/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include "isl_tab.h" #include #include /* Expand the constraint "c" into "v". The initial "dim" dimensions * are the same, but "v" may have more divs than "c" and the divs of "c" * may appear in different positions in "v". * The number of divs in "c" is given by "n_div" and the mapping * of divs in "c" to divs in "v" is given by "div_map". * * Although it shouldn't happen in practice, it is theoretically * possible that two or more divs in "c" are mapped to the same div in "v". * These divs are then necessarily the same, so we simply add their * coefficients. */ static void expand_constraint(isl_vec *v, unsigned dim, isl_int *c, int *div_map, unsigned n_div) { int i; isl_seq_cpy(v->el, c, 1 + dim); isl_seq_clr(v->el + 1 + dim, v->size - (1 + dim)); for (i = 0; i < n_div; ++i) { int pos = 1 + dim + div_map[i]; isl_int_add(v->el[pos], v->el[pos], c[1 + dim + i]); } } /* Add all constraints of bmap to tab. The equalities of bmap * are added as a pair of inequalities. */ static int tab_add_constraints(struct isl_tab *tab, __isl_keep isl_basic_map *bmap, int *div_map) { int i; unsigned dim; unsigned tab_total; unsigned bmap_total; isl_vec *v; if (!tab || !bmap) return -1; tab_total = isl_basic_map_total_dim(tab->bmap); bmap_total = isl_basic_map_total_dim(bmap); dim = isl_space_dim(tab->bmap->dim, isl_dim_all); if (isl_tab_extend_cons(tab, 2 * bmap->n_eq + bmap->n_ineq) < 0) return -1; v = isl_vec_alloc(bmap->ctx, 1 + tab_total); if (!v) return -1; for (i = 0; i < bmap->n_eq; ++i) { expand_constraint(v, dim, bmap->eq[i], div_map, bmap->n_div); if (isl_tab_add_ineq(tab, v->el) < 0) goto error; isl_seq_neg(bmap->eq[i], bmap->eq[i], 1 + bmap_total); expand_constraint(v, dim, bmap->eq[i], div_map, bmap->n_div); if (isl_tab_add_ineq(tab, v->el) < 0) goto error; isl_seq_neg(bmap->eq[i], bmap->eq[i], 1 + bmap_total); if (tab->empty) break; } for (i = 0; i < bmap->n_ineq; ++i) { expand_constraint(v, dim, bmap->ineq[i], div_map, bmap->n_div); if (isl_tab_add_ineq(tab, v->el) < 0) goto error; if (tab->empty) break; } isl_vec_free(v); return 0; error: isl_vec_free(v); return -1; } /* Add a specific constraint of bmap (or its opposite) to tab. * The position of the constraint is specified by "c", where * the equalities of bmap are counted twice, once for the inequality * that is equal to the equality, and once for its negation. */ static int tab_add_constraint(struct isl_tab *tab, __isl_keep isl_basic_map *bmap, int *div_map, int c, int oppose) { unsigned dim; unsigned tab_total; unsigned bmap_total; isl_vec *v; int r; if (!tab || !bmap) return -1; tab_total = isl_basic_map_total_dim(tab->bmap); bmap_total = isl_basic_map_total_dim(bmap); dim = isl_space_dim(tab->bmap->dim, isl_dim_all); v = isl_vec_alloc(bmap->ctx, 1 + tab_total); if (!v) return -1; if (c < 2 * bmap->n_eq) { if ((c % 2) != oppose) isl_seq_neg(bmap->eq[c/2], bmap->eq[c/2], 1 + bmap_total); if (oppose) isl_int_sub_ui(bmap->eq[c/2][0], bmap->eq[c/2][0], 1); expand_constraint(v, dim, bmap->eq[c/2], div_map, bmap->n_div); r = isl_tab_add_ineq(tab, v->el); if (oppose) isl_int_add_ui(bmap->eq[c/2][0], bmap->eq[c/2][0], 1); if ((c % 2) != oppose) isl_seq_neg(bmap->eq[c/2], bmap->eq[c/2], 1 + bmap_total); } else { c -= 2 * bmap->n_eq; if (oppose) { isl_seq_neg(bmap->ineq[c], bmap->ineq[c], 1 + bmap_total); isl_int_sub_ui(bmap->ineq[c][0], bmap->ineq[c][0], 1); } expand_constraint(v, dim, bmap->ineq[c], div_map, bmap->n_div); r = isl_tab_add_ineq(tab, v->el); if (oppose) { isl_int_add_ui(bmap->ineq[c][0], bmap->ineq[c][0], 1); isl_seq_neg(bmap->ineq[c], bmap->ineq[c], 1 + bmap_total); } } isl_vec_free(v); return r; } static int tab_add_divs(struct isl_tab *tab, __isl_keep isl_basic_map *bmap, int **div_map) { int i, j; struct isl_vec *vec; unsigned total; unsigned dim; if (!bmap) return -1; if (!bmap->n_div) return 0; if (!*div_map) *div_map = isl_alloc_array(bmap->ctx, int, bmap->n_div); if (!*div_map) return -1; total = isl_basic_map_total_dim(tab->bmap); dim = total - tab->bmap->n_div; vec = isl_vec_alloc(bmap->ctx, 2 + total + bmap->n_div); if (!vec) return -1; for (i = 0; i < bmap->n_div; ++i) { isl_seq_cpy(vec->el, bmap->div[i], 2 + dim); isl_seq_clr(vec->el + 2 + dim, tab->bmap->n_div); for (j = 0; j < i; ++j) isl_int_set(vec->el[2 + dim + (*div_map)[j]], bmap->div[i][2 + dim + j]); for (j = 0; j < tab->bmap->n_div; ++j) if (isl_seq_eq(tab->bmap->div[j], vec->el, 2 + dim + tab->bmap->n_div)) break; (*div_map)[i] = j; if (j == tab->bmap->n_div) { vec->size = 2 + dim + tab->bmap->n_div; if (isl_tab_add_div(tab, vec, NULL, NULL) < 0) goto error; } } isl_vec_free(vec); return 0; error: isl_vec_free(vec); return -1; } /* Freeze all constraints of tableau tab. */ static int tab_freeze_constraints(struct isl_tab *tab) { int i; for (i = 0; i < tab->n_con; ++i) if (isl_tab_freeze_constraint(tab, i) < 0) return -1; return 0; } /* Check for redundant constraints starting at offset. * Put the indices of the redundant constraints in index * and return the number of redundant constraints. */ static int n_non_redundant(isl_ctx *ctx, struct isl_tab *tab, int offset, int **index) { int i, n; int n_test = tab->n_con - offset; if (isl_tab_detect_redundant(tab) < 0) return -1; if (n_test == 0) return 0; if (!*index) *index = isl_alloc_array(ctx, int, n_test); if (!*index) return -1; for (n = 0, i = 0; i < n_test; ++i) { int r; r = isl_tab_is_redundant(tab, offset + i); if (r < 0) return -1; if (r) continue; (*index)[n++] = i; } return n; } /* basic_map_collect_diff calls add on each of the pieces of * the set difference between bmap and map until the add method * return a negative value. */ struct isl_diff_collector { int (*add)(struct isl_diff_collector *dc, __isl_take isl_basic_map *bmap); }; /* Compute the set difference between bmap and map and call * dc->add on each of the piece until this function returns * a negative value. * Return 0 on success and -1 on error. dc->add returning * a negative value is treated as an error, but the calling * function can interpret the results based on the state of dc. * * Assumes that map has known divs. * * The difference is computed by a backtracking algorithm. * Each level corresponds to a basic map in "map". * When a node in entered for the first time, we check * if the corresonding basic map intersects the current piece * of "bmap". If not, we move to the next level. * Otherwise, we split the current piece into as many * pieces as there are non-redundant constraints of the current * basic map in the intersection. Each of these pieces is * handled by a child of the current node. * In particular, if there are n non-redundant constraints, * then for each 0 <= i < n, a piece is cut off by adding * constraints 0 <= j < i and adding the opposite of constraint i. * If there are no non-redundant constraints, meaning that the current * piece is a subset of the current basic map, then we simply backtrack. * * In the leaves, we check if the remaining piece has any integer points * and if so, pass it along to dc->add. As a special case, if nothing * has been removed when we end up in a leaf, we simply pass along * the original basic map. */ static int basic_map_collect_diff(__isl_take isl_basic_map *bmap, __isl_take isl_map *map, struct isl_diff_collector *dc) { int i; int modified; int level; int init; int empty; isl_ctx *ctx; struct isl_tab *tab = NULL; struct isl_tab_undo **snap = NULL; int *k = NULL; int *n = NULL; int **index = NULL; int **div_map = NULL; empty = isl_basic_map_is_empty(bmap); if (empty) { isl_basic_map_free(bmap); isl_map_free(map); return empty < 0 ? -1 : 0; } bmap = isl_basic_map_cow(bmap); map = isl_map_cow(map); if (!bmap || !map) goto error; ctx = map->ctx; snap = isl_alloc_array(map->ctx, struct isl_tab_undo *, map->n); k = isl_alloc_array(map->ctx, int, map->n); n = isl_alloc_array(map->ctx, int, map->n); index = isl_calloc_array(map->ctx, int *, map->n); div_map = isl_calloc_array(map->ctx, int *, map->n); if (!snap || !k || !n || !index || !div_map) goto error; bmap = isl_basic_map_order_divs(bmap); map = isl_map_order_divs(map); tab = isl_tab_from_basic_map(bmap, 1); if (!tab) goto error; modified = 0; level = 0; init = 1; while (level >= 0) { if (level >= map->n) { int empty; struct isl_basic_map *bm; if (!modified) { if (dc->add(dc, isl_basic_map_copy(bmap)) < 0) goto error; break; } bm = isl_basic_map_copy(tab->bmap); bm = isl_basic_map_cow(bm); bm = isl_basic_map_update_from_tab(bm, tab); bm = isl_basic_map_simplify(bm); bm = isl_basic_map_finalize(bm); empty = isl_basic_map_is_empty(bm); if (empty) isl_basic_map_free(bm); else if (dc->add(dc, bm) < 0) goto error; if (empty < 0) goto error; level--; init = 0; continue; } if (init) { int offset; struct isl_tab_undo *snap2; snap2 = isl_tab_snap(tab); if (tab_add_divs(tab, map->p[level], &div_map[level]) < 0) goto error; offset = tab->n_con; snap[level] = isl_tab_snap(tab); if (tab_freeze_constraints(tab) < 0) goto error; if (tab_add_constraints(tab, map->p[level], div_map[level]) < 0) goto error; k[level] = 0; n[level] = 0; if (tab->empty) { if (isl_tab_rollback(tab, snap2) < 0) goto error; level++; continue; } modified = 1; n[level] = n_non_redundant(ctx, tab, offset, &index[level]); if (n[level] < 0) goto error; if (n[level] == 0) { level--; init = 0; continue; } if (isl_tab_rollback(tab, snap[level]) < 0) goto error; if (tab_add_constraint(tab, map->p[level], div_map[level], index[level][0], 1) < 0) goto error; level++; continue; } else { if (k[level] + 1 >= n[level]) { level--; continue; } if (isl_tab_rollback(tab, snap[level]) < 0) goto error; if (tab_add_constraint(tab, map->p[level], div_map[level], index[level][k[level]], 0) < 0) goto error; snap[level] = isl_tab_snap(tab); k[level]++; if (tab_add_constraint(tab, map->p[level], div_map[level], index[level][k[level]], 1) < 0) goto error; level++; init = 1; continue; } } isl_tab_free(tab); free(snap); free(n); free(k); for (i = 0; index && i < map->n; ++i) free(index[i]); free(index); for (i = 0; div_map && i < map->n; ++i) free(div_map[i]); free(div_map); isl_basic_map_free(bmap); isl_map_free(map); return 0; error: isl_tab_free(tab); free(snap); free(n); free(k); for (i = 0; index && i < map->n; ++i) free(index[i]); free(index); for (i = 0; div_map && i < map->n; ++i) free(div_map[i]); free(div_map); isl_basic_map_free(bmap); isl_map_free(map); return -1; } /* A diff collector that actually collects all parts of the * set difference in the field diff. */ struct isl_subtract_diff_collector { struct isl_diff_collector dc; struct isl_map *diff; }; /* isl_subtract_diff_collector callback. */ static int basic_map_subtract_add(struct isl_diff_collector *dc, __isl_take isl_basic_map *bmap) { struct isl_subtract_diff_collector *sdc; sdc = (struct isl_subtract_diff_collector *)dc; sdc->diff = isl_map_union_disjoint(sdc->diff, isl_map_from_basic_map(bmap)); return sdc->diff ? 0 : -1; } /* Return the set difference between bmap and map. */ static __isl_give isl_map *basic_map_subtract(__isl_take isl_basic_map *bmap, __isl_take isl_map *map) { struct isl_subtract_diff_collector sdc; sdc.dc.add = &basic_map_subtract_add; sdc.diff = isl_map_empty_like_basic_map(bmap); if (basic_map_collect_diff(bmap, map, &sdc.dc) < 0) { isl_map_free(sdc.diff); sdc.diff = NULL; } return sdc.diff; } /* Return the set difference between map1 and map2. * (U_i A_i) \ (U_j B_j) is computed as U_i (A_i \ (U_j B_j)) * * If "map1" and "map2" are disjoint, then simply return "map1". */ static __isl_give isl_map *map_subtract( __isl_take isl_map *map1, __isl_take isl_map *map2) { int i; int disjoint; struct isl_map *diff; if (!map1 || !map2) goto error; isl_assert(map1->ctx, isl_space_is_equal(map1->dim, map2->dim), goto error); disjoint = isl_map_is_disjoint(map1, map2); if (disjoint < 0) goto error; if (disjoint) { isl_map_free(map2); return map1; } map1 = isl_map_compute_divs(map1); map2 = isl_map_compute_divs(map2); if (!map1 || !map2) goto error; map1 = isl_map_remove_empty_parts(map1); map2 = isl_map_remove_empty_parts(map2); diff = isl_map_empty_like(map1); for (i = 0; i < map1->n; ++i) { struct isl_map *d; d = basic_map_subtract(isl_basic_map_copy(map1->p[i]), isl_map_copy(map2)); if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT)) diff = isl_map_union_disjoint(diff, d); else diff = isl_map_union(diff, d); } isl_map_free(map1); isl_map_free(map2); return diff; error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_subtract( __isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_subtract); } struct isl_set *isl_set_subtract(struct isl_set *set1, struct isl_set *set2) { return (struct isl_set *) isl_map_subtract( (struct isl_map *)set1, (struct isl_map *)set2); } /* Remove the elements of "dom" from the domain of "map". */ static __isl_give isl_map *map_subtract_domain(__isl_take isl_map *map, __isl_take isl_set *dom) { isl_map *ext_dom; if (!isl_map_compatible_domain(map, dom)) isl_die(isl_set_get_ctx(dom), isl_error_invalid, "incompatible spaces", goto error); ext_dom = isl_map_universe(isl_map_get_space(map)); ext_dom = isl_map_intersect_domain(ext_dom, dom); return isl_map_subtract(map, ext_dom); error: isl_map_free(map); isl_set_free(dom); return NULL; } __isl_give isl_map *isl_map_subtract_domain(__isl_take isl_map *map, __isl_take isl_set *dom) { return isl_map_align_params_map_map_and(map, dom, &map_subtract_domain); } /* Remove the elements of "dom" from the range of "map". */ static __isl_give isl_map *map_subtract_range(__isl_take isl_map *map, __isl_take isl_set *dom) { isl_map *ext_dom; if (!isl_map_compatible_range(map, dom)) isl_die(isl_set_get_ctx(dom), isl_error_invalid, "incompatible spaces", goto error); ext_dom = isl_map_universe(isl_map_get_space(map)); ext_dom = isl_map_intersect_range(ext_dom, dom); return isl_map_subtract(map, ext_dom); error: isl_map_free(map); isl_set_free(dom); return NULL; } __isl_give isl_map *isl_map_subtract_range(__isl_take isl_map *map, __isl_take isl_set *dom) { return isl_map_align_params_map_map_and(map, dom, &map_subtract_range); } /* A diff collector that aborts as soon as its add function is called, * setting empty to 0. */ struct isl_is_empty_diff_collector { struct isl_diff_collector dc; int empty; }; /* isl_is_empty_diff_collector callback. */ static int basic_map_is_empty_add(struct isl_diff_collector *dc, __isl_take isl_basic_map *bmap) { struct isl_is_empty_diff_collector *edc; edc = (struct isl_is_empty_diff_collector *)dc; edc->empty = 0; isl_basic_map_free(bmap); return -1; } /* Check if bmap \ map is empty by computing this set difference * and breaking off as soon as the difference is known to be non-empty. */ static int basic_map_diff_is_empty(__isl_keep isl_basic_map *bmap, __isl_keep isl_map *map) { int r; struct isl_is_empty_diff_collector edc; r = isl_basic_map_plain_is_empty(bmap); if (r) return r; edc.dc.add = &basic_map_is_empty_add; edc.empty = 1; r = basic_map_collect_diff(isl_basic_map_copy(bmap), isl_map_copy(map), &edc.dc); if (!edc.empty) return 0; return r < 0 ? -1 : 1; } /* Check if map1 \ map2 is empty by checking if the set difference is empty * for each of the basic maps in map1. */ static int map_diff_is_empty(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int i; int is_empty = 1; if (!map1 || !map2) return -1; for (i = 0; i < map1->n; ++i) { is_empty = basic_map_diff_is_empty(map1->p[i], map2); if (is_empty < 0 || !is_empty) break; } return is_empty; } /* Return 1 if "bmap" contains a single element. */ int isl_basic_map_plain_is_singleton(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; if (bmap->n_div) return 0; if (bmap->n_ineq) return 0; return bmap->n_eq == isl_basic_map_total_dim(bmap); } /* Return 1 if "map" contains a single element. */ int isl_map_plain_is_singleton(__isl_keep isl_map *map) { if (!map) return -1; if (map->n != 1) return 0; return isl_basic_map_plain_is_singleton(map->p[0]); } /* Given a singleton basic map, extract the single element * as an isl_point. */ static __isl_give isl_point *singleton_extract_point( __isl_keep isl_basic_map *bmap) { int j; unsigned dim; struct isl_vec *point; isl_int m; if (!bmap) return NULL; dim = isl_basic_map_total_dim(bmap); isl_assert(bmap->ctx, bmap->n_eq == dim, return NULL); point = isl_vec_alloc(bmap->ctx, 1 + dim); if (!point) return NULL; isl_int_init(m); isl_int_set_si(point->el[0], 1); for (j = 0; j < bmap->n_eq; ++j) { int i = dim - 1 - j; isl_assert(bmap->ctx, isl_seq_first_non_zero(bmap->eq[j] + 1, i) == -1, goto error); isl_assert(bmap->ctx, isl_int_is_one(bmap->eq[j][1 + i]) || isl_int_is_negone(bmap->eq[j][1 + i]), goto error); isl_assert(bmap->ctx, isl_seq_first_non_zero(bmap->eq[j]+1+i+1, dim-i-1) == -1, goto error); isl_int_gcd(m, point->el[0], bmap->eq[j][1 + i]); isl_int_divexact(m, bmap->eq[j][1 + i], m); isl_int_abs(m, m); isl_seq_scale(point->el, point->el, m, 1 + i); isl_int_divexact(m, point->el[0], bmap->eq[j][1 + i]); isl_int_neg(m, m); isl_int_mul(point->el[1 + i], m, bmap->eq[j][0]); } isl_int_clear(m); return isl_point_alloc(isl_basic_map_get_space(bmap), point); error: isl_int_clear(m); isl_vec_free(point); return NULL; } /* Return 1 is the singleton map "map1" is a subset of "map2", * i.e., if the single element of "map1" is also an element of "map2". * Assumes "map2" has known divs. */ static int map_is_singleton_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int i; int is_subset = 0; struct isl_point *point; if (!map1 || !map2) return -1; if (map1->n != 1) return -1; point = singleton_extract_point(map1->p[0]); if (!point) return -1; for (i = 0; i < map2->n; ++i) { is_subset = isl_basic_map_contains_point(map2->p[i], point); if (is_subset) break; } isl_point_free(point); return is_subset; } static int map_is_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int is_subset = 0; int empty; int rat1, rat2; if (!map1 || !map2) return -1; if (!isl_map_has_equal_space(map1, map2)) return 0; empty = isl_map_is_empty(map1); if (empty < 0) return -1; if (empty) return 1; empty = isl_map_is_empty(map2); if (empty < 0) return -1; if (empty) return 0; rat1 = isl_map_has_rational(map1); rat2 = isl_map_has_rational(map2); if (rat1 < 0 || rat2 < 0) return -1; if (rat1 && !rat2) return 0; if (isl_map_plain_is_universe(map2)) return 1; map2 = isl_map_compute_divs(isl_map_copy(map2)); if (isl_map_plain_is_singleton(map1)) { is_subset = map_is_singleton_subset(map1, map2); isl_map_free(map2); return is_subset; } is_subset = map_diff_is_empty(map1, map2); isl_map_free(map2); return is_subset; } int isl_map_is_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { return isl_map_align_params_map_map_and_test(map1, map2, &map_is_subset); } int isl_set_is_subset(struct isl_set *set1, struct isl_set *set2) { return isl_map_is_subset( (struct isl_map *)set1, (struct isl_map *)set2); } __isl_give isl_map *isl_map_make_disjoint(__isl_take isl_map *map) { int i; struct isl_subtract_diff_collector sdc; sdc.dc.add = &basic_map_subtract_add; if (!map) return NULL; if (ISL_F_ISSET(map, ISL_MAP_DISJOINT)) return map; if (map->n <= 1) return map; map = isl_map_compute_divs(map); map = isl_map_remove_empty_parts(map); if (!map || map->n <= 1) return map; sdc.diff = isl_map_from_basic_map(isl_basic_map_copy(map->p[0])); for (i = 1; i < map->n; ++i) { struct isl_basic_map *bmap = isl_basic_map_copy(map->p[i]); struct isl_map *copy = isl_map_copy(sdc.diff); if (basic_map_collect_diff(bmap, copy, &sdc.dc) < 0) { isl_map_free(sdc.diff); sdc.diff = NULL; break; } } isl_map_free(map); return sdc.diff; } __isl_give isl_set *isl_set_make_disjoint(__isl_take isl_set *set) { return (struct isl_set *)isl_map_make_disjoint((struct isl_map *)set); } __isl_give isl_map *isl_map_complement(__isl_take isl_map *map) { isl_map *universe; if (!map) return NULL; universe = isl_map_universe(isl_map_get_space(map)); return isl_map_subtract(universe, map); } __isl_give isl_set *isl_set_complement(__isl_take isl_set *set) { return isl_map_complement(set); }