// A Bison parser, made by GNU Bison 3.0.4. // Skeleton interface for Bison LALR(1) parsers in C++ // Copyright (C) 2002-2015 Free Software Foundation, Inc. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see . // As a special exception, you may create a larger work that contains // part or all of the Bison parser skeleton and distribute that work // under terms of your choice, so long as that work isn't itself a // parser generator using the skeleton or a modified version thereof // as a parser skeleton. Alternatively, if you modify or redistribute // the parser skeleton itself, you may (at your option) remove this // special exception, which will cause the skeleton and the resulting // Bison output files to be licensed under the GNU General Public // License without this special exception. // This special exception was added by the Free Software Foundation in // version 2.2 of Bison. /** ** \file d4_function_parser.tab.hh ** Define the libdap::parser class. */ // C++ LALR(1) parser skeleton written by Akim Demaille. #ifndef YY_YY_D4_FUNCTION_PARSER_TAB_HH_INCLUDED # define YY_YY_D4_FUNCTION_PARSER_TAB_HH_INCLUDED // // "%code requires" blocks. #line 47 "d4_function_parser.yy" // lalr1.cc:392 #include "D4FunctionEvaluator.h" #include "D4RValue.h" #include "dods-datatypes.h" namespace libdap { class D4FunctionScanner; } #line 56 "d4_function_parser.tab.hh" // lalr1.cc:392 # include # include // std::abort # include # include # include # include # include "stack.hh" # include "location.hh" #include #ifndef YYASSERT # include # define YYASSERT assert #endif #ifndef YY_ATTRIBUTE # if (defined __GNUC__ \ && (2 < __GNUC__ || (__GNUC__ == 2 && 96 <= __GNUC_MINOR__))) \ || defined __SUNPRO_C && 0x5110 <= __SUNPRO_C # define YY_ATTRIBUTE(Spec) __attribute__(Spec) # else # define YY_ATTRIBUTE(Spec) /* empty */ # endif #endif #ifndef YY_ATTRIBUTE_PURE # define YY_ATTRIBUTE_PURE YY_ATTRIBUTE ((__pure__)) #endif #ifndef YY_ATTRIBUTE_UNUSED # define YY_ATTRIBUTE_UNUSED YY_ATTRIBUTE ((__unused__)) #endif #if !defined _Noreturn \ && (!defined __STDC_VERSION__ || __STDC_VERSION__ < 201112) # if defined _MSC_VER && 1200 <= _MSC_VER # define _Noreturn __declspec (noreturn) # else # define _Noreturn YY_ATTRIBUTE ((__noreturn__)) # endif #endif /* Suppress unused-variable warnings by "using" E. */ #if ! defined lint || defined __GNUC__ # define YYUSE(E) ((void) (E)) #else # define YYUSE(E) /* empty */ #endif #if defined __GNUC__ && 407 <= __GNUC__ * 100 + __GNUC_MINOR__ /* Suppress an incorrect diagnostic about yylval being uninitialized. */ # define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \ _Pragma ("GCC diagnostic push") \ _Pragma ("GCC diagnostic ignored \"-Wuninitialized\"")\ _Pragma ("GCC diagnostic ignored \"-Wmaybe-uninitialized\"") # define YY_IGNORE_MAYBE_UNINITIALIZED_END \ _Pragma ("GCC diagnostic pop") #else # define YY_INITIAL_VALUE(Value) Value #endif #ifndef YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN # define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN # define YY_IGNORE_MAYBE_UNINITIALIZED_END #endif #ifndef YY_INITIAL_VALUE # define YY_INITIAL_VALUE(Value) /* Nothing. */ #endif /* Debug traces. */ #ifndef YYDEBUG # define YYDEBUG 1 #endif #line 34 "d4_function_parser.yy" // lalr1.cc:392 namespace libdap { #line 133 "d4_function_parser.tab.hh" // lalr1.cc:392 /// A char[S] buffer to store and retrieve objects. /// /// Sort of a variant, but does not keep track of the nature /// of the stored data, since that knowledge is available /// via the current state. template struct variant { /// Type of *this. typedef variant self_type; /// Empty construction. variant () : yytypeid_ (YY_NULLPTR) {} /// Construct and fill. template variant (const T& t) : yytypeid_ (&typeid (T)) { YYASSERT (sizeof (T) <= S); new (yyas_ ()) T (t); } /// Destruction, allowed only if empty. ~variant () { YYASSERT (!yytypeid_); } /// Instantiate an empty \a T in here. template T& build () { YYASSERT (!yytypeid_); YYASSERT (sizeof (T) <= S); yytypeid_ = & typeid (T); return *new (yyas_ ()) T; } /// Instantiate a \a T in here from \a t. template T& build (const T& t) { YYASSERT (!yytypeid_); YYASSERT (sizeof (T) <= S); yytypeid_ = & typeid (T); return *new (yyas_ ()) T (t); } /// Accessor to a built \a T. template T& as () { YYASSERT (*yytypeid_ == typeid (T)); YYASSERT (sizeof (T) <= S); return *yyas_ (); } /// Const accessor to a built \a T (for %printer). template const T& as () const { YYASSERT (*yytypeid_ == typeid (T)); YYASSERT (sizeof (T) <= S); return *yyas_ (); } /// Swap the content with \a other, of same type. /// /// Both variants must be built beforehand, because swapping the actual /// data requires reading it (with as()), and this is not possible on /// unconstructed variants: it would require some dynamic testing, which /// should not be the variant's responsability. /// Swapping between built and (possibly) non-built is done with /// variant::move (). template void swap (self_type& other) { YYASSERT (yytypeid_); YYASSERT (*yytypeid_ == *other.yytypeid_); std::swap (as (), other.as ()); } /// Move the content of \a other to this. /// /// Destroys \a other. template void move (self_type& other) { build (); swap (other); other.destroy (); } /// Copy the content of \a other to this. template void copy (const self_type& other) { build (other.as ()); } /// Destroy the stored \a T. template void destroy () { as ().~T (); yytypeid_ = YY_NULLPTR; } private: /// Prohibit blind copies. self_type& operator=(const self_type&); variant (const self_type&); /// Accessor to raw memory as \a T. template T* yyas_ () { void *yyp = yybuffer_.yyraw; return static_cast (yyp); } /// Const accessor to raw memory as \a T. template const T* yyas_ () const { const void *yyp = yybuffer_.yyraw; return static_cast (yyp); } union { /// Strongest alignment constraints. long double yyalign_me; /// A buffer large enough to store any of the semantic values. char yyraw[S]; } yybuffer_; /// Whether the content is built: if defined, the name of the stored type. const std::type_info *yytypeid_; }; /// A Bison parser. class D4FunctionParser { public: #ifndef YYSTYPE /// An auxiliary type to compute the largest semantic type. union union_type { // "function name" // fname char dummy1[sizeof(D4Function)]; // "argument" // "function" // "variable or constant" // "array constant" // function // arg // variable_or_constant // array_constant char dummy2[sizeof(D4RValue*)]; // "functions" // "arguments" // functions // args char dummy3[sizeof(D4RValueList*)]; // "word" // "string" // id // group // path // name char dummy4[sizeof(std::string)]; // "fast byte arg list" // fast_byte_arg_list char dummy5[sizeof(std::vector*)]; // "fast float32 arg list" // fast_float32_arg_list char dummy6[sizeof(std::vector*)]; // "fast float64 arg list" // fast_float64_arg_list char dummy7[sizeof(std::vector*)]; // "fast int16 arg list" // fast_int16_arg_list char dummy8[sizeof(std::vector*)]; // "fast int32 arg list" // fast_int32_arg_list char dummy9[sizeof(std::vector*)]; // "fast int64 arg list" // fast_int64_arg_list char dummy10[sizeof(std::vector*)]; // "fast int8 arg list" // fast_int8_arg_list char dummy11[sizeof(std::vector*)]; // "fast uint16 arg list" // fast_uint16_arg_list char dummy12[sizeof(std::vector*)]; // "fast uint32 arg list" // fast_uint32_arg_list char dummy13[sizeof(std::vector*)]; // "fast uint64 arg list" // fast_uint64_arg_list char dummy14[sizeof(std::vector*)]; }; /// Symbol semantic values. typedef variant semantic_type; #else typedef YYSTYPE semantic_type; #endif /// Symbol locations. typedef location location_type; /// Syntax errors thrown from user actions. struct syntax_error : std::runtime_error { syntax_error (const location_type& l, const std::string& m); location_type location; }; /// Tokens. struct token { enum yytokentype { END = 0, WORD = 275, STRING = 276, SEMICOLON = 277, COLON = 278, LPAREN = 279, RPAREN = 280, COMMA = 281, GROUP_SEP = 282, PATH_SEP = 283, DOLLAR_BYTE = 284, DOLLAR_UINT8 = 285, DOLLAR_INT8 = 286, DOLLAR_UINT16 = 287, DOLLAR_INT16 = 288, DOLLAR_UINT32 = 289, DOLLAR_INT32 = 290, DOLLAR_UINT64 = 291, DOLLAR_INT64 = 292, DOLLAR_FLOAT32 = 293, DOLLAR_FLOAT64 = 294 }; }; /// (External) token type, as returned by yylex. typedef token::yytokentype token_type; /// Symbol type: an internal symbol number. typedef int symbol_number_type; /// The symbol type number to denote an empty symbol. enum { empty_symbol = -2 }; /// Internal symbol number for tokens (subsumed by symbol_number_type). typedef unsigned char token_number_type; /// A complete symbol. /// /// Expects its Base type to provide access to the symbol type /// via type_get(). /// /// Provide access to semantic value and location. template struct basic_symbol : Base { /// Alias to Base. typedef Base super_type; /// Default constructor. basic_symbol (); /// Copy constructor. basic_symbol (const basic_symbol& other); /// Constructor for valueless symbols, and symbols from each type. basic_symbol (typename Base::kind_type t, const location_type& l); basic_symbol (typename Base::kind_type t, const D4Function v, const location_type& l); basic_symbol (typename Base::kind_type t, const D4RValue* v, const location_type& l); basic_symbol (typename Base::kind_type t, const D4RValueList* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::string v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); basic_symbol (typename Base::kind_type t, const std::vector* v, const location_type& l); /// Constructor for symbols with semantic value. basic_symbol (typename Base::kind_type t, const semantic_type& v, const location_type& l); /// Destroy the symbol. ~basic_symbol (); /// Destroy contents, and record that is empty. void clear (); /// Whether empty. bool empty () const; /// Destructive move, \a s is emptied into this. void move (basic_symbol& s); /// The semantic value. semantic_type value; /// The location. location_type location; private: /// Assignment operator. basic_symbol& operator= (const basic_symbol& other); }; /// Type access provider for token (enum) based symbols. struct by_type { /// Default constructor. by_type (); /// Copy constructor. by_type (const by_type& other); /// The symbol type as needed by the constructor. typedef token_type kind_type; /// Constructor from (external) token numbers. by_type (kind_type t); /// Record that this symbol is empty. void clear (); /// Steal the symbol type from \a that. void move (by_type& that); /// The (internal) type number (corresponding to \a type). /// \a empty when empty. symbol_number_type type_get () const; /// The token. token_type token () const; /// The symbol type. /// \a empty_symbol when empty. /// An int, not token_number_type, to be able to store empty_symbol. int type; }; /// "External" symbols: returned by the scanner. typedef basic_symbol symbol_type; // Symbol constructors declarations. static inline symbol_type make_END (const location_type& l); static inline symbol_type make_WORD (const std::string& v, const location_type& l); static inline symbol_type make_STRING (const std::string& v, const location_type& l); static inline symbol_type make_SEMICOLON (const location_type& l); static inline symbol_type make_COLON (const location_type& l); static inline symbol_type make_LPAREN (const location_type& l); static inline symbol_type make_RPAREN (const location_type& l); static inline symbol_type make_COMMA (const location_type& l); static inline symbol_type make_GROUP_SEP (const location_type& l); static inline symbol_type make_PATH_SEP (const location_type& l); static inline symbol_type make_DOLLAR_BYTE (const location_type& l); static inline symbol_type make_DOLLAR_UINT8 (const location_type& l); static inline symbol_type make_DOLLAR_INT8 (const location_type& l); static inline symbol_type make_DOLLAR_UINT16 (const location_type& l); static inline symbol_type make_DOLLAR_INT16 (const location_type& l); static inline symbol_type make_DOLLAR_UINT32 (const location_type& l); static inline symbol_type make_DOLLAR_INT32 (const location_type& l); static inline symbol_type make_DOLLAR_UINT64 (const location_type& l); static inline symbol_type make_DOLLAR_INT64 (const location_type& l); static inline symbol_type make_DOLLAR_FLOAT32 (const location_type& l); static inline symbol_type make_DOLLAR_FLOAT64 (const location_type& l); /// Build a parser object. D4FunctionParser (D4FunctionScanner &scanner_yyarg, D4FunctionEvaluator &evaluator_yyarg); virtual ~D4FunctionParser (); /// Parse. /// \returns 0 iff parsing succeeded. virtual int parse (); #if YYDEBUG /// The current debugging stream. std::ostream& debug_stream () const YY_ATTRIBUTE_PURE; /// Set the current debugging stream. void set_debug_stream (std::ostream &); /// Type for debugging levels. typedef int debug_level_type; /// The current debugging level. debug_level_type debug_level () const YY_ATTRIBUTE_PURE; /// Set the current debugging level. void set_debug_level (debug_level_type l); #endif /// Report a syntax error. /// \param loc where the syntax error is found. /// \param msg a description of the syntax error. virtual void error (const location_type& loc, const std::string& msg); /// Report a syntax error. void error (const syntax_error& err); private: /// This class is not copyable. D4FunctionParser (const D4FunctionParser&); D4FunctionParser& operator= (const D4FunctionParser&); /// State numbers. typedef int state_type; /// Generate an error message. /// \param yystate the state where the error occurred. /// \param yyla the lookahead token. virtual std::string yysyntax_error_ (state_type yystate, const symbol_type& yyla) const; /// Compute post-reduction state. /// \param yystate the current state /// \param yysym the nonterminal to push on the stack state_type yy_lr_goto_state_ (state_type yystate, int yysym); /// Whether the given \c yypact_ value indicates a defaulted state. /// \param yyvalue the value to check static bool yy_pact_value_is_default_ (int yyvalue); /// Whether the given \c yytable_ value indicates a syntax error. /// \param yyvalue the value to check static bool yy_table_value_is_error_ (int yyvalue); static const signed char yypact_ninf_; static const signed char yytable_ninf_; /// Convert a scanner token number \a t to a symbol number. static token_number_type yytranslate_ (int t); // Tables. // YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing // STATE-NUM. static const signed char yypact_[]; // YYDEFACT[STATE-NUM] -- Default reduction number in state STATE-NUM. // Performed when YYTABLE does not specify something else to do. Zero // means the default is an error. static const unsigned char yydefact_[]; // YYPGOTO[NTERM-NUM]. static const signed char yypgoto_[]; // YYDEFGOTO[NTERM-NUM]. static const signed char yydefgoto_[]; // YYTABLE[YYPACT[STATE-NUM]] -- What to do in state STATE-NUM. If // positive, shift that token. If negative, reduce the rule whose // number is the opposite. If YYTABLE_NINF, syntax error. static const short int yytable_[]; static const signed char yycheck_[]; // YYSTOS[STATE-NUM] -- The (internal number of the) accessing // symbol of state STATE-NUM. static const unsigned char yystos_[]; // YYR1[YYN] -- Symbol number of symbol that rule YYN derives. static const unsigned char yyr1_[]; // YYR2[YYN] -- Number of symbols on the right hand side of rule YYN. static const unsigned char yyr2_[]; /// Convert the symbol name \a n to a form suitable for a diagnostic. static std::string yytnamerr_ (const char *n); /// For a symbol, its name in clear. static const char* const yytname_[]; #if YYDEBUG // YYRLINE[YYN] -- Source line where rule number YYN was defined. static const unsigned short int yyrline_[]; /// Report on the debug stream that the rule \a r is going to be reduced. virtual void yy_reduce_print_ (int r); /// Print the state stack on the debug stream. virtual void yystack_print_ (); // Debugging. int yydebug_; std::ostream* yycdebug_; /// \brief Display a symbol type, value and location. /// \param yyo The output stream. /// \param yysym The symbol. template void yy_print_ (std::ostream& yyo, const basic_symbol& yysym) const; #endif /// \brief Reclaim the memory associated to a symbol. /// \param yymsg Why this token is reclaimed. /// If null, print nothing. /// \param yysym The symbol. template void yy_destroy_ (const char* yymsg, basic_symbol& yysym) const; private: /// Type access provider for state based symbols. struct by_state { /// Default constructor. by_state (); /// The symbol type as needed by the constructor. typedef state_type kind_type; /// Constructor. by_state (kind_type s); /// Copy constructor. by_state (const by_state& other); /// Record that this symbol is empty. void clear (); /// Steal the symbol type from \a that. void move (by_state& that); /// The (internal) type number (corresponding to \a state). /// \a empty_symbol when empty. symbol_number_type type_get () const; /// The state number used to denote an empty symbol. enum { empty_state = -1 }; /// The state. /// \a empty when empty. state_type state; }; /// "Internal" symbol: element of the stack. struct stack_symbol_type : basic_symbol { /// Superclass. typedef basic_symbol super_type; /// Construct an empty symbol. stack_symbol_type (); /// Steal the contents from \a sym to build this. stack_symbol_type (state_type s, symbol_type& sym); /// Assignment, needed by push_back. stack_symbol_type& operator= (const stack_symbol_type& that); }; /// Stack type. typedef stack stack_type; /// The stack. stack_type yystack_; /// Push a new state on the stack. /// \param m a debug message to display /// if null, no trace is output. /// \param s the symbol /// \warning the contents of \a s.value is stolen. void yypush_ (const char* m, stack_symbol_type& s); /// Push a new look ahead token on the state on the stack. /// \param m a debug message to display /// if null, no trace is output. /// \param s the state /// \param sym the symbol (for its value and location). /// \warning the contents of \a s.value is stolen. void yypush_ (const char* m, state_type s, symbol_type& sym); /// Pop \a n symbols the three stacks. void yypop_ (unsigned int n = 1); /// Constants. enum { yyeof_ = 0, yylast_ = 117, ///< Last index in yytable_. yynnts_ = 24, ///< Number of nonterminal symbols. yyfinal_ = 6, ///< Termination state number. yyterror_ = 1, yyerrcode_ = 256, yyntokens_ = 40 ///< Number of tokens. }; // User arguments. D4FunctionScanner &scanner; D4FunctionEvaluator &evaluator; }; #line 34 "d4_function_parser.yy" // lalr1.cc:392 } // libdap #line 848 "d4_function_parser.tab.hh" // lalr1.cc:392 #endif // !YY_YY_D4_FUNCTION_PARSER_TAB_HH_INCLUDED