/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include "isl_basis_reduction.h" #include "isl_scan.h" #include #include "isl_tab.h" #include #include struct isl_counter { struct isl_scan_callback callback; isl_int count; isl_int max; }; static int increment_counter(struct isl_scan_callback *cb, __isl_take isl_vec *sample) { struct isl_counter *cnt = (struct isl_counter *)cb; isl_int_add_ui(cnt->count, cnt->count, 1); isl_vec_free(sample); if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max)) return 0; return -1; } static int increment_range(struct isl_scan_callback *cb, isl_int min, isl_int max) { struct isl_counter *cnt = (struct isl_counter *)cb; isl_int_add(cnt->count, cnt->count, max); isl_int_sub(cnt->count, cnt->count, min); isl_int_add_ui(cnt->count, cnt->count, 1); if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max)) return 0; isl_int_set(cnt->count, cnt->max); return -1; } /* Call callback->add with the current sample value of the tableau "tab". */ static int add_solution(struct isl_tab *tab, struct isl_scan_callback *callback) { struct isl_vec *sample; if (!tab) return -1; sample = isl_tab_get_sample_value(tab); if (!sample) return -1; return callback->add(callback, sample); } static int scan_0D(struct isl_basic_set *bset, struct isl_scan_callback *callback) { struct isl_vec *sample; sample = isl_vec_alloc(bset->ctx, 1); isl_basic_set_free(bset); if (!sample) return -1; isl_int_set_si(sample->el[0], 1); return callback->add(callback, sample); } /* Look for all integer points in "bset", which is assumed to be bounded, * and call callback->add on each of them. * * We first compute a reduced basis for the set and then scan * the set in the directions of this basis. * We basically perform a depth first search, where in each level i * we compute the range in the i-th basis vector direction, given * fixed values in the directions of the previous basis vector. * We then add an equality to the tableau fixing the value in the * direction of the current basis vector to each value in the range * in turn and then continue to the next level. * * The search is implemented iteratively. "level" identifies the current * basis vector. "init" is true if we want the first value at the current * level and false if we want the next value. * Solutions are added in the leaves of the search tree, i.e., after * we have fixed a value in each direction of the basis. */ int isl_basic_set_scan(struct isl_basic_set *bset, struct isl_scan_callback *callback) { unsigned dim; struct isl_mat *B = NULL; struct isl_tab *tab = NULL; struct isl_vec *min; struct isl_vec *max; struct isl_tab_undo **snap; int level; int init; enum isl_lp_result res; if (!bset) return -1; dim = isl_basic_set_total_dim(bset); if (dim == 0) return scan_0D(bset, callback); min = isl_vec_alloc(bset->ctx, dim); max = isl_vec_alloc(bset->ctx, dim); snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim); if (!min || !max || !snap) goto error; tab = isl_tab_from_basic_set(bset, 0); if (!tab) goto error; if (isl_tab_extend_cons(tab, dim + 1) < 0) goto error; tab->basis = isl_mat_identity(bset->ctx, 1 + dim); if (1) tab = isl_tab_compute_reduced_basis(tab); if (!tab) goto error; B = isl_mat_copy(tab->basis); if (!B) goto error; level = 0; init = 1; while (level >= 0) { int empty = 0; if (init) { res = isl_tab_min(tab, B->row[1 + level], bset->ctx->one, &min->el[level], NULL, 0); if (res == isl_lp_empty) empty = 1; if (res == isl_lp_error || res == isl_lp_unbounded) goto error; isl_seq_neg(B->row[1 + level] + 1, B->row[1 + level] + 1, dim); res = isl_tab_min(tab, B->row[1 + level], bset->ctx->one, &max->el[level], NULL, 0); isl_seq_neg(B->row[1 + level] + 1, B->row[1 + level] + 1, dim); isl_int_neg(max->el[level], max->el[level]); if (res == isl_lp_empty) empty = 1; if (res == isl_lp_error || res == isl_lp_unbounded) goto error; snap[level] = isl_tab_snap(tab); } else isl_int_add_ui(min->el[level], min->el[level], 1); if (empty || isl_int_gt(min->el[level], max->el[level])) { level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, snap[level]) < 0) goto error; continue; } if (level == dim - 1 && callback->add == increment_counter) { if (increment_range(callback, min->el[level], max->el[level])) goto error; level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, snap[level]) < 0) goto error; continue; } isl_int_neg(B->row[1 + level][0], min->el[level]); if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0) goto error; isl_int_set_si(B->row[1 + level][0], 0); if (level < dim - 1) { ++level; init = 1; continue; } if (add_solution(tab, callback) < 0) goto error; init = 0; if (isl_tab_rollback(tab, snap[level]) < 0) goto error; } isl_tab_free(tab); free(snap); isl_vec_free(min); isl_vec_free(max); isl_basic_set_free(bset); isl_mat_free(B); return 0; error: isl_tab_free(tab); free(snap); isl_vec_free(min); isl_vec_free(max); isl_basic_set_free(bset); isl_mat_free(B); return -1; } int isl_set_scan(__isl_take isl_set *set, struct isl_scan_callback *callback) { int i; if (!set || !callback) goto error; set = isl_set_cow(set); set = isl_set_make_disjoint(set); set = isl_set_compute_divs(set); if (!set) goto error; for (i = 0; i < set->n; ++i) if (isl_basic_set_scan(isl_basic_set_copy(set->p[i]), callback) < 0) goto error; isl_set_free(set); return 0; error: isl_set_free(set); return -1; } int isl_basic_set_count_upto(__isl_keep isl_basic_set *bset, isl_int max, isl_int *count) { struct isl_counter cnt = { { &increment_counter } }; if (!bset) return -1; isl_int_init(cnt.count); isl_int_init(cnt.max); isl_int_set_si(cnt.count, 0); isl_int_set(cnt.max, max); if (isl_basic_set_scan(isl_basic_set_copy(bset), &cnt.callback) < 0 && isl_int_lt(cnt.count, cnt.max)) goto error; isl_int_set(*count, cnt.count); isl_int_clear(cnt.max); isl_int_clear(cnt.count); return 0; error: isl_int_clear(cnt.count); return -1; } int isl_set_count_upto(__isl_keep isl_set *set, isl_int max, isl_int *count) { struct isl_counter cnt = { { &increment_counter } }; if (!set) return -1; isl_int_init(cnt.count); isl_int_init(cnt.max); isl_int_set_si(cnt.count, 0); isl_int_set(cnt.max, max); if (isl_set_scan(isl_set_copy(set), &cnt.callback) < 0 && isl_int_lt(cnt.count, cnt.max)) goto error; isl_int_set(*count, cnt.count); isl_int_clear(cnt.max); isl_int_clear(cnt.count); return 0; error: isl_int_clear(cnt.count); return -1; } int isl_set_count(__isl_keep isl_set *set, isl_int *count) { if (!set) return -1; return isl_set_count_upto(set, set->ctx->zero, count); } /* Count the total number of elements in "set" (in an inefficient way) and * return the result. */ __isl_give isl_val *isl_set_count_val(__isl_keep isl_set *set) { isl_val *v; if (!set) return NULL; v = isl_val_zero(isl_set_get_ctx(set)); v = isl_val_cow(v); if (!v) return NULL; if (isl_set_count(set, &v->n) < 0) v = isl_val_free(v); return v; }