/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include #include #include #include #include #include #include #include #include "libdrm_lists.h" #include "nouveau_drm.h" #include "nouveau.h" #include "private.h" struct nouveau_pushbuf_krec { struct nouveau_pushbuf_krec *next; struct drm_nouveau_gem_pushbuf_bo buffer[NOUVEAU_GEM_MAX_BUFFERS]; struct drm_nouveau_gem_pushbuf_reloc reloc[NOUVEAU_GEM_MAX_RELOCS]; struct drm_nouveau_gem_pushbuf_push push[NOUVEAU_GEM_MAX_PUSH]; int nr_buffer; int nr_reloc; int nr_push; uint64_t vram_used; uint64_t gart_used; }; struct nouveau_pushbuf_priv { struct nouveau_pushbuf base; struct nouveau_pushbuf_krec *list; struct nouveau_pushbuf_krec *krec; struct nouveau_list bctx_list; struct nouveau_bo *bo; uint32_t type; uint32_t suffix0; uint32_t suffix1; uint32_t *ptr; uint32_t *bgn; int bo_next; int bo_nr; struct nouveau_bo *bos[]; }; static inline struct nouveau_pushbuf_priv * nouveau_pushbuf(struct nouveau_pushbuf *push) { return (struct nouveau_pushbuf_priv *)push; } static int pushbuf_validate(struct nouveau_pushbuf *, bool); static int pushbuf_flush(struct nouveau_pushbuf *); static bool pushbuf_kref_fits(struct nouveau_pushbuf *push, struct nouveau_bo *bo, uint32_t *domains) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct nouveau_device *dev = push->client->device; struct nouveau_bo *kbo; struct drm_nouveau_gem_pushbuf_bo *kref; int i; /* VRAM is the only valid domain. GART and VRAM|GART buffers * are all accounted to GART, so if this doesn't fit in VRAM * straight up, a flush is needed. */ if (*domains == NOUVEAU_GEM_DOMAIN_VRAM) { if (krec->vram_used + bo->size > dev->vram_limit) return false; krec->vram_used += bo->size; return true; } /* GART or VRAM|GART buffer. Account both of these buffer types * to GART only for the moment, which simplifies things. If the * buffer can fit already, we're done here. */ if (krec->gart_used + bo->size <= dev->gart_limit) { krec->gart_used += bo->size; return true; } /* Ran out of GART space, if it's a VRAM|GART buffer and it'll * fit into available VRAM, turn it into a VRAM buffer */ if ((*domains & NOUVEAU_GEM_DOMAIN_VRAM) && krec->vram_used + bo->size <= dev->vram_limit) { *domains &= NOUVEAU_GEM_DOMAIN_VRAM; krec->vram_used += bo->size; return true; } /* Still couldn't fit the buffer in anywhere, so as a last resort; * scan the buffer list for VRAM|GART buffers and turn them into * VRAM buffers until we have enough space in GART for this one */ kref = krec->buffer; for (i = 0; i < krec->nr_buffer; i++, kref++) { if (!(kref->valid_domains & NOUVEAU_GEM_DOMAIN_GART)) continue; kbo = (void *)(unsigned long)kref->user_priv; if (!(kref->valid_domains & NOUVEAU_GEM_DOMAIN_VRAM) || krec->vram_used + kbo->size > dev->vram_limit) continue; kref->valid_domains &= NOUVEAU_GEM_DOMAIN_VRAM; krec->gart_used -= kbo->size; krec->vram_used += kbo->size; if (krec->gart_used + bo->size <= dev->gart_limit) { krec->gart_used += bo->size; return true; } } /* Couldn't resolve a placement, need to force a flush */ return false; } static struct drm_nouveau_gem_pushbuf_bo * pushbuf_kref(struct nouveau_pushbuf *push, struct nouveau_bo *bo, uint32_t flags) { struct nouveau_device *dev = push->client->device; struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct nouveau_pushbuf *fpush; struct drm_nouveau_gem_pushbuf_bo *kref; uint32_t domains, domains_wr, domains_rd; domains = 0; if (flags & NOUVEAU_BO_VRAM) domains |= NOUVEAU_GEM_DOMAIN_VRAM; if (flags & NOUVEAU_BO_GART) domains |= NOUVEAU_GEM_DOMAIN_GART; domains_wr = domains * !!(flags & NOUVEAU_BO_WR); domains_rd = domains * !!(flags & NOUVEAU_BO_RD); /* if buffer is referenced on another pushbuf that is owned by the * same client, we need to flush the other pushbuf first to ensure * the correct ordering of commands */ fpush = cli_push_get(push->client, bo); if (fpush && fpush != push) pushbuf_flush(fpush); kref = cli_kref_get(push->client, bo); if (kref) { /* possible conflict in memory types - flush and retry */ if (!(kref->valid_domains & domains)) return NULL; /* VRAM|GART buffer turning into a VRAM buffer. Make sure * it'll fit in VRAM and force a flush if not. */ if ((kref->valid_domains & NOUVEAU_GEM_DOMAIN_GART) && ( domains == NOUVEAU_GEM_DOMAIN_VRAM)) { if (krec->vram_used + bo->size > dev->vram_limit) return NULL; krec->vram_used += bo->size; krec->gart_used -= bo->size; } kref->valid_domains &= domains; kref->write_domains |= domains_wr; kref->read_domains |= domains_rd; } else { if (krec->nr_buffer == NOUVEAU_GEM_MAX_BUFFERS || !pushbuf_kref_fits(push, bo, &domains)) return NULL; kref = &krec->buffer[krec->nr_buffer++]; kref->user_priv = (unsigned long)bo; kref->handle = bo->handle; kref->valid_domains = domains; kref->write_domains = domains_wr; kref->read_domains = domains_rd; kref->presumed.valid = 1; kref->presumed.offset = bo->offset; if (bo->flags & NOUVEAU_BO_VRAM) kref->presumed.domain = NOUVEAU_GEM_DOMAIN_VRAM; else kref->presumed.domain = NOUVEAU_GEM_DOMAIN_GART; cli_kref_set(push->client, bo, kref, push); atomic_inc(&nouveau_bo(bo)->refcnt); } return kref; } static uint32_t pushbuf_krel(struct nouveau_pushbuf *push, struct nouveau_bo *bo, uint32_t data, uint32_t flags, uint32_t vor, uint32_t tor) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct drm_nouveau_gem_pushbuf_reloc *krel; struct drm_nouveau_gem_pushbuf_bo *pkref; struct drm_nouveau_gem_pushbuf_bo *bkref; uint32_t reloc = data; pkref = cli_kref_get(push->client, nvpb->bo); bkref = cli_kref_get(push->client, bo); krel = &krec->reloc[krec->nr_reloc++]; assert(pkref); assert(bkref); krel->reloc_bo_index = pkref - krec->buffer; krel->reloc_bo_offset = (push->cur - nvpb->ptr) * 4; krel->bo_index = bkref - krec->buffer; krel->flags = 0; krel->data = data; krel->vor = vor; krel->tor = tor; if (flags & NOUVEAU_BO_LOW) { reloc = (bkref->presumed.offset + data); krel->flags |= NOUVEAU_GEM_RELOC_LOW; } else if (flags & NOUVEAU_BO_HIGH) { reloc = (bkref->presumed.offset + data) >> 32; krel->flags |= NOUVEAU_GEM_RELOC_HIGH; } if (flags & NOUVEAU_BO_OR) { if (bkref->presumed.domain & NOUVEAU_GEM_DOMAIN_VRAM) reloc |= vor; else reloc |= tor; krel->flags |= NOUVEAU_GEM_RELOC_OR; } return reloc; } static void pushbuf_dump(struct nouveau_pushbuf_krec *krec, int krec_id, int chid) { struct drm_nouveau_gem_pushbuf_reloc *krel; struct drm_nouveau_gem_pushbuf_push *kpsh; struct drm_nouveau_gem_pushbuf_bo *kref; struct nouveau_bo *bo; uint32_t *bgn, *end; int i; err("ch%d: krec %d pushes %d bufs %d relocs %d\n", chid, krec_id, krec->nr_push, krec->nr_buffer, krec->nr_reloc); kref = krec->buffer; for (i = 0; i < krec->nr_buffer; i++, kref++) { err("ch%d: buf %08x %08x %08x %08x %08x\n", chid, i, kref->handle, kref->valid_domains, kref->read_domains, kref->write_domains); } krel = krec->reloc; for (i = 0; i < krec->nr_reloc; i++, krel++) { err("ch%d: rel %08x %08x %08x %08x %08x %08x %08x\n", chid, krel->reloc_bo_index, krel->reloc_bo_offset, krel->bo_index, krel->flags, krel->data, krel->vor, krel->tor); } kpsh = krec->push; for (i = 0; i < krec->nr_push; i++, kpsh++) { kref = krec->buffer + kpsh->bo_index; bo = (void *)(unsigned long)kref->user_priv; bgn = (uint32_t *)((char *)bo->map + kpsh->offset); end = bgn + (kpsh->length /4); err("ch%d: psh %08x %010llx %010llx\n", chid, kpsh->bo_index, (unsigned long long)kpsh->offset, (unsigned long long)(kpsh->offset + kpsh->length)); while (bgn < end) err("\t0x%08x\n", *bgn++); } } static int pushbuf_submit(struct nouveau_pushbuf *push, struct nouveau_object *chan) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->list; struct nouveau_device *dev = push->client->device; struct nouveau_drm *drm = nouveau_drm(&dev->object); struct drm_nouveau_gem_pushbuf_bo_presumed *info; struct drm_nouveau_gem_pushbuf_bo *kref; struct drm_nouveau_gem_pushbuf req; struct nouveau_fifo *fifo = chan->data; struct nouveau_bo *bo; int krec_id = 0; int ret = 0, i; if (chan->oclass != NOUVEAU_FIFO_CHANNEL_CLASS) return -EINVAL; if (push->kick_notify) push->kick_notify(push); nouveau_pushbuf_data(push, NULL, 0, 0); while (krec && krec->nr_push) { req.channel = fifo->channel; req.nr_buffers = krec->nr_buffer; req.buffers = (uint64_t)(unsigned long)krec->buffer; req.nr_relocs = krec->nr_reloc; req.nr_push = krec->nr_push; req.relocs = (uint64_t)(unsigned long)krec->reloc; req.push = (uint64_t)(unsigned long)krec->push; req.suffix0 = nvpb->suffix0; req.suffix1 = nvpb->suffix1; req.vram_available = 0; /* for valgrind */ req.gart_available = 0; if (dbg_on(0)) pushbuf_dump(krec, krec_id++, fifo->channel); #ifndef SIMULATE ret = drmCommandWriteRead(drm->fd, DRM_NOUVEAU_GEM_PUSHBUF, &req, sizeof(req)); nvpb->suffix0 = req.suffix0; nvpb->suffix1 = req.suffix1; dev->vram_limit = (req.vram_available * nouveau_device(dev)->vram_limit_percent) / 100; dev->gart_limit = (req.gart_available * nouveau_device(dev)->gart_limit_percent) / 100; #else if (dbg_on(31)) ret = -EINVAL; #endif if (ret) { err("kernel rejected pushbuf: %s\n", strerror(-ret)); pushbuf_dump(krec, krec_id++, fifo->channel); break; } kref = krec->buffer; for (i = 0; i < krec->nr_buffer; i++, kref++) { bo = (void *)(unsigned long)kref->user_priv; info = &kref->presumed; if (!info->valid) { bo->flags &= ~NOUVEAU_BO_APER; if (info->domain == NOUVEAU_GEM_DOMAIN_VRAM) bo->flags |= NOUVEAU_BO_VRAM; else bo->flags |= NOUVEAU_BO_GART; bo->offset = info->offset; } if (kref->write_domains) nouveau_bo(bo)->access |= NOUVEAU_BO_WR; if (kref->read_domains) nouveau_bo(bo)->access |= NOUVEAU_BO_RD; } krec = krec->next; } return ret; } static int pushbuf_flush(struct nouveau_pushbuf *push) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct drm_nouveau_gem_pushbuf_bo *kref; struct nouveau_bufctx *bctx, *btmp; struct nouveau_bo *bo; int ret = 0, i; if (push->channel) { ret = pushbuf_submit(push, push->channel); } else { nouveau_pushbuf_data(push, NULL, 0, 0); krec->next = malloc(sizeof(*krec)); nvpb->krec = krec->next; } kref = krec->buffer; for (i = 0; i < krec->nr_buffer; i++, kref++) { bo = (void *)(unsigned long)kref->user_priv; cli_kref_set(push->client, bo, NULL, NULL); if (push->channel) nouveau_bo_ref(NULL, &bo); } krec = nvpb->krec; krec->vram_used = 0; krec->gart_used = 0; krec->nr_buffer = 0; krec->nr_reloc = 0; krec->nr_push = 0; DRMLISTFOREACHENTRYSAFE(bctx, btmp, &nvpb->bctx_list, head) { DRMLISTJOIN(&bctx->current, &bctx->pending); DRMINITLISTHEAD(&bctx->current); DRMLISTDELINIT(&bctx->head); } return ret; } static void pushbuf_refn_fail(struct nouveau_pushbuf *push, int sref, int srel) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct drm_nouveau_gem_pushbuf_bo *kref; kref = krec->buffer + sref; while (krec->nr_buffer-- > sref) { struct nouveau_bo *bo = (void *)(unsigned long)kref->user_priv; cli_kref_set(push->client, bo, NULL, NULL); nouveau_bo_ref(NULL, &bo); kref++; } krec->nr_buffer = sref; krec->nr_reloc = srel; } static int pushbuf_refn(struct nouveau_pushbuf *push, bool retry, struct nouveau_pushbuf_refn *refs, int nr) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct drm_nouveau_gem_pushbuf_bo *kref; int sref = krec->nr_buffer; int ret = 0, i; for (i = 0; i < nr; i++) { kref = pushbuf_kref(push, refs[i].bo, refs[i].flags); if (!kref) { ret = -ENOSPC; break; } } if (ret) { pushbuf_refn_fail(push, sref, krec->nr_reloc); if (retry) { pushbuf_flush(push); nouveau_pushbuf_space(push, 0, 0, 0); return pushbuf_refn(push, false, refs, nr); } } return ret; } static int pushbuf_validate(struct nouveau_pushbuf *push, bool retry) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct drm_nouveau_gem_pushbuf_bo *kref; struct nouveau_bufctx *bctx = push->bufctx; struct nouveau_bufref *bref; int relocs = bctx ? bctx->relocs * 2: 0; int sref, srel, ret; ret = nouveau_pushbuf_space(push, relocs, relocs, 0); if (ret || bctx == NULL) return ret; sref = krec->nr_buffer; srel = krec->nr_reloc; DRMLISTDEL(&bctx->head); DRMLISTADD(&bctx->head, &nvpb->bctx_list); DRMLISTFOREACHENTRY(bref, &bctx->pending, thead) { kref = pushbuf_kref(push, bref->bo, bref->flags); if (!kref) { ret = -ENOSPC; break; } if (bref->packet) { pushbuf_krel(push, bref->bo, bref->packet, 0, 0, 0); *push->cur++ = 0; pushbuf_krel(push, bref->bo, bref->data, bref->flags, bref->vor, bref->tor); *push->cur++ = 0; } } DRMLISTJOIN(&bctx->pending, &bctx->current); DRMINITLISTHEAD(&bctx->pending); if (ret) { pushbuf_refn_fail(push, sref, srel); if (retry) { pushbuf_flush(push); return pushbuf_validate(push, false); } } return ret; } drm_public int nouveau_pushbuf_new(struct nouveau_client *client, struct nouveau_object *chan, int nr, uint32_t size, bool immediate, struct nouveau_pushbuf **ppush) { struct nouveau_drm *drm = nouveau_drm(&client->device->object); struct nouveau_fifo *fifo = chan->data; struct nouveau_pushbuf_priv *nvpb; struct nouveau_pushbuf *push; struct drm_nouveau_gem_pushbuf req = {}; int ret; if (chan->oclass != NOUVEAU_FIFO_CHANNEL_CLASS) return -EINVAL; /* nop pushbuf call, to get the current "return to main" sequence * we need to append to the pushbuf on early chipsets */ req.channel = fifo->channel; req.nr_push = 0; ret = drmCommandWriteRead(drm->fd, DRM_NOUVEAU_GEM_PUSHBUF, &req, sizeof(req)); if (ret) return ret; nvpb = calloc(1, sizeof(*nvpb) + nr * sizeof(*nvpb->bos)); if (!nvpb) return -ENOMEM; #ifndef SIMULATE nvpb->suffix0 = req.suffix0; nvpb->suffix1 = req.suffix1; #else nvpb->suffix0 = 0xffffffff; nvpb->suffix1 = 0xffffffff; #endif nvpb->krec = calloc(1, sizeof(*nvpb->krec)); nvpb->list = nvpb->krec; if (!nvpb->krec) { free(nvpb); return -ENOMEM; } push = &nvpb->base; push->client = client; push->channel = immediate ? chan : NULL; push->flags = NOUVEAU_BO_RD; if (fifo->pushbuf & NOUVEAU_GEM_DOMAIN_GART) { push->flags |= NOUVEAU_BO_GART; nvpb->type = NOUVEAU_BO_GART; } else if (fifo->pushbuf & NOUVEAU_GEM_DOMAIN_VRAM) { push->flags |= NOUVEAU_BO_VRAM; nvpb->type = NOUVEAU_BO_VRAM; } nvpb->type |= NOUVEAU_BO_MAP; for (nvpb->bo_nr = 0; nvpb->bo_nr < nr; nvpb->bo_nr++) { ret = nouveau_bo_new(client->device, nvpb->type, 0, size, NULL, &nvpb->bos[nvpb->bo_nr]); if (ret) { nouveau_pushbuf_del(&push); return ret; } } DRMINITLISTHEAD(&nvpb->bctx_list); *ppush = push; return 0; } drm_public void nouveau_pushbuf_del(struct nouveau_pushbuf **ppush) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(*ppush); if (nvpb) { struct drm_nouveau_gem_pushbuf_bo *kref; struct nouveau_pushbuf_krec *krec; while ((krec = nvpb->list)) { kref = krec->buffer; while (krec->nr_buffer--) { unsigned long priv = kref++->user_priv; struct nouveau_bo *bo = (void *)priv; cli_kref_set(nvpb->base.client, bo, NULL, NULL); nouveau_bo_ref(NULL, &bo); } nvpb->list = krec->next; free(krec); } while (nvpb->bo_nr--) nouveau_bo_ref(NULL, &nvpb->bos[nvpb->bo_nr]); nouveau_bo_ref(NULL, &nvpb->bo); free(nvpb); } *ppush = NULL; } drm_public struct nouveau_bufctx * nouveau_pushbuf_bufctx(struct nouveau_pushbuf *push, struct nouveau_bufctx *ctx) { struct nouveau_bufctx *prev = push->bufctx; push->bufctx = ctx; return prev; } drm_public int nouveau_pushbuf_space(struct nouveau_pushbuf *push, uint32_t dwords, uint32_t relocs, uint32_t pushes) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct nouveau_client *client = push->client; struct nouveau_bo *bo = NULL; bool flushed = false; int ret = 0; /* switch to next buffer if insufficient space in the current one */ if (push->cur + dwords >= push->end) { if (nvpb->bo_next < nvpb->bo_nr) { nouveau_bo_ref(nvpb->bos[nvpb->bo_next++], &bo); if (nvpb->bo_next == nvpb->bo_nr && push->channel) nvpb->bo_next = 0; } else { ret = nouveau_bo_new(client->device, nvpb->type, 0, nvpb->bos[0]->size, NULL, &bo); if (ret) return ret; } } /* make sure there's always enough space to queue up the pending * data in the pushbuf proper */ pushes++; /* need to flush if we've run out of space on an immediate pushbuf, * if the new buffer won't fit, or if the kernel push/reloc limits * have been hit */ if ((bo && ( push->channel || !pushbuf_kref(push, bo, push->flags))) || krec->nr_reloc + relocs >= NOUVEAU_GEM_MAX_RELOCS || krec->nr_push + pushes >= NOUVEAU_GEM_MAX_PUSH) { if (nvpb->bo && krec->nr_buffer) pushbuf_flush(push); flushed = true; } /* if necessary, switch to new buffer */ if (bo) { ret = nouveau_bo_map(bo, NOUVEAU_BO_WR, push->client); if (ret) return ret; nouveau_pushbuf_data(push, NULL, 0, 0); nouveau_bo_ref(bo, &nvpb->bo); nouveau_bo_ref(NULL, &bo); nvpb->bgn = nvpb->bo->map; nvpb->ptr = nvpb->bgn; push->cur = nvpb->bgn; push->end = push->cur + (nvpb->bo->size / 4); push->end -= 2 + push->rsvd_kick; /* space for suffix */ } pushbuf_kref(push, nvpb->bo, push->flags); return flushed ? pushbuf_validate(push, false) : 0; } drm_public void nouveau_pushbuf_data(struct nouveau_pushbuf *push, struct nouveau_bo *bo, uint64_t offset, uint64_t length) { struct nouveau_pushbuf_priv *nvpb = nouveau_pushbuf(push); struct nouveau_pushbuf_krec *krec = nvpb->krec; struct drm_nouveau_gem_pushbuf_push *kpsh; struct drm_nouveau_gem_pushbuf_bo *kref; if (bo != nvpb->bo && nvpb->bgn != push->cur) { if (nvpb->suffix0 || nvpb->suffix1) { *push->cur++ = nvpb->suffix0; *push->cur++ = nvpb->suffix1; } nouveau_pushbuf_data(push, nvpb->bo, (nvpb->bgn - nvpb->ptr) * 4, (push->cur - nvpb->bgn) * 4); nvpb->bgn = push->cur; } if (bo) { kref = cli_kref_get(push->client, bo); assert(kref); kpsh = &krec->push[krec->nr_push++]; kpsh->bo_index = kref - krec->buffer; kpsh->offset = offset; kpsh->length = length; } } drm_public int nouveau_pushbuf_refn(struct nouveau_pushbuf *push, struct nouveau_pushbuf_refn *refs, int nr) { return pushbuf_refn(push, true, refs, nr); } drm_public void nouveau_pushbuf_reloc(struct nouveau_pushbuf *push, struct nouveau_bo *bo, uint32_t data, uint32_t flags, uint32_t vor, uint32_t tor) { *push->cur = pushbuf_krel(push, bo, data, flags, vor, tor); push->cur++; } drm_public int nouveau_pushbuf_validate(struct nouveau_pushbuf *push) { return pushbuf_validate(push, true); } drm_public uint32_t nouveau_pushbuf_refd(struct nouveau_pushbuf *push, struct nouveau_bo *bo) { struct drm_nouveau_gem_pushbuf_bo *kref; uint32_t flags = 0; if (cli_push_get(push->client, bo) == push) { kref = cli_kref_get(push->client, bo); assert(kref); if (kref->read_domains) flags |= NOUVEAU_BO_RD; if (kref->write_domains) flags |= NOUVEAU_BO_WR; } return flags; } drm_public int nouveau_pushbuf_kick(struct nouveau_pushbuf *push, struct nouveau_object *chan) { if (!push->channel) return pushbuf_submit(push, chan); pushbuf_flush(push); return pushbuf_validate(push, false); }