provide this array, libdwarf does not provide it. The caller need not initialize the array

elements.

The caller passes in the number of elements of the array of pointer-to-char thru count. Since the

If there are no unreported harmless errors the function returns DW_DLV_NO_ENTRY and the function

arguments are ignored. Otherwise the function returns DW_DLV_OK and uses the arguments.

libdwarf assigns error strings to the errmsg_ptrs_array. The MININUM(count-1, number of messages

recorded) pointers are assigned to the array. The array is terminated with a NULL pointer. (That is, one

array entry is reserved for a NULL pointer). So if count is 5 up to 4 strings may be returned through the

array, and one array entry is set to NULL.

Because the list is circular and messages may have been dropped the function also returns the actual error

count of harmless errors encountered through newerr_count (unless the argument is NULL, in which

case it is ignored).

Each call to this function resets the circular error buffer and the error count. So think of this call as

reporting harmless errors since the last call to it.

The pointers returned through errmsg_ptrs_array are only valid till the next call to libdwarf. Do not

save the pointers, they become invalid. Copy the strings if you wish to save them.

Calling this function neither allocates any space in memory nor frees any space in memory.

6.35.4 dwarf_insert_harmless_error()

rev 2.58, May 18, 2017 - 159 -



- 160 -

void dwarf_insert_harmless_error(Dwarf_Debug dbg,

char * newerror);

This function is used to test dwarf_get_harmless_error_list. It simply adds a harmless error

string. There is little reason client code should use this function. It exists so that the harmless error

functions can be easily tested for correctness and leaks.

6.35.5 dwarf_set_harmless_error_list_size()

unsigned dwarf_set_harmless_error_list_size(Dwarf_Debug dbg,

unsigned maxcount)

dwarf_set_harmless_error_list_size returns the number of harmless error strings the library

is currently set to hold. If maxcount is non-zero the library changes the maximum it will record to be

maxcount.

It is extremely unwise to make maxcount large because libdwarf allocates space for maxcount

strings immediately.

The set of errors enumerated in Figure 4 below were defined in Dwarf 1. These errors are not used by the

libdwarf implementation for Dwarf 2 or later.

SYMBOLIC NAME DESCRIPTION

DW_DLE_NE No error (0)

DW_DLE_VMM Version of DWARF information newer

than libdwarf

DW_DLE_MAP Memory map failure

DW_DLE_LEE Propagation of libelf error

DW_DLE_NDS No debug section

DW_DLE_NLS No line section

DW_DLE_ID Requested information not associated

with descriptor

DW_DLE_IOF I/O failure

DW_DLE_MAF Memory allocation failure

DW_DLE_IA Invalid argument

DW_DLE_MDE Mangled debugging entry

DW_DLE_MLE Mangled line number entry

DW_DLE_FNO File descriptor does not refer

to an open file

DW_DLE_FNR File is not a regular file

DW_DLE_FWA File is opened with wrong access

DW_DLE_NOB File is not an object file

DW_DLE_MOF Mangled object file header

DW_DLE_EOLL End of location list entries

DW_DLE_NOLL No location list section

DW_DLE_BADOFF Invalid offset

DW_DLE_EOS End of section

DW_DLE_ATRUNC Abbreviations section appears

truncated

DW_DLE_BADBITC Address size passed to

dwarf bad

Figure 46. Dwarf Error Codes

rev 2.58, May 18, 2017 - 160 -



- 161 -

The set of errors returned by Libdwarf functions is listed below. The list does lengthen: the ones listed

here are not really a complete list. Some of the errors are SGI specific.

SYMBOLIC NAME DESCRIPTION

DW_DLE_DBG_ALLOC Could not allocate Dwarf_Debug struct

DW_DLE_FSTAT_ERROR Error in fstat()-ing object

DW_DLE_FSTAT_MODE_ERROR Error in mode of object file

DW_DLE_INIT_ACCESS_WRONG Incorrect access to dwarf_init()

DW_DLE_ELF_BEGIN_ERROR Error in elf_begin() on object

DW_DLE_ELF_GETEHDR_ERROR Error in elf_getehdr() on object

DW_DLE_ELF_GETSHDR_ERROR Error in elf_getshdr() on object

DW_DLE_ELF_STRPTR_ERROR Error in elf_strptr() on object

DW_DLE_DEBUG_INFO_DUPLICATE Multiple .debug_info sections

DW_DLE_DEBUG_INFO_NULL No data in .debug_info section

DW_DLE_DEBUG_ABBREV_DUPLICATE Multiple .debug_abbrev

sections

DW_DLE_DEBUG_ABBREV_NULL No data in .debug_abbrev section

DW_DLE_DEBUG_ARANGES_DUPLICATE Multiple .debug_arange

sections

DW_DLE_DEBUG_ARANGES_NULL No data in .debug_arange section

DW_DLE_DEBUG_LINE_DUPLICATE Multiple .debug_line sections

DW_DLE_DEBUG_LINE_NULL No data in .debug_line section

DW_DLE_DEBUG_LOC_DUPLICATE Multiple .debug_loc sections

DW_DLE_DEBUG_LOC_NULL No data in .debug_loc section

DW_DLE_DEBUG_MACINFO_DUPLICATE Multiple .debug_macinfo

sections

DW_DLE_DEBUG_MACINFO_NULL No data in .debug_macinfo section

DW_DLE_DEBUG_PUBNAMES_DUPLICATE Multiple .debug_pubnames

sections

DW_DLE_DEBUG_PUBNAMES_NULL No data in .debug_pubnames

section

DW_DLE_DEBUG_STR_DUPLICATE Multiple .debug_str sections

DW_DLE_DEBUG_STR_NULL No data in .debug_str section

DW_DLE_CU_LENGTH_ERROR Length of compilation-unit bad

DW_DLE_VERSION_STAMP_ERROR Incorrect Version Stamp

DW_DLE_ABBREV_OFFSET_ERROR Offset in .debug_abbrev bad

DW_DLE_ADDRESS_SIZE_ERROR Size of addresses in target bad

DW_DLE_DEBUG_INFO_PTR_NULL Pointer into .debug_info in

DIE null

DW_DLE_DIE_NULL Null Dwarf_Die

DW_DLE_STRING_OFFSET_BAD Offset in .debug_str bad

DW_DLE_DEBUG_LINE_LENGTH_BAD Length of .debug_line

segment bad

DW_DLE_LINE_PROLOG_LENGTH_BAD Length of .debug_line

prolog bad

DW_DLE_LINE_NUM_OPERANDS_BAD Number of operands to line

instr bad

DW_DLE_LINE_SET_ADDR_ERROR Error in DW_LNE_set_address

instruction

Figure 47. Dwarf 2 Error Codes (continued below)

rev 2.58, May 18, 2017 - 161 -



- 162 -

SYMBOLIC NAME DESCRIPTION

DW_DLE_LINE_EXT_OPCODE_BAD Error in DW_EXTENDED_OPCODE

instruction

DW_DLE_DWARF_LINE_NULL Null Dwarf_line argument

DW_DLE_INCL_DIR_NUM_BAD Error in included directory for

given line

DW_DLE_LINE_FILE_NUM_BAD File number in .debug_line bad

DW_DLE_ALLOC_FAIL Failed to allocate required structs

DW_DLE_DBG_NULL Null Dwarf_Debug argument

DW_DLE_DEBUG_FRAME_LENGTH_BAD Error in length of frame

DW_DLE_FRAME_VERSION_BAD Bad version stamp for frame

DW_DLE_CIE_RET_ADDR_REG_ERROR Bad register specified for

return address

DW_DLE_FDE_NULL Null Dwarf_Fde argument

DW_DLE_FDE_DBG_NULL No Dwarf_Debug associated with FDE

DW_DLE_CIE_NULL Null Dwarf_Cie argument

DW_DLE_CIE_DBG_NULL No Dwarf_Debug associated with CIE

DW_DLE_FRAME_TABLE_COL_BAD Bad column in frame table

specified

DW_DLE_PC_NOT_IN_FDE_RANGE PC requested not in address range of FDE

DW_DLE_CIE_INSTR_EXEC_ERROR Error in executing instructions in CIE

DW_DLE_FRAME_INSTR_EXEC_ERROR Error in executing instructions in FDE

DW_DLE_FDE_PTR_NULL Null Pointer to Dwarf_Fde specified

DW_DLE_RET_OP_LIST_NULL No location to store pointer to Dwarf_Frame_Op

DW_DLE_LINE_CONTEXT_NULL Dwarf_Line has no context

DW_DLE_DBG_NO_CU_CONTEXT dbg has no CU context for dwarf_siblingof()

DW_DLE_DIE_NO_CU_CONTEXT Dwarf_Die has no CU context

DW_DLE_FIRST_DIE_NOT_CU First DIE in CU not DW_TAG_compilation_unit

DW_DLE_NEXT_DIE_PTR_NULL Error in moving to next DIE in .debug_info

DW_DLE_DEBUG_FRAME_DUPLICATE Multiple .debug_frame sections

DW_DLE_DEBUG_FRAME_NULL No data in .debug_frame section

DW_DLE_ABBREV_DECODE_ERROR Error in decoding abbreviation

DW_DLE_DWARF_ABBREV_NULL Null Dwarf_Abbrev specified

DW_DLE_ATTR_NULL Null Dwarf_Attribute specified

DW_DLE_DIE_BAD DIE bad

DW_DLE_DIE_ABBREV_BAD No abbreviation found for code in DIE

DW_DLE_ATTR_FORM_BAD Inappropriate attribute form for attribute

DW_DLE_ATTR_NO_CU_CONTEXT No CU context for Dwarf_Attribute struct

DW_DLE_ATTR_FORM_SIZE_BAD Size of block in attribute value bad

DW_DLE_ATTR_DBG_NULL No Dwarf_Debug for Dwarf_Attribute struct

DW_DLE_BAD_REF_FORM Inappropriate form for reference attribute

DW_DLE_ATTR_FORM_OFFSET_BAD Offset reference attribute outside current CU

DW_DLE_LINE_OFFSET_BAD Offset of lines for current CU outside .debug_line

DW_DLE_DEBUG_STR_OFFSET_BAD Offset into .debug_str past its end

DW_DLE_STRING_PTR_NULL Pointer to pointer into .debug_str NULL

DW_DLE_PUBNAMES_VERSION_ERROR Version stamp of pubnames incorrect

DW_DLE_PUBNAMES_LENGTH_BAD Read pubnames past end of .debug_pubnames

DW_DLE_GLOBAL_NULL Null Dwarf_Global specified

DW_DLE_GLOBAL_CONTEXT_NULL No context for Dwarf_Global given

DW_DLE_DIR_INDEX_BAD Error in directory index read

Figure 48. Dwarf 2 Error Codes (continued below)

rev 2.58, May 18, 2017 - 162 -



- 163 -

SYMBOLIC NAME DESCRIPTION

DW_DLE_LOC_EXPR_BAD Bad operator read for location expression

DW_DLE_DIE_LOC_EXPR_BAD Expected block value for attribute

not found

DW_DLE_OFFSET_BAD Offset for next compilation-unit in

.debug_info bad

DW_DLE_MAKE_CU_CONTEXT_FAIL Could not make CU context

DW_DLE_ARANGE_OFFSET_BAD Offset into .debug_info in

.debug_aranges bad

DW_DLE_SEGMENT_SIZE_BAD Segment size will be 0 for MIPS

processorsand should always be < 8.

DW_DLE_ARANGE_LENGTH_BAD Length of arange section in

.debug_arange bad

DW_DLE_ARANGE_DECODE_ERROR Aranges do not end at end

of .debug_aranges

DW_DLE_ARANGES_NULL NULL pointer to Dwarf_Arange specified

DW_DLE_ARANGE_NULL NULL Dwarf_Arange specified

DW_DLE_NO_FILE_NAME No file name for Dwarf_Line struct

DW_DLE_NO_COMP_DIR No Compilation directory for

compilation-unit

DW_DLE_CU_ADDRESS_SIZE_BAD CU header address size not

match Elf class

DW_DLE_ELF_GETIDENT_ERROR Error in elf_getident() on object

DW_DLE_NO_AT_MIPS_FDE DIE does not have

DW_AT_MIPS_fde attribute

DW_DLE_NO_CIE_FOR_FDE No CIE specified for FDE

DW_DLE_DIE_ABBREV_LIST_NULL No abbreviation for the code

in DIE found

DW_DLE_DEBUG_FUNCNAMES_DUPLICATE Multiple .debug_funcnames sections

DW_DLE_DEBUG_FUNCNAMES_NULL No data in .debug_funcnames section

DW_DLE_DEBUG_FUNCNAMES_VERSION_ERROR Version stamp in

.debug_funcnames bad

DW_DLE_DEBUG_FUNCNAMES_LENGTH_BAD Length error in reading

.debug_funcnames

DW_DLE_FUNC_NULL NULL Dwarf_Func specified

DW_DLE_FUNC_CONTEXT_NULL No context for Dwarf_Func struct

DW_DLE_DEBUG_TYPENAMES_DUPLICATE Multiple .debug_typenames sections

DW_DLE_DEBUG_TYPENAMES_NULL No data in .debug_typenames section

DW_DLE_DEBUG_TYPENAMES_VERSION_ERROR Version stamp in

.debug_typenames bad

DW_DLE_DEBUG_TYPENAMES_LENGTH_BAD Length error in reading

.debug_typenames

DW_DLE_TYPE_NULL NULL Dwarf_Type specified

DW_DLE_TYPE_CONTEXT_NULL No context for Dwarf_Type given

DW_DLE_DEBUG_VARNAMES_DUPLICATE Multiple .debug_varnames sections

DW_DLE_DEBUG_VARNAMES_NULL No data in .debug_varnames section

DW_DLE_DEBUG_VARNAMES_VERSION_ERROR Version stamp in

.debug_varnames bad

DW_DLE_DEBUG_VARNAMES_LENGTH_BAD Length error in reading

.debug_varnames

Figure 49. Dwarf 2 Error Codes (continued below)

rev 2.58, May 18, 2017 - 163 -



- 164 -

SYMBOLIC NAME DESCRIPTION

DW_DLE_VAR_NULL NULL Dwarf_Var specified

DW_DLE_VAR_CONTEXT_NULL No context for Dwarf_Var given

DW_DLE_DEBUG_WEAKNAMES_DUPLICATE Multiple .debug_weaknames section

DW_DLE_DEBUG_WEAKNAMES_NULL No data in .debug_varnames section

DW_DLE_DEBUG_WEAKNAMES_VERSION_ERROR Version stamp in

.debug_varnames bad

DW_DLE_DEBUG_WEAKNAMES_LENGTH_BAD Length error in reading

.debug_weaknames

DW_DLE_WEAK_NULL NULL Dwarf_Weak specified

DW_DLE_WEAK_CONTEXT_NULL No context for Dwarf_Weak given

Figure 50. Dwarf 2 Error Codes

This list of errors is not complete; additional errors have been added. Some of the above errors may be

unused. Errors may not have the same meaning in different releases. Since most error codes are returned

from only one place (or a very small number of places) in the source it is normally very useful to simply

search the libdwarf source to find out where a particular error code is generated.

6.35.6 dwarf_dealloc()

void dwarf_dealloc(

Dwarf_Debug dbg,

void* space,

Dwarf_Unsigned type)

The function dwarf_dealloc frees the dynamic storage pointed to by space, and allocated to the given

Dwarf_Debug. The argument type is an integer code that specifies the allocation type of the region

pointed to by the space. Refer to section 4 for details on libdwarf memory management.

6.35.7 dwarf_encode_leb128()

int dwarf_encode_leb128(Dwarf_Unsigned val,

int * nbytes,

char * space,

int splen);

The function dwarf_encode_leb128 encodes the value val in the caller-provided buffer that space

points to. The caller-provided buffer must be at least splen bytes long.

The function returns DW_DLV_OK if the encoding succeeds. If splen is too small to encode the value,

DW_DLV_ERROR will be returned.

If the call succeeds, the number of bytes of space that are used in the encoding are returned through the

pointer nbytes

6.35.8 dwarf_encode_signed_leb128()

rev 2.58, May 18, 2017 - 164 -



- 165 -

int dwarf_encode_signed_leb128(Dwarf_Signed val,

int * nbytes,

char * space,

int splen);

The function dwarf_encode_signed_leb128 is the same as dwarf_encode_leb128 except that

the argument val is signed.

rev 2.58, May 18, 2017 - 165 -



- 166 -

rev 2.58, May 18, 2017 - 166 -



CONTENTS

1. INTRODUCTION ................................................................................................................ 1

1.1 Copyright ...................................................................................................................... 1

1.2 Purpose and Scope ....................................................................................................... 1

1.3 Document History ........................................................................................................ 1

1.4 Definitions .................................................................................................................... 2

1.5 Overview ...................................................................................................................... 2

1.6 Items Changed .............................................................................................................. 3

1.7 Items Removed ............................................................................................................. 4

1.8 Revision History ........................................................................................................... 4

2. Types Definitions .................................................................................................................. 5

2.1 General Description ...................................................................................................... 5

2.2 Scalar Types ................................................................................................................. 5

2.3 Aggregate Types ........................................................................................................... 6

2.3.1 Location Record .............................................................................................. 6

2.3.2 Location Description ....................................................................................... 7

2.3.3 Data Block ....................................................................................................... 7

2.3.4 Frame Operation Codes: DWARF 2 ................................................................ 8

2.3.5 Frame Regtable: DWARF 2 ............................................................................. 8

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2) ...................................... 9

2.3.7 Frame Regtable: DWARF 3 ........................................................................... 10

2.3.8 Macro Details Record .................................................................................... 11

2.4 Opaque Types ............................................................................................................. 11

3. UTF-8 strings ..................................................................................................................... 14

4. Error Handling .................................................................................................................... 14

4.1 Returned values in the functional interface ................................................................ 16

5. Memory Management ........................................................................................................ 16

5.1 Read-only Properties .................................................................................................. 17

5.2 Storage Deallocation .................................................................................................. 17

6. Functional Interface ............................................................................................................ 18

6.1 Initialization Operations ............................................................................................. 18

6.1.1 dwarf_init_b() ................................................................................................ 19

6.1.2 dwarf_init() .................................................................................................... 19

6.1.3 Dwarf_Handler function ................................................................................ 20

6.1.4 dwarf_elf_init_b() .......................................................................................... 20

6.1.5 dwarf_elf_init() .............................................................................................. 21

6.1.6 dwarf_get_elf() .............................................................................................. 21

6.1.7 dwarf_set_tied_dbg() ..................................................................................... 21

6.1.8 dwarf_get_tied_dbg() .................................................................................... 22

6.1.9 dwarf_finish() ................................................................................................ 22

6.1.10 dwarf_set_stringcheck() ................................................................................ 23

6.1.11 dwarf_set_reloc_application() ....................................................................... 23

6.1.12 dwarf_record_cmdline_options() .................................................................. 23

i



6.1.13 dwarf_object_init_b() .................................................................................... 24

6.1.14 dwarf_object_init() ........................................................................................ 24

6.2 Section Group Operations .......................................................................................... 24

6.2.1 dwarf_sec_group_sizes() ............................................................................... 25

6.2.2 dwarf_sec_group_map() ............................................................................... 25

6.3 Section size operations ............................................................................................... 28

6.3.1 dwarf_get_section_max_offsets_b() .............................................................. 28

6.3.2 dwarf_get_section_max_offsets() .................................................................. 28

6.4 Printf Callbacks .......................................................................................................... 28

6.4.1 dwarf_register_printf_callback ...................................................................... 29

6.4.2 Dwarf_Printf_Callback_Info_s ..................................................................... 29

6.4.3 dwarf_printf_callback_function_type ........................................................... 30

6.4.4 Example of printf callback use in a C++ application using libdwarf ............ 30

6.5 Debugging Information Entry Delivery Operations ................................................... 30

6.5.1 dwarf_get_die_section_name() ..................................................................... 30

6.5.2 dwarf_get_die_section_name_b() ................................................................. 31

6.5.3 dwarf_next_cu_header_d() ............................................................................ 31

6.5.4 dwarf_next_cu_header_c() ............................................................................ 33

6.5.5 dwarf_next_cu_header_b() ............................................................................ 33

6.5.6 dwarf_next_cu_header() ................................................................................ 33

6.5.7 dwarf_siblingof_b() ....................................................................................... 34

6.5.8 dwarf_siblingof() ........................................................................................... 35

6.5.9 dwarf_child() ................................................................................................. 35

6.5.10 dwarf_offdie_b() ............................................................................................ 35

6.5.11 dwarf_offdie() ................................................................................................ 36

6.5.12 dwarf_validate_die_sibling() ......................................................................... 37

6.6 Debugging Information Entry Query Operations ....................................................... 37

6.6.1 dwarf_get_die_infotypes_flag() .................................................................... 37

6.6.2 dwarf_tag() .................................................................................................... 38

6.6.3 dwarf_dieoffset() ........................................................................................... 38

6.6.4 dwarf_debug_addr_index_to_addr() ............................................................. 38

6.6.5 dwarf_die_CU_offset() .................................................................................. 38

6.6.6 dwarf_die_offsets() ........................................................................................ 39

6.6.7 dwarf_ptr_CU_offset() .................................................................................. 39

6.6.8 dwarf_CU_dieoffset_given_die() .................................................................. 39

6.6.9 dwarf_die_CU_offset_range() ....................................................................... 40

6.6.10 dwarf_diename() ............................................................................................ 40

6.6.11 dwarf_die_text() ............................................................................................ 41

6.6.12 dwarf_die_abbrev_code() .............................................................................. 41

6.6.13 dwarf_die_abbrev_children_flag() ................................................................ 41

6.6.14 dwarf_die_abbrev_global_offset() ................................................................. 41

6.6.15 dwarf_get_version_of_die() .......................................................................... 42

6.6.16 dwarf_attrlist() ............................................................................................... 42

6.6.17 dwarf_hasattr() ............................................................................................... 43

6.6.18 dwarf_attr() .................................................................................................... 43

6.6.19 dwarf_lowpc() ................................................................................................ 43

6.6.20 dwarf_highpc_b() .......................................................................................... 44

6.6.21 dwarf_highpc() .............................................................................................. 44

ii



6.6.22 dwarf_dietype_offset() .................................................................................. 44

6.6.23 dwarf_offset_list() ......................................................................................... 45

6.6.24 dwarf_bytesize() ............................................................................................ 45

6.6.25 dwarf_bitsize() ............................................................................................... 46

6.6.26 dwarf_bitoffset() ............................................................................................ 46

6.6.27 dwarf_srclang() .............................................................................................. 46

6.6.28 dwarf_arrayorder() ......................................................................................... 46

6.7 Attribute Queries ........................................................................................................ 47

6.7.1 dwarf_hasform() ............................................................................................ 47

6.7.2 dwarf_whatform() .......................................................................................... 47

6.7.3 dwarf_whatform_direct() ............................................................................... 47

6.7.4 dwarf_whatattr() ............................................................................................ 48

6.7.5 dwarf_formref() ............................................................................................. 48

6.7.6 dwarf_global_formref() ................................................................................. 48

6.7.7 dwarf_convert_to_global_offset() ................................................................. 49

6.7.8 dwarf_formaddr() .......................................................................................... 49

6.7.9 dwarf_get_debug_str_index() ........................................................................ 50

6.7.10 dwarf_formflag() ........................................................................................... 50

6.7.11 dwarf_formudata() ......................................................................................... 51

6.7.12 dwarf_formsdata() ......................................................................................... 51

6.7.13 dwarf_formblock() ......................................................................................... 51

6.7.14 dwarf_formstring() ........................................................................................ 52

6.7.15 dwarf_formsig8() ........................................................................................... 52

6.7.16 dwarf_formexprloc() ..................................................................................... 52

6.7.17 dwarf_get_form_class() ................................................................................. 52

6.7.18 dwarf_discr_list() ........................................................................................... 53

6.7.19 dwarf_discr_entry_u() ................................................................................... 55

6.7.20 dwarf_discr_entry_s() .................................................................................... 56

6.8 Location List operations ............................................................................................. 56

6.8.1 dwarf_get_loclist_c() ..................................................................................... 56

6.8.2 dwarf_get_locdesc_entry_c() ........................................................................ 58

6.8.3 dwarf_get_location_op_value_c() ................................................................. 59

6.8.4 dwarf_loclist_from_expr_c() ......................................................................... 60

6.8.5 dwarf_loc_head_c_dealloc() ......................................................................... 62

6.8.6 dwarf_loclist_n() ........................................................................................... 62

6.8.7 dwarf_loclist() ............................................................................................... 63

6.8.8 dwarf_loclist_from_expr() ............................................................................. 64

6.8.9 dwarf_loclist_from_expr_b() ......................................................................... 65

6.8.10 dwarf_loclist_from_expr_a() ......................................................................... 65

6.9 Line Number Operations ............................................................................................ 66

6.9.1 Get A Set of Lines (including skeleton line tables) ....................................... 66

6.9.2 dwarf_srclines_b() ......................................................................................... 66

6.9.3 dwarf_get_line_section_name_from_die() .................................................... 67

6.9.4 dwarf_srclines_from_linecontext() ............................................................... 67

6.9.5 dwarf_srclines_two_levelfrom_linecontext() ................................................ 68

6.9.6 dwarf_srclines_dealloc_b() ........................................................................... 68

6.10 Line Context Details (DWARF5 style) ....................................................................... 71

6.10.1 dwarf_srclines_table_offset() ........................................................................ 71

iii



6.10.2 dwarf_srclines_version() ............................................................................... 71

6.10.3 dwarf_srclines_comp_dir() ............................................................................ 71

6.10.4 dwarf_srclines_files_count() ......................................................................... 71

6.10.5 dwarf_srclines_files_data() ........................................................................... 72

6.10.6 dwarf_srclines_include_dir_count() .............................................................. 72

6.10.7 dwarf_srclines_include_dir_data() ................................................................ 72

6.10.8 dwarf_srclines_subprog_count() ................................................................... 73

6.10.9 dwarf_srclines_subprog_data() ..................................................................... 73

6.11 Get A Set of Lines (DWARF2,3,4 style) .................................................................... 73

6.11.1 dwarf_srclines() ............................................................................................. 73

6.12 Get the set of Source File Names ............................................................................... 74

6.12.1 dwarf_srcfiles() .............................................................................................. 74

6.13 Get Information About a Single Line Table Line ....................................................... 75

6.13.1 dwarf_linebeginstatement() ........................................................................... 75

6.13.2 dwarf_lineendsequence() ............................................................................... 75

6.13.3 dwarf_lineno() ............................................................................................... 76

6.13.4 dwarf_line_srcfileno() ................................................................................... 76

6.13.5 dwarf_lineaddr() ............................................................................................ 76

6.13.6 dwarf_lineoff() ............................................................................................... 76

6.13.7 dwarf_lineoff_b() ........................................................................................... 77

6.13.8 dwarf_linesrc() ............................................................................................... 77

6.13.9 dwarf_lineblock() .......................................................................................... 77

6.13.10 dwarf_is_addr_set() ....................................................................................... 78

6.13.11 dwarf_prologue_end_etc() ............................................................................. 78

6.14 Global Name Space Operations ................................................................................. 78

6.14.1 Debugger Interface Operations ...................................................................... 78

6.14.1.1 dwarf_get_globals() ......................................................................... 78

6.14.1.2 dwarf_globname() ............................................................................ 79

6.14.1.3 dwarf_global_die_offset() ................................................................ 80

6.14.1.4 dwarf_global_cu_offset() ................................................................. 80

6.14.1.5 dwarf_get_cu_die_offset_given_cu_header_offset() ....................... 80

6.14.1.6 dwarf_get_cu_die_offset_given_cu_header_offset() ....................... 81

6.14.1.7 dwarf_global_name_offsets() .......................................................... 81

6.15 DWARF3 Type Names Operations ............................................................................ 81

6.15.1 Debugger Interface Operations ...................................................................... 82

6.15.1.1 dwarf_get_pubtypes() ...................................................................... 82

6.15.1.2 dwarf_pubtypename() ...................................................................... 82

6.15.1.3 dwarf_pubtype_type_die_offset() .................................................... 83

6.15.1.4 dwarf_pubtype_cu_offset() .............................................................. 83

6.15.1.5 dwarf_pubtype_name_offsets() ....................................................... 83

6.16 User Defined Static Variable Names Operations ....................................................... 84

6.17 Weak Name Space Operations ................................................................................... 84

6.17.1 Debugger Interface Operations ...................................................................... 84

6.17.1.1 dwarf_get_weaks() ........................................................................... 84

6.17.1.2 dwarf_weakname() .......................................................................... 85

6.17.1.3 dwarf_weak_cu_offset() .................................................................. 86

6.17.1.4 dwarf_weak_name_offsets() ............................................................ 86

6.18 Static Function Names Operations ............................................................................. 87

iv



6.18.1 Debugger Interface Operations ...................................................................... 87

6.18.1.1 dwarf_get_funcs() ............................................................................ 87

6.18.1.2 dwarf_funcname() ............................................................................ 88

6.18.1.3 dwarf_func_die_offset() ................................................................... 88

6.18.1.4 dwarf_func_cu_offset() .................................................................... 88

6.18.1.5 dwarf_func_name_offsets() ............................................................. 89

6.19 User Defined Type Names Operations ....................................................................... 89

6.19.1 Debugger Interface Operations ...................................................................... 89

6.19.1.1 dwarf_get_types() ............................................................................ 89

6.19.1.2 dwarf_typename() ............................................................................ 91

6.19.1.3 dwarf_type_die_offset() ................................................................... 91

6.19.1.4 dwarf_type_cu_offset() .................................................................... 91

6.19.1.5 dwarf_type_name_offsets() ............................................................. 92

6.20 User Defined Static Variable Names Operations ....................................................... 92

6.20.1 Debugger Interface Operations ...................................................................... 92

6.20.1.1 dwarf_get_vars() .............................................................................. 92

6.20.1.2 dwarf_varname() .............................................................................. 93

6.20.1.3 dwarf_var_die_offset() ..................................................................... 94

6.20.1.4 dwarf_var_cu_offset() ...................................................................... 94

6.20.1.5 dwarf_var_name_offsets() ............................................................... 94

6.21 Names Fast Access (DWARF5) .debug_names ......................................................... 95

6.21.1 dwarf_debugnames_header() ......................................................................... 95

6.21.2 dwarf_debugnames_sizes() .......................................................................... 95

6.21.3 dwarf_debugnames_cu_entry() .................................................................... 96

6.21.4 dwarf_debugnames_local_tu_entry() ........................................................... 96

6.21.5 dwarf_debugnames_foreign_tu_entry() ....................................................... 96

6.21.6 dwarf_debugnames_bucket() ........................................................................ 97

6.21.7 dwarf_debugnames_name() .......................................................................... 97

6.21.8 dwarf_debugnames_abbrev_by_index()" 97 .....................................................

6.21.9 dwarf_debugnames_abbrev_by_code() ........................................................ 97

6.21.10 dwarf_debugnames_form_by_index() .......................................................... 98

6.21.11 dwarf_debugnames_entrypool() ................................................................... 98

6.21.12 dwarf_debugnames_entrypool_values() ....................................................... 98

6.22 Macro Information Operations (DWARF4, DWARF5) ............................................. 99

6.22.1 Getting access ................................................................................................ 99

6.22.1.1 dwarf_get_macro_context() ............................................................. 99

6.22.1.2 dwarf_get_macro_context_by_offset() .......................................... 100

6.22.1.3 dwarf_dealloc_macro_context() .................................................... 100

6.22.2 Getting Macro Unit Header Data ................................................................ 104

6.22.2.1 dwarf_macro_context_head() ........................................................ 104

6.22.2.2 dwarf_macro_operands_table() ..................................................... 104

6.22.3 Getting Individual Macro Operations Data ................................................. 105

6.22.3.1 dwarf_get_macro_op() ................................................................... 105

6.22.3.2 dwarf_get_macro_defundef() ........................................................ 106

6.22.3.3 dwarf_get_macro_startend_file() ................................................... 106

6.22.3.4 dwarf_get_macro_import() ............................................................ 107

6.23 Macro Information Operations (DWARF2, DWARF3, DWARF4) .......................... 107

6.23.1 General Macro Operations .......................................................................... 107

v



6.23.1.1 dwarf_find_macro_value_start() .................................................... 107

6.23.2 Debugger Interface Macro Operations ........................................................ 108

6.23.3 Low Lev el Macro Information Operations .................................................. 108

6.23.3.1 dwarf_get_macro_details() ............................................................ 108

6.24 Low Lev el Frame Operations ................................................................................... 109

6.24.1 dwarf_get_frame_section_name() ............................................................... 112

6.24.2 dwarf_get_frame_section_name_eh_gnu() ................................................. 112

6.24.3 dwarf_get_fde_list() .................................................................................... 113

6.24.4 dwarf_get_fde_list_eh() ............................................................................... 114

6.24.5 dwarf_get_cie_of_fde() ............................................................................... 115

6.24.6 dwarf_get_fde_for_die() .............................................................................. 116

6.24.7 dwarf_get_fde_range() ................................................................................ 116

6.24.8 dwarf_get_cie_info() ................................................................................... 117

6.24.9 dwarf_get_cie_index() ................................................................................. 117

6.24.10 dwarf_get_fde_instr_bytes() ........................................................................ 118

6.24.11 dwarf_get_fde_info_for_reg() ..................................................................... 118

6.24.12 dwarf_get_fde_info_for_all_regs() ............................................................. 118

6.24.13 dwarf_fde_section_offset() .......................................................................... 119

6.24.14 dwarf_cie_section_offset() .......................................................................... 119

6.24.15 dwarf_set_frame_rule_table_size() ............................................................. 120

6.24.16 dwarf_set_frame_rule_initial_value() ......................................................... 120

6.24.17 dwarf_set_frame_cfa_value() ...................................................................... 120

6.24.18 dwarf_set_frame_same_value() ................................................................... 121

6.24.19 dwarf_set_frame_undefined_value() ........................................................... 121

6.24.20 dwarf_set_default_address_size() ............................................................... 121

6.24.21 dwarf_get_fde_info_for_reg3() ................................................................... 121

6.24.22 dwarf_get_fde_info_for_cfa_reg3() ............................................................ 123

6.24.23 dwarf_get_fde_info_for_cfa_reg3_b() ........................................................ 123

6.24.24 dwarf_get_fde_info_for_all_regs3() ........................................................... 124

6.24.25 dwarf_get_fde_info_for_all_regs3() ........................................................... 124

6.24.26 dwarf_get_fde_info_for_all_regs3() ........................................................... 124

6.24.27 dwarf_get_fde_info_for_all_regs3() ........................................................... 124

6.24.28 dwarf_get_fde_n() ....................................................................................... 125

6.24.29 dwarf_get_fde_at_pc() ................................................................................. 125

6.24.30 dwarf_expand_frame_instructions() ............................................................ 126

6.24.31 dwarf_get_fde_exception_info() ................................................................. 126

6.25 Location Expression Evaluation ............................................................................... 127

6.25.1 Location List Internal-level Interface .......................................................... 127

6.25.1.1 dwarf_get_loclist_entry() ............................................................... 127

6.26 Abbreviations access ................................................................................................ 128

6.26.1 dwarf_get_abbrev() ...................................................................................... 128

6.26.2 dwarf_get_abbrev_tag() ............................................................................... 129

6.26.3 dwarf_get_abbrev_code() ............................................................................ 129

6.26.4 dwarf_get_abbrev_children_flag() .............................................................. 129

6.26.5 dwarf_get_abbrev_entry() ........................................................................... 129

6.27 String Section Operations ......................................................................................... 130

6.27.1 dwarf_get_str() ............................................................................................ 130

6.28 Address Range Operations ....................................................................................... 130

vi



6.28.1 dwarf_get_aranges_section_name() ............................................................ 131

6.28.2 dwarf_get_aranges() .................................................................................... 131

6.28.3 dwarf_get_arange() ...................................................................................... 132

6.28.4 dwarf_get_cu_die_offset() ........................................................................... 132

6.28.5 dwarf_get_arange_cu_header_offset() ........................................................ 132

6.28.6 dwarf_get_arange_info() ............................................................................. 133

6.29 General Low Lev el Operations ................................................................................ 133

6.29.1 dwarf_get_offset_size() ............................................................................... 133

6.29.2 dwarf_get_address_size() ............................................................................ 133

6.29.3 dwarf_get_die_address_size() ..................................................................... 134

6.30 Ranges Operations (.debug_ranges) ......................................................................... 134

6.30.1 dwarf_get_ranges_section_name() .............................................................. 134

6.30.2 dwarf_get_ranges() ...................................................................................... 134

6.30.3 dwarf_get_ranges_a() .................................................................................. 134

6.30.4 dwarf_ranges_dealloc() ............................................................................... 136

6.31 Gdb Index operations ............................................................................................... 136

6.31.1 dwarf_gdbindex_header() ............................................................................ 136

6.31.2 dwarf_gdbindex_culist_array() ................................................................... 139

6.31.3 dwarf_gdbindex_culist_entry() ................................................................... 139

6.31.4 dwarf_gdbindex_types_culist_array() ......................................................... 139

6.31.5 dwarf_gdbindex_types_culist_entry() ......................................................... 140

6.31.6 dwarf_gdbindex_addressarea() .................................................................... 140

6.31.7 dwarf_gdbindex_addressarea_entry() ......................................................... 140

6.31.8 dwarf_gdbindex_symboltable_array() ......................................................... 141

6.31.9 dwarf_gdbindex_symboltable_entry() ......................................................... 144

6.31.10 dwarf_gdbindex_cuvector_length() ............................................................. 144

6.31.11 dwarf_gdbindex_cuvector_inner_attributes() .............................................. 144

6.31.12 dwarf_gdbindex_cuvector_instance_expand_value() ................................. 145

6.31.13 dwarf_gdbindex_string_by_offset() ............................................................ 146

6.32 Debug Fission (.debug_tu_index, .debug_cu_index) operations ............................. 146

6.32.1 Dwarf_Debug_Fission_Per_CU .................................................................. 147

6.32.2 dwarf_die_from_hash_signature() ............................................................... 147

6.32.3 dwarf_get_debugfission_for_die() .............................................................. 148

6.32.4 dwarf_get_debugfission_for_key() .............................................................. 148

6.32.5 dwarf_get_xu_index_header() ..................................................................... 149

6.32.6 dwarf_get_xu_index_section_type() ........................................................... 150

6.32.7 dwarf_get_xu_header_free() ....................................................................... 151

6.32.8 dwarf_get_xu_hash_entry() ......................................................................... 151

6.32.9 dwarf_get_xu_section_names() ................................................................... 152

6.32.10 dwarf_get_xu_section_offset() .................................................................... 153

6.33 TA G ATTR etc names as strings .............................................................................. 154

6.33.1 dwarf_get_ACCESS_name() ....................................................................... 155

6.33.2 dwarf_get_AT_name() ................................................................................. 155

6.33.3 dwarf_get_ATE_name() .............................................................................. 155

6.33.4 dwarf_get_ADDR_name() .......................................................................... 155

6.33.5 dwarf_get_ATCF_name() ............................................................................ 155

6.33.6 dwarf_get_CHILDREN_name() ................................................................. 156

6.33.7 dwarf_get_children_name() ......................................................................... 156

vii



6.33.8 dwarf_get_CC_name() ................................................................................ 156

6.33.9 dwarf_get_CFA_name() .............................................................................. 156

6.33.10 dwarf_get_DS_name() ................................................................................. 156

6.33.11 dwarf_get_DSC_name() .............................................................................. 156

6.33.12 dwarf_get_EH_name() ................................................................................ 156

6.33.13 dwarf_get_END_name() ............................................................................. 156

6.33.14 dwarf_get_FORM_name() .......................................................................... 156

6.33.15 dwarf_get_FRAME_name() ........................................................................ 156

6.33.16 dwarf_get_ID_name() ................................................................................. 156

6.33.17 dwarf_get_INL_name() ............................................................................... 156

6.33.18 dwarf_get_LANG_name() ........................................................................... 156

6.33.19 dwarf_get_LLE_name() .............................................................................. 156

6.33.20 dwarf_get_LNE_name() .............................................................................. 157

6.33.21 dwarf_get_LNS_name() .............................................................................. 157

6.33.22 dwarf_get_MACINFO_name() ................................................................... 157

6.33.23 dwarf_get_MACRO_name() ....................................................................... 157

6.33.24 dwarf_get_OP_name() ................................................................................. 157

6.33.25 dwarf_get_ORD_name() ............................................................................. 157

6.33.26 dwarf_get_TAG_name() .............................................................................. 157

6.33.27 dwarf_get_VIRTUALITY_name() .............................................................. 157

6.33.28 dwarf_get_VIS_name() ............................................................................... 157

6.34 Section Operations ................................................................................................... 157

6.34.1 dwarf_get_section_count() .......................................................................... 157

6.34.2 dwarf_get_section_info_by_name() ............................................................ 158

6.34.3 dwarf_get_section_info_by_index() ............................................................ 158

6.35 Utility Operations ..................................................................................................... 158

6.35.1 dwarf_errno() ............................................................................................... 158

6.35.2 dwarf_errmsg() ............................................................................................ 158

6.35.3 dwarf_get_harmless_error_list() ................................................................. 159

6.35.4 dwarf_insert_harmless_error() .................................................................... 159

6.35.5 dwarf_set_harmless_error_list_size() .......................................................... 160

6.35.6 dwarf_dealloc() ............................................................................................ 164

6.35.7 dwarf_encode_leb128() ............................................................................... 164

6.35.8 dwarf_encode_signed_leb128() ................................................................... 164

viii



LIST OF FIGURES

Figure 1. Scalar Types .................................................................................................... 6

Figure 2. Error Indications ........................................................................................... 16

Figure 3. Example1 dwarf_attrlist() ............................................................................. 17

Figure 4. Allocation/Deallocation Identifiers ............................................................... 18

Figure 5. Example2 dwarf_set_died_dbg() .................................................................. 22

Figure 6. Example3 dwarf_set_tied_dbg() obsolete .................................................... 22

Figure 7. Example4 dwarf_siblingof() ......................................................................... 34

Figure 8. Example5 dwarf_child() ............................................................................... 35

Figure 9. Example6 dwarf_offdie_b() .......................................................................... 36

Figure 10. Example7 dwarf_CU_dieoffset_given_die() ................................................ 39

Figure 11. Example8 dwarf_attrlist() free ...................................................................... 42

Figure 12. Exampleoffset_list dwarf_offset_list() free .................................................. 45

Figure 13. Examplea dwarf_loclist() .............................................................................. 64

Figure 14. Exampleb dwarf_loclist_from_expr() ........................................................... 65

Figure 15. Examplec dwarf_srclines_b() ....................................................................... 68

Figure 16. Exampled dwarf_srclines() ........................................................................... 73

Figure 17. Exampled dwarf_srcfiles() ............................................................................ 74

Figure 18. Exampled dwarf_get_globals() ..................................................................... 79

Figure 19. Exampled dwarf_get_pubtypes() .................................................................. 82

Figure 20. Exampleh dwarf_get_weaks() ...................................................................... 84

Figure 21. Examplei dwarf_get_weaks() obsolete ......................................................... 85

Figure 22. Examplej dwarf_get_funcs() ......................................................................... 87

Figure 23. Examplek dwarf_get_funcs() obsolete ......................................................... 88

Figure 24. Examplel dwarf_get_types() ......................................................................... 90

Figure 25. Examplel dwarf_get_types() obsolete .......................................................... 90

Figure 26. Examplen dwarf_get_vars() .......................................................................... 93

Figure 27. Exampleo dwarf_get_vars() obsolete ........................................................... 93

Figure 28. Examplep5 dwarf_dealloc_macro_context() .............................................. 100

Figure 29. Examplep2 dwarf_get_macro_details() ...................................................... 108

ix



Figure 30. Frame Information Rule Assignments MIPS .............................................. 111

Figure 31. Frame Information Special Values any architecture ................................... 111

Figure 32. Exampleq dwarf_get_fde_list() .................................................................. 113

Figure 33. Exampleqb dwarf_get_fde_list() obsolete .................................................. 113

Figure 34. Exampler dwarf_get_fde_list_eh() ............................................................. 114

Figure 35. Examples dwarf_expand_frame_instructions() .......................................... 126

Figure 36. Examples dwarf_get_loclist_entry() ........................................................... 127

Figure 37. Exampleu dwarf_get_aranges() .................................................................. 131

Figure 38. Examplev dwarf_get_ranges_a() ................................................................ 135

Figure 39. Examplew dwarf_get_gdbindex_header() .................................................. 137

Figure 40. Examplewgdbindex dwarf_gdbindex_addressarea() .................................. 141

Figure 41. Examplex dwarf_gdbindex_symboltable_array() ....................................... 143

Figure 42. Exampley dwarf_get_xu_index_header() ................................................... 150

Figure 43. Examplez dwarf_get_xu_hash_entry() ....................................................... 152

Figure 44. Exampleza dwarf_get_xu_section_names() ............................................... 154

Figure 45. Examplezb dwarf_get_TAG_name() .......................................................... 155

Figure 46. Dwarf Error Codes ...................................................................................... 160

Figure 47. Dwarf 2 Error Codes (continued below) ..................................................... 161

Figure 48. Dwarf 2 Error Codes (continued below) ..................................................... 162

Figure 49. Dwarf 2 Error Codes (continued below) ..................................................... 163

Figure 50. Dwarf 2 Error Codes ................................................................................... 164

x



A Consumer Library Interface to DWARF

David Anderson

ABSTRACT

This document describes an interface to a library of functions to access DWARF debugging

information entries and DWARF line number information (and other DWARF2/3/4/5

information). It does not make recommendations as to how the functions described in this

document should be implemented nor does it suggest possible optimizations.

The document is oriented to reading DWARF version 2 and later. There are certain sections

which are SGI-specific (those are clearly identified in the document).

rev 2.58, May 18, 2017

0. UNIX is a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

xi


