#include #include #include #include #include #include struct range_data { struct isl_bound *bound; int *signs; int sign; int test_monotonicity; int monotonicity; int tight; isl_qpolynomial *poly; isl_pw_qpolynomial_fold *pwf; isl_pw_qpolynomial_fold *pwf_tight; }; static int propagate_on_domain(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data); /* Check whether the polynomial "poly" has sign "sign" over "bset", * i.e., if sign == 1, check that the lower bound on the polynomial * is non-negative and if sign == -1, check that the upper bound on * the polynomial is non-positive. */ static int has_sign(__isl_keep isl_basic_set *bset, __isl_keep isl_qpolynomial *poly, int sign, int *signs) { struct range_data data_m; unsigned nvar; unsigned nparam; isl_space *dim; isl_val *opt; int r; enum isl_fold type; nparam = isl_basic_set_dim(bset, isl_dim_param); nvar = isl_basic_set_dim(bset, isl_dim_set); bset = isl_basic_set_copy(bset); poly = isl_qpolynomial_copy(poly); bset = isl_basic_set_move_dims(bset, isl_dim_set, 0, isl_dim_param, 0, nparam); poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0, isl_dim_param, 0, nparam); dim = isl_qpolynomial_get_space(poly); dim = isl_space_params(dim); dim = isl_space_from_domain(dim); dim = isl_space_add_dims(dim, isl_dim_out, 1); data_m.test_monotonicity = 0; data_m.signs = signs; data_m.sign = -sign; type = data_m.sign < 0 ? isl_fold_min : isl_fold_max; data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type); data_m.tight = 0; data_m.pwf_tight = NULL; if (propagate_on_domain(bset, poly, &data_m) < 0) goto error; if (sign > 0) opt = isl_pw_qpolynomial_fold_min(data_m.pwf); else opt = isl_pw_qpolynomial_fold_max(data_m.pwf); if (!opt) r = -1; else if (isl_val_is_nan(opt) || isl_val_is_infty(opt) || isl_val_is_neginfty(opt)) r = 0; else r = sign * isl_val_sgn(opt) >= 0; isl_val_free(opt); return r; error: isl_pw_qpolynomial_fold_free(data_m.pwf); return -1; } /* Return 1 if poly is monotonically increasing in the last set variable, * -1 if poly is monotonically decreasing in the last set variable, * 0 if no conclusion, * -2 on error. * * We simply check the sign of p(x+1)-p(x) */ static int monotonicity(__isl_keep isl_basic_set *bset, __isl_keep isl_qpolynomial *poly, struct range_data *data) { isl_ctx *ctx; isl_space *dim; isl_qpolynomial *sub = NULL; isl_qpolynomial *diff = NULL; int result = 0; int s; unsigned nvar; ctx = isl_qpolynomial_get_ctx(poly); dim = isl_qpolynomial_get_domain_space(poly); nvar = isl_basic_set_dim(bset, isl_dim_set); sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1); sub = isl_qpolynomial_add(sub, isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one)); diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly), isl_dim_in, nvar - 1, 1, &sub); diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly)); s = has_sign(bset, diff, 1, data->signs); if (s < 0) goto error; if (s) result = 1; else { s = has_sign(bset, diff, -1, data->signs); if (s < 0) goto error; if (s) result = -1; } isl_qpolynomial_free(diff); isl_qpolynomial_free(sub); return result; error: isl_qpolynomial_free(diff); isl_qpolynomial_free(sub); return -2; } static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, __isl_take isl_space *dim, unsigned pos, int sign) { if (!bound) { if (sign > 0) return isl_qpolynomial_infty_on_domain(dim); else return isl_qpolynomial_neginfty_on_domain(dim); } isl_space_free(dim); return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos); } static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos) { isl_int c; int is_int; if (!bound) return 1; isl_int_init(c); isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c); is_int = isl_int_is_one(c) || isl_int_is_negone(c); isl_int_clear(c); return is_int; } struct isl_fixed_sign_data { int *signs; int sign; isl_qpolynomial *poly; }; /* Add term "term" to data->poly if it has sign data->sign. * The sign is determined based on the signs of the parameters * and variables in data->signs. The integer divisions, if * any, are assumed to be non-negative. */ static int collect_fixed_sign_terms(__isl_take isl_term *term, void *user) { struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; isl_int n; int i; int sign; unsigned nparam; unsigned nvar; if (!term) return -1; nparam = isl_term_dim(term, isl_dim_param); nvar = isl_term_dim(term, isl_dim_set); isl_int_init(n); isl_term_get_num(term, &n); sign = isl_int_sgn(n); for (i = 0; i < nparam; ++i) { if (data->signs[i] > 0) continue; if (isl_term_get_exp(term, isl_dim_param, i) % 2) sign = -sign; } for (i = 0; i < nvar; ++i) { if (data->signs[nparam + i] > 0) continue; if (isl_term_get_exp(term, isl_dim_set, i) % 2) sign = -sign; } if (sign == data->sign) { isl_qpolynomial *t = isl_qpolynomial_from_term(term); data->poly = isl_qpolynomial_add(data->poly, t); } else isl_term_free(term); isl_int_clear(n); return 0; } /* Construct and return a polynomial that consists of the terms * in "poly" that have sign "sign". The integer divisions, if * any, are assumed to be non-negative. */ __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( __isl_keep isl_qpolynomial *poly, int *signs, int sign) { isl_space *space; struct isl_fixed_sign_data data = { signs, sign }; space = isl_qpolynomial_get_domain_space(poly); data.poly = isl_qpolynomial_zero_on_domain(space); if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0) goto error; return data.poly; error: isl_qpolynomial_free(data.poly); return NULL; } /* Helper function to add a guarded polynomial to either pwf_tight or pwf, * depending on whether the result has been determined to be tight. */ static int add_guarded_poly(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data) { enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; isl_set *set; isl_qpolynomial_fold *fold; isl_pw_qpolynomial_fold *pwf; bset = isl_basic_set_params(bset); poly = isl_qpolynomial_project_domain_on_params(poly); fold = isl_qpolynomial_fold_alloc(type, poly); set = isl_set_from_basic_set(bset); pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); if (data->tight) data->pwf_tight = isl_pw_qpolynomial_fold_fold( data->pwf_tight, pwf); else data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); return 0; } /* Given a lower and upper bound on the final variable and constraints * on the remaining variables where these bounds are active, * eliminate the variable from data->poly based on these bounds. * If the polynomial has been determined to be monotonic * in the variable, then simply plug in the appropriate bound. * If the current polynomial is tight and if this bound is integer, * then the result is still tight. In all other cases, the results * may not be tight. * Otherwise, plug in the largest bound (in absolute value) in * the positive terms (if an upper bound is wanted) or the negative terms * (if a lower bounded is wanted) and the other bound in the other terms. * * If all variables have been eliminated, then record the result. * Ohterwise, recurse on the next variable. */ static int propagate_on_bound_pair(__isl_take isl_constraint *lower, __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, void *user) { struct range_data *data = (struct range_data *)user; int save_tight = data->tight; isl_qpolynomial *poly; int r; unsigned nvar; nvar = isl_basic_set_dim(bset, isl_dim_set); if (data->monotonicity) { isl_qpolynomial *sub; isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); if (data->monotonicity * data->sign > 0) { if (data->tight) data->tight = bound_is_integer(upper, nvar); sub = bound2poly(upper, dim, nvar, 1); isl_constraint_free(lower); } else { if (data->tight) data->tight = bound_is_integer(lower, nvar); sub = bound2poly(lower, dim, nvar, -1); isl_constraint_free(upper); } poly = isl_qpolynomial_copy(data->poly); poly = isl_qpolynomial_substitute(poly, isl_dim_in, nvar, 1, &sub); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); isl_qpolynomial_free(sub); } else { isl_qpolynomial *l, *u; isl_qpolynomial *pos, *neg; isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); int sign = data->sign * data->signs[nparam + nvar]; data->tight = 0; u = bound2poly(upper, isl_space_copy(dim), nvar, 1); l = bound2poly(lower, dim, nvar, -1); pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign); neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign); pos = isl_qpolynomial_substitute(pos, isl_dim_in, nvar, 1, &u); neg = isl_qpolynomial_substitute(neg, isl_dim_in, nvar, 1, &l); poly = isl_qpolynomial_add(pos, neg); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); isl_qpolynomial_free(u); isl_qpolynomial_free(l); } if (isl_basic_set_dim(bset, isl_dim_set) == 0) r = add_guarded_poly(bset, poly, data); else r = propagate_on_domain(bset, poly, data); data->tight = save_tight; return r; } /* Recursively perform range propagation on the polynomial "poly" * defined over the basic set "bset" and collect the results in "data". */ static int propagate_on_domain(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data) { isl_ctx *ctx; isl_qpolynomial *save_poly = data->poly; int save_monotonicity = data->monotonicity; unsigned d; if (!bset || !poly) goto error; ctx = isl_basic_set_get_ctx(bset); d = isl_basic_set_dim(bset, isl_dim_set); isl_assert(ctx, d >= 1, goto error); if (isl_qpolynomial_is_cst(poly, NULL, NULL)) { bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d); return add_guarded_poly(bset, poly, data); } if (data->test_monotonicity) data->monotonicity = monotonicity(bset, poly, data); else data->monotonicity = 0; if (data->monotonicity < -1) goto error; data->poly = poly; if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1, &propagate_on_bound_pair, data) < 0) goto error; isl_basic_set_free(bset); isl_qpolynomial_free(poly); data->monotonicity = save_monotonicity; data->poly = save_poly; return 0; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); data->monotonicity = save_monotonicity; data->poly = save_poly; return -1; } static int basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user) { struct range_data *data = (struct range_data *)user; isl_ctx *ctx; unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); unsigned dim = isl_basic_set_dim(bset, isl_dim_set); int r; data->signs = NULL; ctx = isl_basic_set_get_ctx(bset); data->signs = isl_alloc_array(ctx, int, isl_basic_set_dim(bset, isl_dim_all)); if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim, data->signs + nparam) < 0) goto error; if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam, data->signs) < 0) goto error; r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data); free(data->signs); return r; error: free(data->signs); isl_basic_set_free(bset); return -1; } static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data) { unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); unsigned nvar = isl_basic_set_dim(bset, isl_dim_set); isl_set *set = NULL; if (!bset) goto error; if (nvar == 0) return add_guarded_poly(bset, poly, data); set = isl_set_from_basic_set(bset); set = isl_set_split_dims(set, isl_dim_param, 0, nparam); set = isl_set_split_dims(set, isl_dim_set, 0, nvar); data->poly = poly; data->test_monotonicity = 1; if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0) goto error; isl_set_free(set); isl_qpolynomial_free(poly); return 0; error: isl_set_free(set); isl_qpolynomial_free(poly); return -1; } int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct isl_bound *bound) { struct range_data data; int r; data.pwf = bound->pwf; data.pwf_tight = bound->pwf_tight; data.tight = bound->check_tight; if (bound->type == isl_fold_min) data.sign = -1; else data.sign = 1; r = qpolynomial_bound_on_domain_range(bset, poly, &data); bound->pwf = data.pwf; bound->pwf_tight = data.pwf_tight; return r; }