/* xf86drmHash.c -- Small hash table support for integer -> integer mapping * Created: Sun Apr 18 09:35:45 1999 by faith@precisioninsight.com * * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: Rickard E. (Rik) Faith * * DESCRIPTION * * This file contains a straightforward implementation of a fixed-sized * hash table using self-organizing linked lists [Knuth73, pp. 398-399] for * collision resolution. There are two potentially interesting things * about this implementation: * * 1) The table is power-of-two sized. Prime sized tables are more * traditional, but do not have a significant advantage over power-of-two * sized table, especially when double hashing is not used for collision * resolution. * * 2) The hash computation uses a table of random integers [Hanson97, * pp. 39-41]. * * FUTURE ENHANCEMENTS * * With a table size of 512, the current implementation is sufficient for a * few hundred keys. Since this is well above the expected size of the * tables for which this implementation was designed, the implementation of * dynamic hash tables was postponed until the need arises. A common (and * naive) approach to dynamic hash table implementation simply creates a * new hash table when necessary, rehashes all the data into the new table, * and destroys the old table. The approach in [Larson88] is superior in * two ways: 1) only a portion of the table is expanded when needed, * distributing the expansion cost over several insertions, and 2) portions * of the table can be locked, enabling a scalable thread-safe * implementation. * * REFERENCES * * [Hanson97] David R. Hanson. C Interfaces and Implementations: * Techniques for Creating Reusable Software. Reading, Massachusetts: * Addison-Wesley, 1997. * * [Knuth73] Donald E. Knuth. The Art of Computer Programming. Volume 3: * Sorting and Searching. Reading, Massachusetts: Addison-Wesley, 1973. * * [Larson88] Per-Ake Larson. "Dynamic Hash Tables". CACM 31(4), April * 1988, pp. 446-457. * */ #include #include #include "xf86drm.h" #include "xf86drmHash.h" #define DIST_LIMIT 10 static int dist[DIST_LIMIT]; static void clear_dist(void) { int i; for (i = 0; i < DIST_LIMIT; i++) dist[i] = 0; } static int count_entries(HashBucketPtr bucket) { int count = 0; for (; bucket; bucket = bucket->next) ++count; return count; } static void update_dist(int count) { if (count >= DIST_LIMIT) ++dist[DIST_LIMIT-1]; else ++dist[count]; } static void compute_dist(HashTablePtr table) { int i; HashBucketPtr bucket; printf("Entries = %ld, hits = %ld, partials = %ld, misses = %ld\n", table->entries, table->hits, table->partials, table->misses); clear_dist(); for (i = 0; i < HASH_SIZE; i++) { bucket = table->buckets[i]; update_dist(count_entries(bucket)); } for (i = 0; i < DIST_LIMIT; i++) { if (i != DIST_LIMIT-1) printf("%5d %10d\n", i, dist[i]); else printf("other %10d\n", dist[i]); } } static int check_table(HashTablePtr table, unsigned long key, void * value) { void *retval; int retcode = drmHashLookup(table, key, &retval); switch (retcode) { case -1: printf("Bad magic = 0x%08lx:" " key = %lu, expected = %p, returned = %p\n", table->magic, key, value, retval); break; case 1: printf("Not found: key = %lu, expected = %p, returned = %p\n", key, value, retval); break; case 0: if (value != retval) { printf("Bad value: key = %lu, expected = %p, returned = %p\n", key, value, retval); retcode = -1; } break; default: printf("Bad retcode = %d: key = %lu, expected = %p, returned = %p\n", retcode, key, value, retval); break; } return retcode; } int main(void) { HashTablePtr table; unsigned long i; int ret = 0; printf("\n***** 256 consecutive integers ****\n"); table = drmHashCreate(); for (i = 0; i < 256; i++) drmHashInsert(table, i, (void *)(i << 16 | i)); for (i = 0; i < 256; i++) ret |= check_table(table, i, (void *)(i << 16 | i)); compute_dist(table); drmHashDestroy(table); printf("\n***** 1024 consecutive integers ****\n"); table = drmHashCreate(); for (i = 0; i < 1024; i++) drmHashInsert(table, i, (void *)(i << 16 | i)); for (i = 0; i < 1024; i++) ret |= check_table(table, i, (void *)(i << 16 | i)); compute_dist(table); drmHashDestroy(table); printf("\n***** 1024 consecutive page addresses (4k pages) ****\n"); table = drmHashCreate(); for (i = 0; i < 1024; i++) drmHashInsert(table, i*4096, (void *)(i << 16 | i)); for (i = 0; i < 1024; i++) ret |= check_table(table, i*4096, (void *)(i << 16 | i)); compute_dist(table); drmHashDestroy(table); printf("\n***** 1024 random integers ****\n"); table = drmHashCreate(); srandom(0xbeefbeef); for (i = 0; i < 1024; i++) drmHashInsert(table, random(), (void *)(i << 16 | i)); srandom(0xbeefbeef); for (i = 0; i < 1024; i++) ret |= check_table(table, random(), (void *)(i << 16 | i)); srandom(0xbeefbeef); for (i = 0; i < 1024; i++) ret |= check_table(table, random(), (void *)(i << 16 | i)); compute_dist(table); drmHashDestroy(table); printf("\n***** 5000 random integers ****\n"); table = drmHashCreate(); srandom(0xbeefbeef); for (i = 0; i < 5000; i++) drmHashInsert(table, random(), (void *)(i << 16 | i)); srandom(0xbeefbeef); for (i = 0; i < 5000; i++) ret |= check_table(table, random(), (void *)(i << 16 | i)); srandom(0xbeefbeef); for (i = 0; i < 5000; i++) ret |= check_table(table, random(), (void *)(i << 16 | i)); compute_dist(table); drmHashDestroy(table); return ret; }