/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include "isl_map_private.h" #include #include #include "isl_tab.h" #include #include #include #define STATUS_ERROR -1 #define STATUS_REDUNDANT 1 #define STATUS_VALID 2 #define STATUS_SEPARATE 3 #define STATUS_CUT 4 #define STATUS_ADJ_EQ 5 #define STATUS_ADJ_INEQ 6 static int status_in(isl_int *ineq, struct isl_tab *tab) { enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq); switch (type) { default: case isl_ineq_error: return STATUS_ERROR; case isl_ineq_redundant: return STATUS_VALID; case isl_ineq_separate: return STATUS_SEPARATE; case isl_ineq_cut: return STATUS_CUT; case isl_ineq_adj_eq: return STATUS_ADJ_EQ; case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ; } } /* Compute the position of the equalities of basic map "bmap_i" * with respect to the basic map represented by "tab_j". * The resulting array has twice as many entries as the number * of equalities corresponding to the two inequalties to which * each equality corresponds. */ static int *eq_status_in(__isl_keep isl_basic_map *bmap_i, struct isl_tab *tab_j) { int k, l; int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq); unsigned dim; if (!eq) return NULL; dim = isl_basic_map_total_dim(bmap_i); for (k = 0; k < bmap_i->n_eq; ++k) { for (l = 0; l < 2; ++l) { isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim); eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j); if (eq[2 * k + l] == STATUS_ERROR) goto error; } if (eq[2 * k] == STATUS_SEPARATE || eq[2 * k + 1] == STATUS_SEPARATE) break; } return eq; error: free(eq); return NULL; } /* Compute the position of the inequalities of basic map "bmap_i" * (also represented by "tab_i", if not NULL) with respect to the basic map * represented by "tab_j". */ static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i, struct isl_tab *tab_i, struct isl_tab *tab_j) { int k; unsigned n_eq = bmap_i->n_eq; int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq); if (!ineq) return NULL; for (k = 0; k < bmap_i->n_ineq; ++k) { if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) { ineq[k] = STATUS_REDUNDANT; continue; } ineq[k] = status_in(bmap_i->ineq[k], tab_j); if (ineq[k] == STATUS_ERROR) goto error; if (ineq[k] == STATUS_SEPARATE) break; } return ineq; error: free(ineq); return NULL; } static int any(int *con, unsigned len, int status) { int i; for (i = 0; i < len ; ++i) if (con[i] == status) return 1; return 0; } static int count(int *con, unsigned len, int status) { int i; int c = 0; for (i = 0; i < len ; ++i) if (con[i] == status) c++; return c; } static int all(int *con, unsigned len, int status) { int i; for (i = 0; i < len ; ++i) { if (con[i] == STATUS_REDUNDANT) continue; if (con[i] != status) return 0; } return 1; } static void drop(struct isl_map *map, int i, struct isl_tab **tabs) { isl_basic_map_free(map->p[i]); isl_tab_free(tabs[i]); if (i != map->n - 1) { map->p[i] = map->p[map->n - 1]; tabs[i] = tabs[map->n - 1]; } tabs[map->n - 1] = NULL; map->n--; } /* Replace the pair of basic maps i and j by the basic map bounded * by the valid constraints in both basic maps and the constraint * in extra (if not NULL). */ static int fuse(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j, __isl_keep isl_mat *extra) { int k, l; struct isl_basic_map *fused = NULL; struct isl_tab *fused_tab = NULL; unsigned total = isl_basic_map_total_dim(map->p[i]); unsigned extra_rows = extra ? extra->n_row : 0; fused = isl_basic_map_alloc_space(isl_space_copy(map->p[i]->dim), map->p[i]->n_div, map->p[i]->n_eq + map->p[j]->n_eq, map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows); if (!fused) goto error; for (k = 0; k < map->p[i]->n_eq; ++k) { if (eq_i && (eq_i[2 * k] != STATUS_VALID || eq_i[2 * k + 1] != STATUS_VALID)) continue; l = isl_basic_map_alloc_equality(fused); if (l < 0) goto error; isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total); } for (k = 0; k < map->p[j]->n_eq; ++k) { if (eq_j && (eq_j[2 * k] != STATUS_VALID || eq_j[2 * k + 1] != STATUS_VALID)) continue; l = isl_basic_map_alloc_equality(fused); if (l < 0) goto error; isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total); } for (k = 0; k < map->p[i]->n_ineq; ++k) { if (ineq_i[k] != STATUS_VALID) continue; l = isl_basic_map_alloc_inequality(fused); if (l < 0) goto error; isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total); } for (k = 0; k < map->p[j]->n_ineq; ++k) { if (ineq_j[k] != STATUS_VALID) continue; l = isl_basic_map_alloc_inequality(fused); if (l < 0) goto error; isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total); } for (k = 0; k < map->p[i]->n_div; ++k) { int l = isl_basic_map_alloc_div(fused); if (l < 0) goto error; isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total); } for (k = 0; k < extra_rows; ++k) { l = isl_basic_map_alloc_inequality(fused); if (l < 0) goto error; isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total); } fused = isl_basic_map_gauss(fused, NULL); ISL_F_SET(fused, ISL_BASIC_MAP_FINAL); if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) && ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL)) ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL); fused_tab = isl_tab_from_basic_map(fused, 0); if (isl_tab_detect_redundant(fused_tab) < 0) goto error; isl_basic_map_free(map->p[i]); map->p[i] = fused; isl_tab_free(tabs[i]); tabs[i] = fused_tab; drop(map, j, tabs); return 1; error: isl_tab_free(fused_tab); isl_basic_map_free(fused); return -1; } /* Given a pair of basic maps i and j such that all constraints are either * "valid" or "cut", check if the facets corresponding to the "cut" * constraints of i lie entirely within basic map j. * If so, replace the pair by the basic map consisting of the valid * constraints in both basic maps. * * To see that we are not introducing any extra points, call the * two basic maps A and B and the resulting map U and let x * be an element of U \setminus ( A \cup B ). * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x * violates them. Let X be the intersection of U with the opposites * of these constraints. Then x \in X. * The facet corresponding to c_1 contains the corresponding facet of A. * This facet is entirely contained in B, so c_2 is valid on the facet. * However, since it is also (part of) a facet of X, -c_2 is also valid * on the facet. This means c_2 is saturated on the facet, so c_1 and * c_2 must be opposites of each other, but then x could not violate * both of them. */ static int check_facets(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *ineq_i, int *ineq_j) { int k, l; struct isl_tab_undo *snap; unsigned n_eq = map->p[i]->n_eq; snap = isl_tab_snap(tabs[i]); for (k = 0; k < map->p[i]->n_ineq; ++k) { if (ineq_i[k] != STATUS_CUT) continue; if (isl_tab_select_facet(tabs[i], n_eq + k) < 0) return -1; for (l = 0; l < map->p[j]->n_ineq; ++l) { int stat; if (ineq_j[l] != STATUS_CUT) continue; stat = status_in(map->p[j]->ineq[l], tabs[i]); if (stat != STATUS_VALID) break; } if (isl_tab_rollback(tabs[i], snap) < 0) return -1; if (l < map->p[j]->n_ineq) break; } if (k < map->p[i]->n_ineq) /* BAD CUT PAIR */ return 0; return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL); } /* Check if basic map "i" contains the basic map represented * by the tableau "tab". */ static int contains(struct isl_map *map, int i, int *ineq_i, struct isl_tab *tab) { int k, l; unsigned dim; dim = isl_basic_map_total_dim(map->p[i]); for (k = 0; k < map->p[i]->n_eq; ++k) { for (l = 0; l < 2; ++l) { int stat; isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim); stat = status_in(map->p[i]->eq[k], tab); if (stat != STATUS_VALID) return 0; } } for (k = 0; k < map->p[i]->n_ineq; ++k) { int stat; if (ineq_i[k] == STATUS_REDUNDANT) continue; stat = status_in(map->p[i]->ineq[k], tab); if (stat != STATUS_VALID) return 0; } return 1; } /* Basic map "i" has an inequality (say "k") that is adjacent * to some inequality of basic map "j". All the other inequalities * are valid for "j". * Check if basic map "j" forms an extension of basic map "i". * * Note that this function is only called if some of the equalities or * inequalities of basic map "j" do cut basic map "i". The function is * correct even if there are no such cut constraints, but in that case * the additional checks performed by this function are overkill. * * In particular, we replace constraint k, say f >= 0, by constraint * f <= -1, add the inequalities of "j" that are valid for "i" * and check if the result is a subset of basic map "j". * If so, then we know that this result is exactly equal to basic map "j" * since all its constraints are valid for basic map "j". * By combining the valid constraints of "i" (all equalities and all * inequalities except "k") and the valid constraints of "j" we therefore * obtain a basic map that is equal to their union. * In this case, there is no need to perform a rollback of the tableau * since it is going to be destroyed in fuse(). * * * |\__ |\__ * | \__ | \__ * | \_ => | \__ * |_______| _ |_________\ * * * |\ |\ * | \ | \ * | \ | \ * | | | \ * | ||\ => | \ * | || \ | \ * | || | | | * |__||_/ |_____/ */ static int is_adj_ineq_extension(__isl_keep isl_map *map, int i, int j, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int k; struct isl_tab_undo *snap; unsigned n_eq = map->p[i]->n_eq; unsigned total = isl_basic_map_total_dim(map->p[i]); int r; if (isl_tab_extend_cons(tabs[i], 1 + map->p[j]->n_ineq) < 0) return -1; for (k = 0; k < map->p[i]->n_ineq; ++k) if (ineq_i[k] == STATUS_ADJ_INEQ) break; if (k >= map->p[i]->n_ineq) isl_die(isl_map_get_ctx(map), isl_error_internal, "ineq_i should have exactly one STATUS_ADJ_INEQ", return -1); snap = isl_tab_snap(tabs[i]); if (isl_tab_unrestrict(tabs[i], n_eq + k) < 0) return -1; isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total); isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); r = isl_tab_add_ineq(tabs[i], map->p[i]->ineq[k]); isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total); isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); if (r < 0) return -1; for (k = 0; k < map->p[j]->n_ineq; ++k) { if (ineq_j[k] != STATUS_VALID) continue; if (isl_tab_add_ineq(tabs[i], map->p[j]->ineq[k]) < 0) return -1; } if (contains(map, j, ineq_j, tabs[i])) return fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, NULL); if (isl_tab_rollback(tabs[i], snap) < 0) return -1; return 0; } /* Both basic maps have at least one inequality with and adjacent * (but opposite) inequality in the other basic map. * Check that there are no cut constraints and that there is only * a single pair of adjacent inequalities. * If so, we can replace the pair by a single basic map described * by all but the pair of adjacent inequalities. * Any additional points introduced lie strictly between the two * adjacent hyperplanes and can therefore be integral. * * ____ _____ * / ||\ / \ * / || \ / \ * \ || \ => \ \ * \ || / \ / * \___||_/ \_____/ * * The test for a single pair of adjancent inequalities is important * for avoiding the combination of two basic maps like the following * * /| * / | * /__| * _____ * | | * | | * |___| * * If there are some cut constraints on one side, then we may * still be able to fuse the two basic maps, but we need to perform * some additional checks in is_adj_ineq_extension. */ static int check_adj_ineq(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int count_i, count_j; int cut_i, cut_j; count_i = count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ); count_j = count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ); if (count_i != 1 && count_j != 1) return 0; cut_i = any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) || any(ineq_i, map->p[i]->n_ineq, STATUS_CUT); cut_j = any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT) || any(ineq_j, map->p[j]->n_ineq, STATUS_CUT); if (!cut_i && !cut_j && count_i == 1 && count_j == 1) return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL); if (count_i == 1 && !cut_i) return is_adj_ineq_extension(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j); if (count_j == 1 && !cut_j) return is_adj_ineq_extension(map, j, i, tabs, eq_j, ineq_j, eq_i, ineq_i); return 0; } /* Basic map "i" has an inequality "k" that is adjacent to some equality * of basic map "j". All the other inequalities are valid for "j". * Check if basic map "j" forms an extension of basic map "i". * * In particular, we relax constraint "k", compute the corresponding * facet and check whether it is included in the other basic map. * If so, we know that relaxing the constraint extends the basic * map with exactly the other basic map (we already know that this * other basic map is included in the extension, because there * were no "cut" inequalities in "i") and we can replace the * two basic maps by this extension. * ____ _____ * / || / | * / || / | * \ || => \ | * \ || \ | * \___|| \____| */ static int is_adj_eq_extension(struct isl_map *map, int i, int j, int k, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int changed = 0; int super; struct isl_tab_undo *snap, *snap2; unsigned n_eq = map->p[i]->n_eq; if (isl_tab_is_equality(tabs[i], n_eq + k)) return 0; snap = isl_tab_snap(tabs[i]); tabs[i] = isl_tab_relax(tabs[i], n_eq + k); snap2 = isl_tab_snap(tabs[i]); if (isl_tab_select_facet(tabs[i], n_eq + k) < 0) return -1; super = contains(map, j, ineq_j, tabs[i]); if (super) { if (isl_tab_rollback(tabs[i], snap2) < 0) return -1; map->p[i] = isl_basic_map_cow(map->p[i]); if (!map->p[i]) return -1; isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL); drop(map, j, tabs); changed = 1; } else if (isl_tab_rollback(tabs[i], snap) < 0) return -1; return changed; } /* Data structure that keeps track of the wrapping constraints * and of information to bound the coefficients of those constraints. * * bound is set if we want to apply a bound on the coefficients * mat contains the wrapping constraints * max is the bound on the coefficients (if bound is set) */ struct isl_wraps { int bound; isl_mat *mat; isl_int max; }; /* Update wraps->max to be greater than or equal to the coefficients * in the equalities and inequalities of bmap that can be removed if we end up * applying wrapping. */ static void wraps_update_max(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap, int *eq, int *ineq) { int k; isl_int max_k; unsigned total = isl_basic_map_total_dim(bmap); isl_int_init(max_k); for (k = 0; k < bmap->n_eq; ++k) { if (eq[2 * k] == STATUS_VALID && eq[2 * k + 1] == STATUS_VALID) continue; isl_seq_abs_max(bmap->eq[k] + 1, total, &max_k); if (isl_int_abs_gt(max_k, wraps->max)) isl_int_set(wraps->max, max_k); } for (k = 0; k < bmap->n_ineq; ++k) { if (ineq[k] == STATUS_VALID || ineq[k] == STATUS_REDUNDANT) continue; isl_seq_abs_max(bmap->ineq[k] + 1, total, &max_k); if (isl_int_abs_gt(max_k, wraps->max)) isl_int_set(wraps->max, max_k); } isl_int_clear(max_k); } /* Initialize the isl_wraps data structure. * If we want to bound the coefficients of the wrapping constraints, * we set wraps->max to the largest coefficient * in the equalities and inequalities that can be removed if we end up * applying wrapping. */ static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat, __isl_keep isl_map *map, int i, int j, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { isl_ctx *ctx; wraps->bound = 0; wraps->mat = mat; if (!mat) return; ctx = isl_mat_get_ctx(mat); wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx); if (!wraps->bound) return; isl_int_init(wraps->max); isl_int_set_si(wraps->max, 0); wraps_update_max(wraps, map->p[i], eq_i, ineq_i); wraps_update_max(wraps, map->p[j], eq_j, ineq_j); } /* Free the contents of the isl_wraps data structure. */ static void wraps_free(struct isl_wraps *wraps) { isl_mat_free(wraps->mat); if (wraps->bound) isl_int_clear(wraps->max); } /* Is the wrapping constraint in row "row" allowed? * * If wraps->bound is set, we check that none of the coefficients * is greater than wraps->max. */ static int allow_wrap(struct isl_wraps *wraps, int row) { int i; if (!wraps->bound) return 1; for (i = 1; i < wraps->mat->n_col; ++i) if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max)) return 0; return 1; } /* For each non-redundant constraint in "bmap" (as determined by "tab"), * wrap the constraint around "bound" such that it includes the whole * set "set" and append the resulting constraint to "wraps". * "wraps" is assumed to have been pre-allocated to the appropriate size. * wraps->n_row is the number of actual wrapped constraints that have * been added. * If any of the wrapping problems results in a constraint that is * identical to "bound", then this means that "set" is unbounded in such * way that no wrapping is possible. If this happens then wraps->n_row * is reset to zero. * Similarly, if we want to bound the coefficients of the wrapping * constraints and a newly added wrapping constraint does not * satisfy the bound, then wraps->n_row is also reset to zero. */ static int add_wraps(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap, struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set) { int l; int w; unsigned total = isl_basic_map_total_dim(bmap); w = wraps->mat->n_row; for (l = 0; l < bmap->n_ineq; ++l) { if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total)) continue; if (isl_seq_eq(bound, bmap->ineq[l], 1 + total)) continue; if (isl_tab_is_redundant(tab, bmap->n_eq + l)) continue; isl_seq_cpy(wraps->mat->row[w], bound, 1 + total); if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->ineq[l])) return -1; if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total)) goto unbounded; if (!allow_wrap(wraps, w)) goto unbounded; ++w; } for (l = 0; l < bmap->n_eq; ++l) { if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total)) continue; if (isl_seq_eq(bound, bmap->eq[l], 1 + total)) continue; isl_seq_cpy(wraps->mat->row[w], bound, 1 + total); isl_seq_neg(wraps->mat->row[w + 1], bmap->eq[l], 1 + total); if (!isl_set_wrap_facet(set, wraps->mat->row[w], wraps->mat->row[w + 1])) return -1; if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total)) goto unbounded; if (!allow_wrap(wraps, w)) goto unbounded; ++w; isl_seq_cpy(wraps->mat->row[w], bound, 1 + total); if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->eq[l])) return -1; if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total)) goto unbounded; if (!allow_wrap(wraps, w)) goto unbounded; ++w; } wraps->mat->n_row = w; return 0; unbounded: wraps->mat->n_row = 0; return 0; } /* Check if the constraints in "wraps" from "first" until the last * are all valid for the basic set represented by "tab". * If not, wraps->n_row is set to zero. */ static int check_wraps(__isl_keep isl_mat *wraps, int first, struct isl_tab *tab) { int i; for (i = first; i < wraps->n_row; ++i) { enum isl_ineq_type type; type = isl_tab_ineq_type(tab, wraps->row[i]); if (type == isl_ineq_error) return -1; if (type == isl_ineq_redundant) continue; wraps->n_row = 0; return 0; } return 0; } /* Return a set that corresponds to the non-redudant constraints * (as recorded in tab) of bmap. * * It's important to remove the redundant constraints as some * of the other constraints may have been modified after the * constraints were marked redundant. * In particular, a constraint may have been relaxed. * Redundant constraints are ignored when a constraint is relaxed * and should therefore continue to be ignored ever after. * Otherwise, the relaxation might be thwarted by some of * these constraints. */ static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap, struct isl_tab *tab) { bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_update_from_tab(bmap, tab); return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap)); } /* Given a basic set i with a constraint k that is adjacent to either the * whole of basic set j or a facet of basic set j, check if we can wrap * both the facet corresponding to k and the facet of j (or the whole of j) * around their ridges to include the other set. * If so, replace the pair of basic sets by their union. * * All constraints of i (except k) are assumed to be valid for j. * * However, the constraints of j may not be valid for i and so * we have to check that the wrapping constraints for j are valid for i. * * In the case where j has a facet adjacent to i, tab[j] is assumed * to have been restricted to this facet, so that the non-redundant * constraints in tab[j] are the ridges of the facet. * Note that for the purpose of wrapping, it does not matter whether * we wrap the ridges of i around the whole of j or just around * the facet since all the other constraints are assumed to be valid for j. * In practice, we wrap to include the whole of j. * ____ _____ * / | / \ * / || / | * \ || => \ | * \ || \ | * \___|| \____| * */ static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int changed = 0; struct isl_wraps wraps; isl_mat *mat; struct isl_set *set_i = NULL; struct isl_set *set_j = NULL; struct isl_vec *bound = NULL; unsigned total = isl_basic_map_total_dim(map->p[i]); struct isl_tab_undo *snap; int n; set_i = set_from_updated_bmap(map->p[i], tabs[i]); set_j = set_from_updated_bmap(map->p[j], tabs[j]); mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) + map->p[i]->n_ineq + map->p[j]->n_ineq, 1 + total); wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j); bound = isl_vec_alloc(map->ctx, 1 + total); if (!set_i || !set_j || !wraps.mat || !bound) goto error; isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total); isl_int_add_ui(bound->el[0], bound->el[0], 1); isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); wraps.mat->n_row = 1; if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; snap = isl_tab_snap(tabs[i]); if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0) goto error; if (isl_tab_detect_redundant(tabs[i]) < 0) goto error; isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total); n = wraps.mat->n_row; if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0) goto error; if (isl_tab_rollback(tabs[i], snap) < 0) goto error; if (check_wraps(wraps.mat, n, tabs[i]) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat); unbounded: wraps_free(&wraps); isl_set_free(set_i); isl_set_free(set_j); isl_vec_free(bound); return changed; error: wraps_free(&wraps); isl_vec_free(bound); isl_set_free(set_i); isl_set_free(set_j); return -1; } /* Set the is_redundant property of the "n" constraints in "cuts", * except "k" to "v". * This is a fairly tricky operation as it bypasses isl_tab.c. * The reason we want to temporarily mark some constraints redundant * is that we want to ignore them in add_wraps. * * Initially all cut constraints are non-redundant, but the * selection of a facet right before the call to this function * may have made some of them redundant. * Likewise, the same constraints are marked non-redundant * in the second call to this function, before they are officially * made non-redundant again in the subsequent rollback. */ static void set_is_redundant(struct isl_tab *tab, unsigned n_eq, int *cuts, int n, int k, int v) { int l; for (l = 0; l < n; ++l) { if (l == k) continue; tab->con[n_eq + cuts[l]].is_redundant = v; } } /* Given a pair of basic maps i and j such that j sticks out * of i at n cut constraints, each time by at most one, * try to compute wrapping constraints and replace the two * basic maps by a single basic map. * The other constraints of i are assumed to be valid for j. * * The facets of i corresponding to the cut constraints are * wrapped around their ridges, except those ridges determined * by any of the other cut constraints. * The intersections of cut constraints need to be ignored * as the result of wrapping one cut constraint around another * would result in a constraint cutting the union. * In each case, the facets are wrapped to include the union * of the two basic maps. * * The pieces of j that lie at an offset of exactly one from * one of the cut constraints of i are wrapped around their edges. * Here, there is no need to ignore intersections because we * are wrapping around the union of the two basic maps. * * If any wrapping fails, i.e., if we cannot wrap to touch * the union, then we give up. * Otherwise, the pair of basic maps is replaced by their union. */ static int wrap_in_facets(struct isl_map *map, int i, int j, int *cuts, int n, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int changed = 0; struct isl_wraps wraps; isl_mat *mat; isl_set *set = NULL; isl_vec *bound = NULL; unsigned total = isl_basic_map_total_dim(map->p[i]); int max_wrap; int k; struct isl_tab_undo *snap_i, *snap_j; if (isl_tab_extend_cons(tabs[j], 1) < 0) goto error; max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) + map->p[i]->n_ineq + map->p[j]->n_ineq; max_wrap *= n; set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]), set_from_updated_bmap(map->p[j], tabs[j])); mat = isl_mat_alloc(map->ctx, max_wrap, 1 + total); wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j); bound = isl_vec_alloc(map->ctx, 1 + total); if (!set || !wraps.mat || !bound) goto error; snap_i = isl_tab_snap(tabs[i]); snap_j = isl_tab_snap(tabs[j]); wraps.mat->n_row = 0; for (k = 0; k < n; ++k) { if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0) goto error; if (isl_tab_detect_redundant(tabs[i]) < 0) goto error; set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1); isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total); if (!tabs[i]->empty && add_wraps(&wraps, map->p[i], tabs[i], bound->el, set) < 0) goto error; set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0); if (isl_tab_rollback(tabs[i], snap_i) < 0) goto error; if (tabs[i]->empty) break; if (!wraps.mat->n_row) break; isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total); isl_int_add_ui(bound->el[0], bound->el[0], 1); if (isl_tab_add_eq(tabs[j], bound->el) < 0) goto error; if (isl_tab_detect_redundant(tabs[j]) < 0) goto error; if (!tabs[j]->empty && add_wraps(&wraps, map->p[j], tabs[j], bound->el, set) < 0) goto error; if (isl_tab_rollback(tabs[j], snap_j) < 0) goto error; if (!wraps.mat->n_row) break; } if (k == n) changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat); isl_vec_free(bound); wraps_free(&wraps); isl_set_free(set); return changed; error: isl_vec_free(bound); wraps_free(&wraps); isl_set_free(set); return -1; } /* Given two basic sets i and j such that i has no cut equalities, * check if relaxing all the cut inequalities of i by one turns * them into valid constraint for j and check if we can wrap in * the bits that are sticking out. * If so, replace the pair by their union. * * We first check if all relaxed cut inequalities of i are valid for j * and then try to wrap in the intersections of the relaxed cut inequalities * with j. * * During this wrapping, we consider the points of j that lie at a distance * of exactly 1 from i. In particular, we ignore the points that lie in * between this lower-dimensional space and the basic map i. * We can therefore only apply this to integer maps. * ____ _____ * / ___|_ / \ * / | | / | * \ | | => \ | * \|____| \ | * \___| \____/ * * _____ ______ * | ____|_ | \ * | | | | | * | | | => | | * |_| | | | * |_____| \______| * * _______ * | | * | |\ | * | | \ | * | | \ | * | | \| * | | \ * | |_____\ * | | * |_______| * * Wrapping can fail if the result of wrapping one of the facets * around its edges does not produce any new facet constraint. * In particular, this happens when we try to wrap in unbounded sets. * * _______________________________________________________________________ * | * | ___ * | | | * |_| |_________________________________________________________________ * |___| * * The following is not an acceptable result of coalescing the above two * sets as it includes extra integer points. * _______________________________________________________________________ * | * | * | * | * \______________________________________________________________________ */ static int can_wrap_in_set(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int changed = 0; int k, m; int n; int *cuts = NULL; if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) || ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL)) return 0; n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT); if (n == 0) return 0; cuts = isl_alloc_array(map->ctx, int, n); if (!cuts) return -1; for (k = 0, m = 0; m < n; ++k) { enum isl_ineq_type type; if (ineq_i[k] != STATUS_CUT) continue; isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]); isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); if (type == isl_ineq_error) goto error; if (type != isl_ineq_redundant) break; cuts[m] = k; ++m; } if (m == n) changed = wrap_in_facets(map, i, j, cuts, n, tabs, eq_i, ineq_i, eq_j, ineq_j); free(cuts); return changed; error: free(cuts); return -1; } /* Check if either i or j has a single cut constraint that can * be used to wrap in (a facet of) the other basic set. * if so, replace the pair by their union. */ static int check_wrap(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int changed = 0; if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT)) changed = can_wrap_in_set(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j); if (changed) return changed; if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) changed = can_wrap_in_set(map, j, i, tabs, eq_j, ineq_j, eq_i, ineq_i); return changed; } /* At least one of the basic maps has an equality that is adjacent * to inequality. Make sure that only one of the basic maps has * such an equality and that the other basic map has exactly one * inequality adjacent to an equality. * We call the basic map that has the inequality "i" and the basic * map that has the equality "j". * If "i" has any "cut" (in)equality, then relaxing the inequality * by one would not result in a basic map that contains the other * basic map. */ static int check_adj_eq(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int changed = 0; int k; if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) && any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) /* ADJ EQ TOO MANY */ return 0; if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ)) return check_adj_eq(map, j, i, tabs, eq_j, ineq_j, eq_i, ineq_i); /* j has an equality adjacent to an inequality in i */ if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT)) return 0; if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT)) /* ADJ EQ CUT */ return 0; if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 || any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) || any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) || any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) /* ADJ EQ TOO MANY */ return 0; for (k = 0; k < map->p[i]->n_ineq; ++k) if (ineq_i[k] == STATUS_ADJ_EQ) break; changed = is_adj_eq_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j); if (changed) return changed; if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1) return 0; changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j); return changed; } /* The two basic maps lie on adjacent hyperplanes. In particular, * basic map "i" has an equality that lies parallel to basic map "j". * Check if we can wrap the facets around the parallel hyperplanes * to include the other set. * * We perform basically the same operations as can_wrap_in_facet, * except that we don't need to select a facet of one of the sets. * _ * \\ \\ * \\ => \\ * \ \| * * We only allow one equality of "i" to be adjacent to an equality of "j" * to avoid coalescing * * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and * x <= 10 and y <= 10; * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and * y >= 5 and y <= 15 } * * to * * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and * y2 <= 1 + x + y - x2 and y2 >= y and * y2 >= 1 + x + y - x2 } */ static int check_eq_adj_eq(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int k; int changed = 0; struct isl_wraps wraps; isl_mat *mat; struct isl_set *set_i = NULL; struct isl_set *set_j = NULL; struct isl_vec *bound = NULL; unsigned total = isl_basic_map_total_dim(map->p[i]); if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1) return 0; for (k = 0; k < 2 * map->p[i]->n_eq ; ++k) if (eq_i[k] == STATUS_ADJ_EQ) break; set_i = set_from_updated_bmap(map->p[i], tabs[i]); set_j = set_from_updated_bmap(map->p[j], tabs[j]); mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) + map->p[i]->n_ineq + map->p[j]->n_ineq, 1 + total); wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j); bound = isl_vec_alloc(map->ctx, 1 + total); if (!set_i || !set_j || !wraps.mat || !bound) goto error; if (k % 2 == 0) isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total); else isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total); isl_int_add_ui(bound->el[0], bound->el[0], 1); isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); wraps.mat->n_row = 1; if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; isl_int_sub_ui(bound->el[0], bound->el[0], 1); isl_seq_neg(bound->el, bound->el, 1 + total); isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total); wraps.mat->n_row++; if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat); if (0) { error: changed = -1; } unbounded: wraps_free(&wraps); isl_set_free(set_i); isl_set_free(set_j); isl_vec_free(bound); return changed; } /* Check if the union of the given pair of basic maps * can be represented by a single basic map. * If so, replace the pair by the single basic map and return 1. * Otherwise, return 0; * The two basic maps are assumed to live in the same local space. * * We first check the effect of each constraint of one basic map * on the other basic map. * The constraint may be * redundant the constraint is redundant in its own * basic map and should be ignore and removed * in the end * valid all (integer) points of the other basic map * satisfy the constraint * separate no (integer) point of the other basic map * satisfies the constraint * cut some but not all points of the other basic map * satisfy the constraint * adj_eq the given constraint is adjacent (on the outside) * to an equality of the other basic map * adj_ineq the given constraint is adjacent (on the outside) * to an inequality of the other basic map * * We consider seven cases in which we can replace the pair by a single * basic map. We ignore all "redundant" constraints. * * 1. all constraints of one basic map are valid * => the other basic map is a subset and can be removed * * 2. all constraints of both basic maps are either "valid" or "cut" * and the facets corresponding to the "cut" constraints * of one of the basic maps lies entirely inside the other basic map * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps * * 3. there is a single pair of adjacent inequalities * (all other constraints are "valid") * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps * * 4. one basic map has a single adjacent inequality, while the other * constraints are "valid". The other basic map has some * "cut" constraints, but replacing the adjacent inequality by * its opposite and adding the valid constraints of the other * basic map results in a subset of the other basic map * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps * * 5. there is a single adjacent pair of an inequality and an equality, * the other constraints of the basic map containing the inequality are * "valid". Moreover, if the inequality the basic map is relaxed * and then turned into an equality, then resulting facet lies * entirely inside the other basic map * => the pair can be replaced by the basic map containing * the inequality, with the inequality relaxed. * * 6. there is a single adjacent pair of an inequality and an equality, * the other constraints of the basic map containing the inequality are * "valid". Moreover, the facets corresponding to both * the inequality and the equality can be wrapped around their * ridges to include the other basic map * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps together * with all wrapping constraints * * 7. one of the basic maps extends beyond the other by at most one. * Moreover, the facets corresponding to the cut constraints and * the pieces of the other basic map at offset one from these cut * constraints can be wrapped around their ridges to include * the union of the two basic maps * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps together * with all wrapping constraints * * 8. the two basic maps live in adjacent hyperplanes. In principle * such sets can always be combined through wrapping, but we impose * that there is only one such pair, to avoid overeager coalescing. * * Throughout the computation, we maintain a collection of tableaus * corresponding to the basic maps. When the basic maps are dropped * or combined, the tableaus are modified accordingly. */ static int coalesce_local_pair(__isl_keep isl_map *map, int i, int j, struct isl_tab **tabs) { int changed = 0; int *eq_i = NULL; int *eq_j = NULL; int *ineq_i = NULL; int *ineq_j = NULL; eq_i = eq_status_in(map->p[i], tabs[j]); if (map->p[i]->n_eq && !eq_i) goto error; if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR)) goto error; if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE)) goto done; eq_j = eq_status_in(map->p[j], tabs[i]); if (map->p[j]->n_eq && !eq_j) goto error; if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR)) goto error; if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE)) goto done; ineq_i = ineq_status_in(map->p[i], tabs[i], tabs[j]); if (map->p[i]->n_ineq && !ineq_i) goto error; if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR)) goto error; if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE)) goto done; ineq_j = ineq_status_in(map->p[j], tabs[j], tabs[i]); if (map->p[j]->n_ineq && !ineq_j) goto error; if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR)) goto error; if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE)) goto done; if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) && all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) { drop(map, j, tabs); changed = 1; } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) && all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) { drop(map, i, tabs); changed = 1; } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) { changed = check_eq_adj_eq(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j); } else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) { changed = check_eq_adj_eq(map, j, i, tabs, eq_j, ineq_j, eq_i, ineq_i); } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) || any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) { changed = check_adj_eq(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j); } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) || any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) { /* Can't happen */ /* BAD ADJ INEQ */ } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) || any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) { changed = check_adj_ineq(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j); } else { if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) && !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) changed = check_facets(map, i, j, tabs, ineq_i, ineq_j); if (!changed) changed = check_wrap(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j); } done: free(eq_i); free(eq_j); free(ineq_i); free(ineq_j); return changed; error: free(eq_i); free(eq_j); free(ineq_i); free(ineq_j); return -1; } /* Do the two basic maps live in the same local space, i.e., * do they have the same (known) divs? * If either basic map has any unknown divs, then we can only assume * that they do not live in the same local space. */ static int same_divs(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { int i; int known; int total; if (!bmap1 || !bmap2) return -1; if (bmap1->n_div != bmap2->n_div) return 0; if (bmap1->n_div == 0) return 1; known = isl_basic_map_divs_known(bmap1); if (known < 0 || !known) return known; known = isl_basic_map_divs_known(bmap2); if (known < 0 || !known) return known; total = isl_basic_map_total_dim(bmap1); for (i = 0; i < bmap1->n_div; ++i) if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total)) return 0; return 1; } /* Given two basic maps "i" and "j", where the divs of "i" form a subset * of those of "j", check if basic map "j" is a subset of basic map "i" * and, if so, drop basic map "j". * * We first expand the divs of basic map "i" to match those of basic map "j", * using the divs and expansion computed by the caller. * Then we check if all constraints of the expanded "i" are valid for "j". */ static int coalesce_subset(__isl_keep isl_map *map, int i, int j, struct isl_tab **tabs, __isl_keep isl_mat *div, int *exp) { isl_basic_map *bmap; int changed = 0; int *eq_i = NULL; int *ineq_i = NULL; bmap = isl_basic_map_copy(map->p[i]); bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp); if (!bmap) goto error; eq_i = eq_status_in(bmap, tabs[j]); if (bmap->n_eq && !eq_i) goto error; if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR)) goto error; if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE)) goto done; ineq_i = ineq_status_in(bmap, NULL, tabs[j]); if (bmap->n_ineq && !ineq_i) goto error; if (any(ineq_i, bmap->n_ineq, STATUS_ERROR)) goto error; if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE)) goto done; if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) && all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) { drop(map, j, tabs); changed = 1; } done: isl_basic_map_free(bmap); free(eq_i); free(ineq_i); return 0; error: isl_basic_map_free(bmap); free(eq_i); free(ineq_i); return -1; } /* Check if the basic map "j" is a subset of basic map "i", * assuming that "i" has fewer divs that "j". * If not, then we change the order. * * If the two basic maps have the same number of divs, then * they must necessarily be different. Otherwise, we would have * called coalesce_local_pair. We therefore don't try anything * in this case. * * We first check if the divs of "i" are all known and form a subset * of those of "j". If so, we pass control over to coalesce_subset. */ static int check_coalesce_subset(__isl_keep isl_map *map, int i, int j, struct isl_tab **tabs) { int known; isl_mat *div_i, *div_j, *div; int *exp1 = NULL; int *exp2 = NULL; isl_ctx *ctx; int subset; if (map->p[i]->n_div == map->p[j]->n_div) return 0; if (map->p[j]->n_div < map->p[i]->n_div) return check_coalesce_subset(map, j, i, tabs); known = isl_basic_map_divs_known(map->p[i]); if (known < 0 || !known) return known; ctx = isl_map_get_ctx(map); div_i = isl_basic_map_get_divs(map->p[i]); div_j = isl_basic_map_get_divs(map->p[j]); if (!div_i || !div_j) goto error; exp1 = isl_alloc_array(ctx, int, div_i->n_row); exp2 = isl_alloc_array(ctx, int, div_j->n_row); if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2)) goto error; div = isl_merge_divs(div_i, div_j, exp1, exp2); if (!div) goto error; if (div->n_row == div_j->n_row) subset = coalesce_subset(map, i, j, tabs, div, exp1); else subset = 0; isl_mat_free(div); isl_mat_free(div_i); isl_mat_free(div_j); free(exp2); free(exp1); return subset; error: isl_mat_free(div_i); isl_mat_free(div_j); free(exp1); free(exp2); return -1; } /* Check if the union of the given pair of basic maps * can be represented by a single basic map. * If so, replace the pair by the single basic map and return 1. * Otherwise, return 0; * * We first check if the two basic maps live in the same local space. * If so, we do the complete check. Otherwise, we check if one is * an obvious subset of the other. */ static int coalesce_pair(__isl_keep isl_map *map, int i, int j, struct isl_tab **tabs) { int same; same = same_divs(map->p[i], map->p[j]); if (same < 0) return -1; if (same) return coalesce_local_pair(map, i, j, tabs); return check_coalesce_subset(map, i, j, tabs); } static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs) { int i, j; for (i = map->n - 2; i >= 0; --i) restart: for (j = i + 1; j < map->n; ++j) { int changed; changed = coalesce_pair(map, i, j, tabs); if (changed < 0) goto error; if (changed) goto restart; } return map; error: isl_map_free(map); return NULL; } /* For each pair of basic maps in the map, check if the union of the two * can be represented by a single basic map. * If so, replace the pair by the single basic map and start over. * * Since we are constructing the tableaus of the basic maps anyway, * we exploit them to detect implicit equalities and redundant constraints. * This also helps the coalescing as it can ignore the redundant constraints. * In order to avoid confusion, we make all implicit equalities explicit * in the basic maps. We don't call isl_basic_map_gauss, though, * as that may affect the number of constraints. * This means that we have to call isl_basic_map_gauss at the end * of the computation to ensure that the basic maps are not left * in an unexpected state. */ struct isl_map *isl_map_coalesce(struct isl_map *map) { int i; unsigned n; struct isl_tab **tabs = NULL; map = isl_map_remove_empty_parts(map); if (!map) return NULL; if (map->n <= 1) return map; map = isl_map_sort_divs(map); map = isl_map_cow(map); if (!map) return NULL; tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n); if (!tabs) goto error; n = map->n; for (i = 0; i < map->n; ++i) { tabs[i] = isl_tab_from_basic_map(map->p[i], 0); if (!tabs[i]) goto error; if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT)) if (isl_tab_detect_implicit_equalities(tabs[i]) < 0) goto error; map->p[i] = isl_tab_make_equalities_explicit(tabs[i], map->p[i]); if (!map->p[i]) goto error; if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT)) if (isl_tab_detect_redundant(tabs[i]) < 0) goto error; } for (i = map->n - 1; i >= 0; --i) if (tabs[i]->empty) drop(map, i, tabs); map = coalesce(map, tabs); if (map) for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_update_from_tab(map->p[i], tabs[i]); map->p[i] = isl_basic_map_gauss(map->p[i], NULL); map->p[i] = isl_basic_map_finalize(map->p[i]); if (!map->p[i]) goto error; ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT); } for (i = 0; i < n; ++i) isl_tab_free(tabs[i]); free(tabs); return map; error: if (tabs) for (i = 0; i < n; ++i) isl_tab_free(tabs[i]); free(tabs); isl_map_free(map); return NULL; } /* For each pair of basic sets in the set, check if the union of the two * can be represented by a single basic set. * If so, replace the pair by the single basic set and start over. */ struct isl_set *isl_set_coalesce(struct isl_set *set) { return (struct isl_set *)isl_map_coalesce((struct isl_map *)set); }