/* * Copyright 2005-2007 Universiteit Leiden * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012 Universiteit Leiden * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, * B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include #include #include enum isl_restriction_type { isl_restriction_type_empty, isl_restriction_type_none, isl_restriction_type_input, isl_restriction_type_output }; struct isl_restriction { enum isl_restriction_type type; isl_set *source; isl_set *sink; }; /* Create a restriction of the given type. */ static __isl_give isl_restriction *isl_restriction_alloc( __isl_take isl_map *source_map, enum isl_restriction_type type) { isl_ctx *ctx; isl_restriction *restr; if (!source_map) return NULL; ctx = isl_map_get_ctx(source_map); restr = isl_calloc_type(ctx, struct isl_restriction); if (!restr) goto error; restr->type = type; isl_map_free(source_map); return restr; error: isl_map_free(source_map); return NULL; } /* Create a restriction that doesn't restrict anything. */ __isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map) { return isl_restriction_alloc(source_map, isl_restriction_type_none); } /* Create a restriction that removes everything. */ __isl_give isl_restriction *isl_restriction_empty( __isl_take isl_map *source_map) { return isl_restriction_alloc(source_map, isl_restriction_type_empty); } /* Create a restriction on the input of the maximization problem * based on the given source and sink restrictions. */ __isl_give isl_restriction *isl_restriction_input( __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr) { isl_ctx *ctx; isl_restriction *restr; if (!source_restr || !sink_restr) goto error; ctx = isl_set_get_ctx(source_restr); restr = isl_calloc_type(ctx, struct isl_restriction); if (!restr) goto error; restr->type = isl_restriction_type_input; restr->source = source_restr; restr->sink = sink_restr; return restr; error: isl_set_free(source_restr); isl_set_free(sink_restr); return NULL; } /* Create a restriction on the output of the maximization problem * based on the given source restriction. */ __isl_give isl_restriction *isl_restriction_output( __isl_take isl_set *source_restr) { isl_ctx *ctx; isl_restriction *restr; if (!source_restr) return NULL; ctx = isl_set_get_ctx(source_restr); restr = isl_calloc_type(ctx, struct isl_restriction); if (!restr) goto error; restr->type = isl_restriction_type_output; restr->source = source_restr; return restr; error: isl_set_free(source_restr); return NULL; } __isl_null isl_restriction *isl_restriction_free( __isl_take isl_restriction *restr) { if (!restr) return NULL; isl_set_free(restr->source); isl_set_free(restr->sink); free(restr); return NULL; } isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr) { return restr ? isl_set_get_ctx(restr->source) : NULL; } /* A private structure to keep track of a mapping together with * a user-specified identifier and a boolean indicating whether * the map represents a must or may access/dependence. */ struct isl_labeled_map { struct isl_map *map; void *data; int must; }; /* A structure containing the input for dependence analysis: * - a sink * - n_must + n_may (<= max_source) sources * - a function for determining the relative order of sources and sink * The must sources are placed before the may sources. * * domain_map is an auxiliary map that maps the sink access relation * to the domain of this access relation. * * restrict_fn is a callback that (if not NULL) will be called * right before any lexicographical maximization. */ struct isl_access_info { isl_map *domain_map; struct isl_labeled_map sink; isl_access_level_before level_before; isl_access_restrict restrict_fn; void *restrict_user; int max_source; int n_must; int n_may; struct isl_labeled_map source[1]; }; /* A structure containing the output of dependence analysis: * - n_source dependences * - a wrapped subset of the sink for which definitely no source could be found * - a wrapped subset of the sink for which possibly no source could be found */ struct isl_flow { isl_set *must_no_source; isl_set *may_no_source; int n_source; struct isl_labeled_map *dep; }; /* Construct an isl_access_info structure and fill it up with * the given data. The number of sources is set to 0. */ __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink, void *sink_user, isl_access_level_before fn, int max_source) { isl_ctx *ctx; struct isl_access_info *acc; if (!sink) return NULL; ctx = isl_map_get_ctx(sink); isl_assert(ctx, max_source >= 0, goto error); acc = isl_calloc(ctx, struct isl_access_info, sizeof(struct isl_access_info) + (max_source - 1) * sizeof(struct isl_labeled_map)); if (!acc) goto error; acc->sink.map = sink; acc->sink.data = sink_user; acc->level_before = fn; acc->max_source = max_source; acc->n_must = 0; acc->n_may = 0; return acc; error: isl_map_free(sink); return NULL; } /* Free the given isl_access_info structure. */ __isl_null isl_access_info *isl_access_info_free( __isl_take isl_access_info *acc) { int i; if (!acc) return NULL; isl_map_free(acc->domain_map); isl_map_free(acc->sink.map); for (i = 0; i < acc->n_must + acc->n_may; ++i) isl_map_free(acc->source[i].map); free(acc); return NULL; } isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc) { return acc ? isl_map_get_ctx(acc->sink.map) : NULL; } __isl_give isl_access_info *isl_access_info_set_restrict( __isl_take isl_access_info *acc, isl_access_restrict fn, void *user) { if (!acc) return NULL; acc->restrict_fn = fn; acc->restrict_user = user; return acc; } /* Add another source to an isl_access_info structure, making * sure the "must" sources are placed before the "may" sources. * This function may be called at most max_source times on a * given isl_access_info structure, with max_source as specified * in the call to isl_access_info_alloc that constructed the structure. */ __isl_give isl_access_info *isl_access_info_add_source( __isl_take isl_access_info *acc, __isl_take isl_map *source, int must, void *source_user) { isl_ctx *ctx; if (!acc) goto error; ctx = isl_map_get_ctx(acc->sink.map); isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error); if (must) { if (acc->n_may) acc->source[acc->n_must + acc->n_may] = acc->source[acc->n_must]; acc->source[acc->n_must].map = source; acc->source[acc->n_must].data = source_user; acc->source[acc->n_must].must = 1; acc->n_must++; } else { acc->source[acc->n_must + acc->n_may].map = source; acc->source[acc->n_must + acc->n_may].data = source_user; acc->source[acc->n_must + acc->n_may].must = 0; acc->n_may++; } return acc; error: isl_map_free(source); isl_access_info_free(acc); return NULL; } /* Return -n, 0 or n (with n a positive value), depending on whether * the source access identified by p1 should be sorted before, together * or after that identified by p2. * * If p1 appears before p2, then it should be sorted first. * For more generic initial schedules, it is possible that neither * p1 nor p2 appears before the other, or at least not in any obvious way. * We therefore also check if p2 appears before p1, in which case p2 * should be sorted first. * If not, we try to order the two statements based on the description * of the iteration domains. This results in an arbitrary, but fairly * stable ordering. */ static int access_sort_cmp(const void *p1, const void *p2, void *user) { isl_access_info *acc = user; const struct isl_labeled_map *i1, *i2; int level1, level2; uint32_t h1, h2; i1 = (const struct isl_labeled_map *) p1; i2 = (const struct isl_labeled_map *) p2; level1 = acc->level_before(i1->data, i2->data); if (level1 % 2) return -1; level2 = acc->level_before(i2->data, i1->data); if (level2 % 2) return 1; h1 = isl_map_get_hash(i1->map); h2 = isl_map_get_hash(i2->map); return h1 > h2 ? 1 : h1 < h2 ? -1 : 0; } /* Sort the must source accesses in their textual order. */ static __isl_give isl_access_info *isl_access_info_sort_sources( __isl_take isl_access_info *acc) { if (!acc) return NULL; if (acc->n_must <= 1) return acc; if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map), access_sort_cmp, acc) < 0) return isl_access_info_free(acc); return acc; } /* Align the parameters of the two spaces if needed and then call * isl_space_join. */ static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left, __isl_take isl_space *right) { if (isl_space_match(left, isl_dim_param, right, isl_dim_param)) return isl_space_join(left, right); left = isl_space_align_params(left, isl_space_copy(right)); right = isl_space_align_params(right, isl_space_copy(left)); return isl_space_join(left, right); } /* Initialize an empty isl_flow structure corresponding to a given * isl_access_info structure. * For each must access, two dependences are created (initialized * to the empty relation), one for the resulting must dependences * and one for the resulting may dependences. May accesses can * only lead to may dependences, so only one dependence is created * for each of them. * This function is private as isl_flow structures are only supposed * to be created by isl_access_info_compute_flow. */ static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc) { int i, n; struct isl_ctx *ctx; struct isl_flow *dep; if (!acc) return NULL; ctx = isl_map_get_ctx(acc->sink.map); dep = isl_calloc_type(ctx, struct isl_flow); if (!dep) return NULL; n = 2 * acc->n_must + acc->n_may; dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n); if (n && !dep->dep) goto error; dep->n_source = n; for (i = 0; i < acc->n_must; ++i) { isl_space *dim; dim = space_align_and_join( isl_map_get_space(acc->source[i].map), isl_space_reverse(isl_map_get_space(acc->sink.map))); dep->dep[2 * i].map = isl_map_empty(dim); dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map); dep->dep[2 * i].data = acc->source[i].data; dep->dep[2 * i + 1].data = acc->source[i].data; dep->dep[2 * i].must = 1; dep->dep[2 * i + 1].must = 0; if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map) goto error; } for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) { isl_space *dim; dim = space_align_and_join( isl_map_get_space(acc->source[i].map), isl_space_reverse(isl_map_get_space(acc->sink.map))); dep->dep[acc->n_must + i].map = isl_map_empty(dim); dep->dep[acc->n_must + i].data = acc->source[i].data; dep->dep[acc->n_must + i].must = 0; if (!dep->dep[acc->n_must + i].map) goto error; } return dep; error: isl_flow_free(dep); return NULL; } /* Iterate over all sources and for each resulting flow dependence * that is not empty, call the user specfied function. * The second argument in this function call identifies the source, * while the third argument correspond to the final argument of * the isl_flow_foreach call. */ int isl_flow_foreach(__isl_keep isl_flow *deps, int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user), void *user) { int i; if (!deps) return -1; for (i = 0; i < deps->n_source; ++i) { if (isl_map_plain_is_empty(deps->dep[i].map)) continue; if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must, deps->dep[i].data, user) < 0) return -1; } return 0; } /* Return a copy of the subset of the sink for which no source could be found. */ __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must) { if (!deps) return NULL; if (must) return isl_set_unwrap(isl_set_copy(deps->must_no_source)); else return isl_set_unwrap(isl_set_copy(deps->may_no_source)); } void isl_flow_free(__isl_take isl_flow *deps) { int i; if (!deps) return; isl_set_free(deps->must_no_source); isl_set_free(deps->may_no_source); if (deps->dep) { for (i = 0; i < deps->n_source; ++i) isl_map_free(deps->dep[i].map); free(deps->dep); } free(deps); } isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps) { return deps ? isl_set_get_ctx(deps->must_no_source) : NULL; } /* Return a map that enforces that the domain iteration occurs after * the range iteration at the given level. * If level is odd, then the domain iteration should occur after * the target iteration in their shared level/2 outermost loops. * In this case we simply need to enforce that these outermost * loop iterations are the same. * If level is even, then the loop iterator of the domain should * be greater than the loop iterator of the range at the last * of the level/2 shared loops, i.e., loop level/2 - 1. */ static __isl_give isl_map *after_at_level(__isl_take isl_space *dim, int level) { struct isl_basic_map *bmap; if (level % 2) bmap = isl_basic_map_equal(dim, level/2); else bmap = isl_basic_map_more_at(dim, level/2 - 1); return isl_map_from_basic_map(bmap); } /* Compute the partial lexicographic maximum of "dep" on domain "sink", * but first check if the user has set acc->restrict_fn and if so * update either the input or the output of the maximization problem * with respect to the resulting restriction. * * Since the user expects a mapping from sink iterations to source iterations, * whereas the domain of "dep" is a wrapped map, mapping sink iterations * to accessed array elements, we first need to project out the accessed * sink array elements by applying acc->domain_map. * Similarly, the sink restriction specified by the user needs to be * converted back to the wrapped map. */ static __isl_give isl_map *restricted_partial_lexmax( __isl_keep isl_access_info *acc, __isl_take isl_map *dep, int source, __isl_take isl_set *sink, __isl_give isl_set **empty) { isl_map *source_map; isl_restriction *restr; isl_set *sink_domain; isl_set *sink_restr; isl_map *res; if (!acc->restrict_fn) return isl_map_partial_lexmax(dep, sink, empty); source_map = isl_map_copy(dep); source_map = isl_map_apply_domain(source_map, isl_map_copy(acc->domain_map)); sink_domain = isl_set_copy(sink); sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map)); restr = acc->restrict_fn(source_map, sink_domain, acc->source[source].data, acc->restrict_user); isl_set_free(sink_domain); isl_map_free(source_map); if (!restr) goto error; if (restr->type == isl_restriction_type_input) { dep = isl_map_intersect_range(dep, isl_set_copy(restr->source)); sink_restr = isl_set_copy(restr->sink); sink_restr = isl_set_apply(sink_restr, isl_map_reverse(isl_map_copy(acc->domain_map))); sink = isl_set_intersect(sink, sink_restr); } else if (restr->type == isl_restriction_type_empty) { isl_space *space = isl_map_get_space(dep); isl_map_free(dep); dep = isl_map_empty(space); } res = isl_map_partial_lexmax(dep, sink, empty); if (restr->type == isl_restriction_type_output) res = isl_map_intersect_range(res, isl_set_copy(restr->source)); isl_restriction_free(restr); return res; error: isl_map_free(dep); isl_set_free(sink); *empty = NULL; return NULL; } /* Compute the last iteration of must source j that precedes the sink * at the given level for sink iterations in set_C. * The subset of set_C for which no such iteration can be found is returned * in *empty. */ static struct isl_map *last_source(struct isl_access_info *acc, struct isl_set *set_C, int j, int level, struct isl_set **empty) { struct isl_map *read_map; struct isl_map *write_map; struct isl_map *dep_map; struct isl_map *after; struct isl_map *result; read_map = isl_map_copy(acc->sink.map); write_map = isl_map_copy(acc->source[j].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); after = after_at_level(isl_map_get_space(dep_map), level); dep_map = isl_map_intersect(dep_map, after); result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty); result = isl_map_reverse(result); return result; } /* For a given mapping between iterations of must source j and iterations * of the sink, compute the last iteration of must source k preceding * the sink at level before_level for any of the sink iterations, * but following the corresponding iteration of must source j at level * after_level. */ static struct isl_map *last_later_source(struct isl_access_info *acc, struct isl_map *old_map, int j, int before_level, int k, int after_level, struct isl_set **empty) { isl_space *dim; struct isl_set *set_C; struct isl_map *read_map; struct isl_map *write_map; struct isl_map *dep_map; struct isl_map *after_write; struct isl_map *before_read; struct isl_map *result; set_C = isl_map_range(isl_map_copy(old_map)); read_map = isl_map_copy(acc->sink.map); write_map = isl_map_copy(acc->source[k].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); dim = space_align_and_join(isl_map_get_space(acc->source[k].map), isl_space_reverse(isl_map_get_space(acc->source[j].map))); after_write = after_at_level(dim, after_level); after_write = isl_map_apply_range(after_write, old_map); after_write = isl_map_reverse(after_write); dep_map = isl_map_intersect(dep_map, after_write); before_read = after_at_level(isl_map_get_space(dep_map), before_level); dep_map = isl_map_intersect(dep_map, before_read); result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty); result = isl_map_reverse(result); return result; } /* Given a shared_level between two accesses, return 1 if the * the first can precede the second at the requested target_level. * If the target level is odd, i.e., refers to a statement level * dimension, then first needs to precede second at the requested * level, i.e., shared_level must be equal to target_level. * If the target level is odd, then the two loops should share * at least the requested number of outer loops. */ static int can_precede_at_level(int shared_level, int target_level) { if (shared_level < target_level) return 0; if ((target_level % 2) && shared_level > target_level) return 0; return 1; } /* Given a possible flow dependence temp_rel[j] between source j and the sink * at level sink_level, remove those elements for which * there is an iteration of another source k < j that is closer to the sink. * The flow dependences temp_rel[k] are updated with the improved sources. * Any improved source needs to precede the sink at the same level * and needs to follow source j at the same or a deeper level. * The lower this level, the later the execution date of source k. * We therefore consider lower levels first. * * If temp_rel[j] is empty, then there can be no improvement and * we return immediately. */ static int intermediate_sources(__isl_keep isl_access_info *acc, struct isl_map **temp_rel, int j, int sink_level) { int k, level; int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1; if (isl_map_plain_is_empty(temp_rel[j])) return 0; for (k = j - 1; k >= 0; --k) { int plevel, plevel2; plevel = acc->level_before(acc->source[k].data, acc->sink.data); if (!can_precede_at_level(plevel, sink_level)) continue; plevel2 = acc->level_before(acc->source[j].data, acc->source[k].data); for (level = sink_level; level <= depth; ++level) { struct isl_map *T; struct isl_set *trest; struct isl_map *copy; if (!can_precede_at_level(plevel2, level)) continue; copy = isl_map_copy(temp_rel[j]); T = last_later_source(acc, copy, j, sink_level, k, level, &trest); if (isl_map_plain_is_empty(T)) { isl_set_free(trest); isl_map_free(T); continue; } temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest); temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T); } } return 0; } /* Compute all iterations of may source j that precedes the sink at the given * level for sink iterations in set_C. */ static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc, __isl_take isl_set *set_C, int j, int level) { isl_map *read_map; isl_map *write_map; isl_map *dep_map; isl_map *after; read_map = isl_map_copy(acc->sink.map); read_map = isl_map_intersect_domain(read_map, set_C); write_map = isl_map_copy(acc->source[acc->n_must + j].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); after = after_at_level(isl_map_get_space(dep_map), level); dep_map = isl_map_intersect(dep_map, after); return isl_map_reverse(dep_map); } /* For a given mapping between iterations of must source k and iterations * of the sink, compute the all iteration of may source j preceding * the sink at level before_level for any of the sink iterations, * but following the corresponding iteration of must source k at level * after_level. */ static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc, __isl_take isl_map *old_map, int j, int before_level, int k, int after_level) { isl_space *dim; isl_set *set_C; isl_map *read_map; isl_map *write_map; isl_map *dep_map; isl_map *after_write; isl_map *before_read; set_C = isl_map_range(isl_map_copy(old_map)); read_map = isl_map_copy(acc->sink.map); read_map = isl_map_intersect_domain(read_map, set_C); write_map = isl_map_copy(acc->source[acc->n_must + j].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); dim = isl_space_join(isl_map_get_space(acc->source[acc->n_must + j].map), isl_space_reverse(isl_map_get_space(acc->source[k].map))); after_write = after_at_level(dim, after_level); after_write = isl_map_apply_range(after_write, old_map); after_write = isl_map_reverse(after_write); dep_map = isl_map_intersect(dep_map, after_write); before_read = after_at_level(isl_map_get_space(dep_map), before_level); dep_map = isl_map_intersect(dep_map, before_read); return isl_map_reverse(dep_map); } /* Given the must and may dependence relations for the must accesses * for level sink_level, check if there are any accesses of may access j * that occur in between and return their union. * If some of these accesses are intermediate with respect to * (previously thought to be) must dependences, then these * must dependences are turned into may dependences. */ static __isl_give isl_map *all_intermediate_sources( __isl_keep isl_access_info *acc, __isl_take isl_map *map, struct isl_map **must_rel, struct isl_map **may_rel, int j, int sink_level) { int k, level; int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map, isl_dim_in) + 1; for (k = 0; k < acc->n_must; ++k) { int plevel; if (isl_map_plain_is_empty(may_rel[k]) && isl_map_plain_is_empty(must_rel[k])) continue; plevel = acc->level_before(acc->source[k].data, acc->source[acc->n_must + j].data); for (level = sink_level; level <= depth; ++level) { isl_map *T; isl_map *copy; isl_set *ran; if (!can_precede_at_level(plevel, level)) continue; copy = isl_map_copy(may_rel[k]); T = all_later_sources(acc, copy, j, sink_level, k, level); map = isl_map_union(map, T); copy = isl_map_copy(must_rel[k]); T = all_later_sources(acc, copy, j, sink_level, k, level); ran = isl_map_range(isl_map_copy(T)); map = isl_map_union(map, T); may_rel[k] = isl_map_union_disjoint(may_rel[k], isl_map_intersect_range(isl_map_copy(must_rel[k]), isl_set_copy(ran))); T = isl_map_from_domain_and_range( isl_set_universe( isl_space_domain(isl_map_get_space(must_rel[k]))), ran); must_rel[k] = isl_map_subtract(must_rel[k], T); } } return map; } /* Compute dependences for the case where all accesses are "may" * accesses, which boils down to computing memory based dependences. * The generic algorithm would also work in this case, but it would * be overkill to use it. */ static __isl_give isl_flow *compute_mem_based_dependences( __isl_keep isl_access_info *acc) { int i; isl_set *mustdo; isl_set *maydo; isl_flow *res; res = isl_flow_alloc(acc); if (!res) return NULL; mustdo = isl_map_domain(isl_map_copy(acc->sink.map)); maydo = isl_set_copy(mustdo); for (i = 0; i < acc->n_may; ++i) { int plevel; int is_before; isl_space *dim; isl_map *before; isl_map *dep; plevel = acc->level_before(acc->source[i].data, acc->sink.data); is_before = plevel & 1; plevel >>= 1; dim = isl_map_get_space(res->dep[i].map); if (is_before) before = isl_map_lex_le_first(dim, plevel); else before = isl_map_lex_lt_first(dim, plevel); dep = isl_map_apply_range(isl_map_copy(acc->source[i].map), isl_map_reverse(isl_map_copy(acc->sink.map))); dep = isl_map_intersect(dep, before); mustdo = isl_set_subtract(mustdo, isl_map_range(isl_map_copy(dep))); res->dep[i].map = isl_map_union(res->dep[i].map, dep); } res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo)); res->must_no_source = mustdo; return res; } /* Compute dependences for the case where there is at least one * "must" access. * * The core algorithm considers all levels in which a source may precede * the sink, where a level may either be a statement level or a loop level. * The outermost statement level is 1, the first loop level is 2, etc... * The algorithm basically does the following: * for all levels l of the read access from innermost to outermost * for all sources w that may precede the sink access at that level * compute the last iteration of the source that precedes the sink access * at that level * add result to possible last accesses at level l of source w * for all sources w2 that we haven't considered yet at this level that may * also precede the sink access * for all levels l2 of w from l to innermost * for all possible last accesses dep of w at l * compute last iteration of w2 between the source and sink * of dep * add result to possible last accesses at level l of write w2 * and replace possible last accesses dep by the remainder * * * The above algorithm is applied to the must access. During the course * of the algorithm, we keep track of sink iterations that still * need to be considered. These iterations are split into those that * haven't been matched to any source access (mustdo) and those that have only * been matched to may accesses (maydo). * At the end of each level, we also consider the may accesses. * In particular, we consider may accesses that precede the remaining * sink iterations, moving elements from mustdo to maydo when appropriate, * and may accesses that occur between a must source and a sink of any * dependences found at the current level, turning must dependences into * may dependences when appropriate. * */ static __isl_give isl_flow *compute_val_based_dependences( __isl_keep isl_access_info *acc) { isl_ctx *ctx; isl_flow *res; isl_set *mustdo = NULL; isl_set *maydo = NULL; int level, j; int depth; isl_map **must_rel = NULL; isl_map **may_rel = NULL; if (!acc) return NULL; res = isl_flow_alloc(acc); if (!res) goto error; ctx = isl_map_get_ctx(acc->sink.map); depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1; mustdo = isl_map_domain(isl_map_copy(acc->sink.map)); maydo = isl_set_empty_like(mustdo); if (!mustdo || !maydo) goto error; if (isl_set_plain_is_empty(mustdo)) goto done; must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must); may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must); if (!must_rel || !may_rel) goto error; for (level = depth; level >= 1; --level) { for (j = acc->n_must-1; j >=0; --j) { must_rel[j] = isl_map_empty_like(res->dep[2 * j].map); may_rel[j] = isl_map_copy(must_rel[j]); } for (j = acc->n_must - 1; j >= 0; --j) { struct isl_map *T; struct isl_set *rest; int plevel; plevel = acc->level_before(acc->source[j].data, acc->sink.data); if (!can_precede_at_level(plevel, level)) continue; T = last_source(acc, mustdo, j, level, &rest); must_rel[j] = isl_map_union_disjoint(must_rel[j], T); mustdo = rest; intermediate_sources(acc, must_rel, j, level); T = last_source(acc, maydo, j, level, &rest); may_rel[j] = isl_map_union_disjoint(may_rel[j], T); maydo = rest; intermediate_sources(acc, may_rel, j, level); if (isl_set_plain_is_empty(mustdo) && isl_set_plain_is_empty(maydo)) break; } for (j = j - 1; j >= 0; --j) { int plevel; plevel = acc->level_before(acc->source[j].data, acc->sink.data); if (!can_precede_at_level(plevel, level)) continue; intermediate_sources(acc, must_rel, j, level); intermediate_sources(acc, may_rel, j, level); } for (j = 0; j < acc->n_may; ++j) { int plevel; isl_map *T; isl_set *ran; plevel = acc->level_before(acc->source[acc->n_must + j].data, acc->sink.data); if (!can_precede_at_level(plevel, level)) continue; T = all_sources(acc, isl_set_copy(maydo), j, level); res->dep[2 * acc->n_must + j].map = isl_map_union(res->dep[2 * acc->n_must + j].map, T); T = all_sources(acc, isl_set_copy(mustdo), j, level); ran = isl_map_range(isl_map_copy(T)); res->dep[2 * acc->n_must + j].map = isl_map_union(res->dep[2 * acc->n_must + j].map, T); mustdo = isl_set_subtract(mustdo, isl_set_copy(ran)); maydo = isl_set_union_disjoint(maydo, ran); T = res->dep[2 * acc->n_must + j].map; T = all_intermediate_sources(acc, T, must_rel, may_rel, j, level); res->dep[2 * acc->n_must + j].map = T; } for (j = acc->n_must - 1; j >= 0; --j) { res->dep[2 * j].map = isl_map_union_disjoint(res->dep[2 * j].map, must_rel[j]); res->dep[2 * j + 1].map = isl_map_union_disjoint(res->dep[2 * j + 1].map, may_rel[j]); } if (isl_set_plain_is_empty(mustdo) && isl_set_plain_is_empty(maydo)) break; } free(must_rel); free(may_rel); done: res->must_no_source = mustdo; res->may_no_source = maydo; return res; error: isl_flow_free(res); isl_set_free(mustdo); isl_set_free(maydo); free(must_rel); free(may_rel); return NULL; } /* Given a "sink" access, a list of n "source" accesses, * compute for each iteration of the sink access * and for each element accessed by that iteration, * the source access in the list that last accessed the * element accessed by the sink access before this sink access. * Each access is given as a map from the loop iterators * to the array indices. * The result is a list of n relations between source and sink * iterations and a subset of the domain of the sink access, * corresponding to those iterations that access an element * not previously accessed. * * To deal with multi-valued sink access relations, the sink iteration * domain is first extended with dimensions that correspond to the data * space. After the computation is finished, these extra dimensions are * projected out again. */ __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc) { int j; struct isl_flow *res = NULL; if (!acc) return NULL; acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map)); acc->sink.map = isl_map_range_map(acc->sink.map); if (!acc->sink.map) goto error; if (acc->n_must == 0) res = compute_mem_based_dependences(acc); else { acc = isl_access_info_sort_sources(acc); res = compute_val_based_dependences(acc); } if (!res) goto error; for (j = 0; j < res->n_source; ++j) { res->dep[j].map = isl_map_apply_range(res->dep[j].map, isl_map_copy(acc->domain_map)); if (!res->dep[j].map) goto error; } if (!res->must_no_source || !res->may_no_source) goto error; isl_access_info_free(acc); return res; error: isl_access_info_free(acc); isl_flow_free(res); return NULL; } /* Keep track of some information about a schedule for a given * access. In particular, keep track of which dimensions * have a constant value and of the actual constant values. */ struct isl_sched_info { int *is_cst; isl_vec *cst; }; static void sched_info_free(__isl_take struct isl_sched_info *info) { if (!info) return; isl_vec_free(info->cst); free(info->is_cst); free(info); } /* Extract information on the constant dimensions of the schedule * for a given access. The "map" is of the form * * [S -> D] -> A * * with S the schedule domain, D the iteration domain and A the data domain. */ static __isl_give struct isl_sched_info *sched_info_alloc( __isl_keep isl_map *map) { isl_ctx *ctx; isl_space *dim; struct isl_sched_info *info; int i, n; if (!map) return NULL; dim = isl_space_unwrap(isl_space_domain(isl_map_get_space(map))); if (!dim) return NULL; n = isl_space_dim(dim, isl_dim_in); isl_space_free(dim); ctx = isl_map_get_ctx(map); info = isl_alloc_type(ctx, struct isl_sched_info); if (!info) return NULL; info->is_cst = isl_alloc_array(ctx, int, n); info->cst = isl_vec_alloc(ctx, n); if (n && (!info->is_cst || !info->cst)) goto error; for (i = 0; i < n; ++i) { isl_val *v; v = isl_map_plain_get_val_if_fixed(map, isl_dim_in, i); if (!v) goto error; info->is_cst[i] = !isl_val_is_nan(v); if (info->is_cst[i]) info->cst = isl_vec_set_element_val(info->cst, i, v); else isl_val_free(v); } return info; error: sched_info_free(info); return NULL; } struct isl_compute_flow_data { isl_union_map *must_source; isl_union_map *may_source; isl_union_map *must_dep; isl_union_map *may_dep; isl_union_map *must_no_source; isl_union_map *may_no_source; int count; int must; isl_space *dim; struct isl_sched_info *sink_info; struct isl_sched_info **source_info; isl_access_info *accesses; }; static int count_matching_array(__isl_take isl_map *map, void *user) { int eq; isl_space *dim; struct isl_compute_flow_data *data; data = (struct isl_compute_flow_data *)user; dim = isl_space_range(isl_map_get_space(map)); eq = isl_space_is_equal(dim, data->dim); isl_space_free(dim); isl_map_free(map); if (eq < 0) return -1; if (eq) data->count++; return 0; } static int collect_matching_array(__isl_take isl_map *map, void *user) { int eq; isl_space *dim; struct isl_sched_info *info; struct isl_compute_flow_data *data; data = (struct isl_compute_flow_data *)user; dim = isl_space_range(isl_map_get_space(map)); eq = isl_space_is_equal(dim, data->dim); isl_space_free(dim); if (eq < 0) goto error; if (!eq) { isl_map_free(map); return 0; } info = sched_info_alloc(map); data->source_info[data->count] = info; data->accesses = isl_access_info_add_source(data->accesses, map, data->must, info); data->count++; return 0; error: isl_map_free(map); return -1; } /* Determine the shared nesting level and the "textual order" of * the given accesses. * * We first determine the minimal schedule dimension for both accesses. * * If among those dimensions, we can find one where both have a fixed * value and if moreover those values are different, then the previous * dimension is the last shared nesting level and the textual order * is determined based on the order of the fixed values. * If no such fixed values can be found, then we set the shared * nesting level to the minimal schedule dimension, with no textual ordering. */ static int before(void *first, void *second) { struct isl_sched_info *info1 = first; struct isl_sched_info *info2 = second; int n1, n2; int i; n1 = isl_vec_size(info1->cst); n2 = isl_vec_size(info2->cst); if (n2 < n1) n1 = n2; for (i = 0; i < n1; ++i) { int r; int cmp; if (!info1->is_cst[i]) continue; if (!info2->is_cst[i]) continue; cmp = isl_vec_cmp_element(info1->cst, info2->cst, i); if (cmp == 0) continue; r = 2 * i + (cmp < 0); return r; } return 2 * n1; } /* Given a sink access, look for all the source accesses that access * the same array and perform dataflow analysis on them using * isl_access_info_compute_flow. */ static int compute_flow(__isl_take isl_map *map, void *user) { int i; isl_ctx *ctx; struct isl_compute_flow_data *data; isl_flow *flow; data = (struct isl_compute_flow_data *)user; ctx = isl_map_get_ctx(map); data->accesses = NULL; data->sink_info = NULL; data->source_info = NULL; data->count = 0; data->dim = isl_space_range(isl_map_get_space(map)); if (isl_union_map_foreach_map(data->must_source, &count_matching_array, data) < 0) goto error; if (isl_union_map_foreach_map(data->may_source, &count_matching_array, data) < 0) goto error; data->sink_info = sched_info_alloc(map); data->source_info = isl_calloc_array(ctx, struct isl_sched_info *, data->count); data->accesses = isl_access_info_alloc(isl_map_copy(map), data->sink_info, &before, data->count); if (!data->sink_info || (data->count && !data->source_info) || !data->accesses) goto error; data->count = 0; data->must = 1; if (isl_union_map_foreach_map(data->must_source, &collect_matching_array, data) < 0) goto error; data->must = 0; if (isl_union_map_foreach_map(data->may_source, &collect_matching_array, data) < 0) goto error; flow = isl_access_info_compute_flow(data->accesses); data->accesses = NULL; if (!flow) goto error; data->must_no_source = isl_union_map_union(data->must_no_source, isl_union_map_from_map(isl_flow_get_no_source(flow, 1))); data->may_no_source = isl_union_map_union(data->may_no_source, isl_union_map_from_map(isl_flow_get_no_source(flow, 0))); for (i = 0; i < flow->n_source; ++i) { isl_union_map *dep; dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map)); if (flow->dep[i].must) data->must_dep = isl_union_map_union(data->must_dep, dep); else data->may_dep = isl_union_map_union(data->may_dep, dep); } isl_flow_free(flow); sched_info_free(data->sink_info); if (data->source_info) { for (i = 0; i < data->count; ++i) sched_info_free(data->source_info[i]); free(data->source_info); } isl_space_free(data->dim); isl_map_free(map); return 0; error: isl_access_info_free(data->accesses); sched_info_free(data->sink_info); if (data->source_info) { for (i = 0; i < data->count; ++i) sched_info_free(data->source_info[i]); free(data->source_info); } isl_space_free(data->dim); isl_map_free(map); return -1; } /* Given a collection of "sink" and "source" accesses, * compute for each iteration of a sink access * and for each element accessed by that iteration, * the source access in the list that last accessed the * element accessed by the sink access before this sink access. * Each access is given as a map from the loop iterators * to the array indices. * The result is a relations between source and sink * iterations and a subset of the domain of the sink accesses, * corresponding to those iterations that access an element * not previously accessed. * * We first prepend the schedule dimensions to the domain * of the accesses so that we can easily compare their relative order. * Then we consider each sink access individually in compute_flow. */ int isl_union_map_compute_flow(__isl_take isl_union_map *sink, __isl_take isl_union_map *must_source, __isl_take isl_union_map *may_source, __isl_take isl_union_map *schedule, __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep, __isl_give isl_union_map **must_no_source, __isl_give isl_union_map **may_no_source) { isl_space *dim; isl_union_map *range_map = NULL; struct isl_compute_flow_data data; sink = isl_union_map_align_params(sink, isl_union_map_get_space(must_source)); sink = isl_union_map_align_params(sink, isl_union_map_get_space(may_source)); sink = isl_union_map_align_params(sink, isl_union_map_get_space(schedule)); dim = isl_union_map_get_space(sink); must_source = isl_union_map_align_params(must_source, isl_space_copy(dim)); may_source = isl_union_map_align_params(may_source, isl_space_copy(dim)); schedule = isl_union_map_align_params(schedule, isl_space_copy(dim)); schedule = isl_union_map_reverse(schedule); range_map = isl_union_map_range_map(schedule); schedule = isl_union_map_reverse(isl_union_map_copy(range_map)); sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule)); must_source = isl_union_map_apply_domain(must_source, isl_union_map_copy(schedule)); may_source = isl_union_map_apply_domain(may_source, schedule); data.must_source = must_source; data.may_source = may_source; data.must_dep = must_dep ? isl_union_map_empty(isl_space_copy(dim)) : NULL; data.may_dep = may_dep ? isl_union_map_empty(isl_space_copy(dim)) : NULL; data.must_no_source = must_no_source ? isl_union_map_empty(isl_space_copy(dim)) : NULL; data.may_no_source = may_no_source ? isl_union_map_empty(isl_space_copy(dim)) : NULL; isl_space_free(dim); if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0) goto error; isl_union_map_free(sink); isl_union_map_free(must_source); isl_union_map_free(may_source); if (must_dep) { data.must_dep = isl_union_map_apply_domain(data.must_dep, isl_union_map_copy(range_map)); data.must_dep = isl_union_map_apply_range(data.must_dep, isl_union_map_copy(range_map)); *must_dep = data.must_dep; } if (may_dep) { data.may_dep = isl_union_map_apply_domain(data.may_dep, isl_union_map_copy(range_map)); data.may_dep = isl_union_map_apply_range(data.may_dep, isl_union_map_copy(range_map)); *may_dep = data.may_dep; } if (must_no_source) { data.must_no_source = isl_union_map_apply_domain( data.must_no_source, isl_union_map_copy(range_map)); *must_no_source = data.must_no_source; } if (may_no_source) { data.may_no_source = isl_union_map_apply_domain( data.may_no_source, isl_union_map_copy(range_map)); *may_no_source = data.may_no_source; } isl_union_map_free(range_map); return 0; error: isl_union_map_free(range_map); isl_union_map_free(sink); isl_union_map_free(must_source); isl_union_map_free(may_source); isl_union_map_free(data.must_dep); isl_union_map_free(data.may_dep); isl_union_map_free(data.must_no_source); isl_union_map_free(data.may_no_source); if (must_dep) *must_dep = NULL; if (may_dep) *may_dep = NULL; if (must_no_source) *must_no_source = NULL; if (may_no_source) *may_no_source = NULL; return -1; }