Blame isl-0.14/basis_reduction_templ.c

Packit fb9d21
/*
Packit fb9d21
 * Copyright 2006-2007 Universiteit Leiden
Packit fb9d21
 * Copyright 2008-2009 Katholieke Universiteit Leuven
Packit fb9d21
 *
Packit fb9d21
 * Use of this software is governed by the MIT license
Packit fb9d21
 *
Packit fb9d21
 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
Packit fb9d21
 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
Packit fb9d21
 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
Packit fb9d21
 * B-3001 Leuven, Belgium
Packit fb9d21
 */
Packit fb9d21
Packit fb9d21
#include <stdlib.h>
Packit fb9d21
#include <isl_ctx_private.h>
Packit fb9d21
#include <isl_map_private.h>
Packit fb9d21
#include <isl_vec_private.h>
Packit fb9d21
#include <isl_options_private.h>
Packit fb9d21
#include "isl_basis_reduction.h"
Packit fb9d21
Packit fb9d21
static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
Packit fb9d21
{
Packit fb9d21
	int i;
Packit fb9d21
Packit fb9d21
	for (i = 0; i < n; ++i)
Packit fb9d21
		GBR_lp_get_alpha(lp, first + i, &alpha[i]);
Packit fb9d21
}
Packit fb9d21
Packit fb9d21
/* Compute a reduced basis for the set represented by the tableau "tab".
Packit fb9d21
 * tab->basis, which must be initialized by the calling function to an affine
Packit fb9d21
 * unimodular basis, is updated to reflect the reduced basis.
Packit fb9d21
 * The first tab->n_zero rows of the basis (ignoring the constant row)
Packit fb9d21
 * are assumed to correspond to equalities and are left untouched.
Packit fb9d21
 * tab->n_zero is updated to reflect any additional equalities that
Packit fb9d21
 * have been detected in the first rows of the new basis.
Packit fb9d21
 * The final tab->n_unbounded rows of the basis are assumed to correspond
Packit fb9d21
 * to unbounded directions and are also left untouched.
Packit fb9d21
 * In particular this means that the remaining rows are assumed to
Packit fb9d21
 * correspond to bounded directions.
Packit fb9d21
 *
Packit fb9d21
 * This function implements the algorithm described in
Packit fb9d21
 * "An Implementation of the Generalized Basis Reduction Algorithm
Packit fb9d21
 *  for Integer Programming" of Cook el al. to compute a reduced basis.
Packit fb9d21
 * We use \epsilon = 1/4.
Packit fb9d21
 *
Packit fb9d21
 * If ctx->opt->gbr_only_first is set, the user is only interested
Packit fb9d21
 * in the first direction.  In this case we stop the basis reduction when
Packit fb9d21
 * the width in the first direction becomes smaller than 2.
Packit fb9d21
 */
Packit fb9d21
struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
Packit fb9d21
{
Packit fb9d21
	unsigned dim;
Packit fb9d21
	struct isl_ctx *ctx;
Packit fb9d21
	struct isl_mat *B;
Packit fb9d21
	int unbounded;
Packit fb9d21
	int i;
Packit fb9d21
	GBR_LP *lp = NULL;
Packit fb9d21
	GBR_type F_old, alpha, F_new;
Packit fb9d21
	int row;
Packit fb9d21
	isl_int tmp;
Packit fb9d21
	struct isl_vec *b_tmp;
Packit fb9d21
	GBR_type *F = NULL;
Packit fb9d21
	GBR_type *alpha_buffer[2] = { NULL, NULL };
Packit fb9d21
	GBR_type *alpha_saved;
Packit fb9d21
	GBR_type F_saved;
Packit fb9d21
	int use_saved = 0;
Packit fb9d21
	isl_int mu[2];
Packit fb9d21
	GBR_type mu_F[2];
Packit fb9d21
	GBR_type two;
Packit fb9d21
	GBR_type one;
Packit fb9d21
	int empty = 0;
Packit fb9d21
	int fixed = 0;
Packit fb9d21
	int fixed_saved = 0;
Packit fb9d21
	int mu_fixed[2];
Packit fb9d21
	int n_bounded;
Packit fb9d21
	int gbr_only_first;
Packit fb9d21
Packit fb9d21
	if (!tab)
Packit fb9d21
		return NULL;
Packit fb9d21
Packit fb9d21
	if (tab->empty)
Packit fb9d21
		return tab;
Packit fb9d21
Packit fb9d21
	ctx = tab->mat->ctx;
Packit fb9d21
	gbr_only_first = ctx->opt->gbr_only_first;
Packit fb9d21
	dim = tab->n_var;
Packit fb9d21
	B = tab->basis;
Packit fb9d21
	if (!B)
Packit fb9d21
		return tab;
Packit fb9d21
Packit fb9d21
	n_bounded = dim - tab->n_unbounded;
Packit fb9d21
	if (n_bounded <= tab->n_zero + 1)
Packit fb9d21
		return tab;
Packit fb9d21
Packit fb9d21
	isl_int_init(tmp);
Packit fb9d21
	isl_int_init(mu[0]);
Packit fb9d21
	isl_int_init(mu[1]);
Packit fb9d21
Packit fb9d21
	GBR_init(alpha);
Packit fb9d21
	GBR_init(F_old);
Packit fb9d21
	GBR_init(F_new);
Packit fb9d21
	GBR_init(F_saved);
Packit fb9d21
	GBR_init(mu_F[0]);
Packit fb9d21
	GBR_init(mu_F[1]);
Packit fb9d21
	GBR_init(two);
Packit fb9d21
	GBR_init(one);
Packit fb9d21
Packit fb9d21
	b_tmp = isl_vec_alloc(ctx, dim);
Packit fb9d21
	if (!b_tmp)
Packit fb9d21
		goto error;
Packit fb9d21
Packit fb9d21
	F = isl_alloc_array(ctx, GBR_type, n_bounded);
Packit fb9d21
	alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
Packit fb9d21
	alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
Packit fb9d21
	alpha_saved = alpha_buffer[0];
Packit fb9d21
Packit fb9d21
	if (!F || !alpha_buffer[0] || !alpha_buffer[1])
Packit fb9d21
		goto error;
Packit fb9d21
Packit fb9d21
	for (i = 0; i < n_bounded; ++i) {
Packit fb9d21
		GBR_init(F[i]);
Packit fb9d21
		GBR_init(alpha_buffer[0][i]);
Packit fb9d21
		GBR_init(alpha_buffer[1][i]);
Packit fb9d21
	}
Packit fb9d21
Packit fb9d21
	GBR_set_ui(two, 2);
Packit fb9d21
	GBR_set_ui(one, 1);
Packit fb9d21
Packit fb9d21
	lp = GBR_lp_init(tab);
Packit fb9d21
	if (!lp)
Packit fb9d21
		goto error;
Packit fb9d21
Packit fb9d21
	i = tab->n_zero;
Packit fb9d21
Packit fb9d21
	GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
Packit fb9d21
	ctx->stats->gbr_solved_lps++;
Packit fb9d21
	unbounded = GBR_lp_solve(lp);
Packit fb9d21
	isl_assert(ctx, !unbounded, goto error);
Packit fb9d21
	GBR_lp_get_obj_val(lp, &F[i]);
Packit fb9d21
Packit fb9d21
	if (GBR_lt(F[i], one)) {
Packit fb9d21
		if (!GBR_is_zero(F[i])) {
Packit fb9d21
			empty = GBR_lp_cut(lp, B->row[1+i]+1);
Packit fb9d21
			if (empty)
Packit fb9d21
				goto done;
Packit fb9d21
			GBR_set_ui(F[i], 0);
Packit fb9d21
		}
Packit fb9d21
		tab->n_zero++;
Packit fb9d21
	}
Packit fb9d21
Packit fb9d21
	do {
Packit fb9d21
		if (i+1 == tab->n_zero) {
Packit fb9d21
			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
Packit fb9d21
			ctx->stats->gbr_solved_lps++;
Packit fb9d21
			unbounded = GBR_lp_solve(lp);
Packit fb9d21
			isl_assert(ctx, !unbounded, goto error);
Packit fb9d21
			GBR_lp_get_obj_val(lp, &F_new);
Packit fb9d21
			fixed = GBR_lp_is_fixed(lp);
Packit fb9d21
			GBR_set_ui(alpha, 0);
Packit fb9d21
		} else
Packit fb9d21
		if (use_saved) {
Packit fb9d21
			row = GBR_lp_next_row(lp);
Packit fb9d21
			GBR_set(F_new, F_saved);
Packit fb9d21
			fixed = fixed_saved;
Packit fb9d21
			GBR_set(alpha, alpha_saved[i]);
Packit fb9d21
		} else {
Packit fb9d21
			row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
Packit fb9d21
			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
Packit fb9d21
			ctx->stats->gbr_solved_lps++;
Packit fb9d21
			unbounded = GBR_lp_solve(lp);
Packit fb9d21
			isl_assert(ctx, !unbounded, goto error);
Packit fb9d21
			GBR_lp_get_obj_val(lp, &F_new);
Packit fb9d21
			fixed = GBR_lp_is_fixed(lp);
Packit fb9d21
Packit fb9d21
			GBR_lp_get_alpha(lp, row, &alpha);
Packit fb9d21
Packit fb9d21
			if (i > 0)
Packit fb9d21
				save_alpha(lp, row-i, i, alpha_saved);
Packit fb9d21
Packit fb9d21
			if (GBR_lp_del_row(lp) < 0)
Packit fb9d21
				goto error;
Packit fb9d21
		}
Packit fb9d21
		GBR_set(F[i+1], F_new);
Packit fb9d21
Packit fb9d21
		GBR_floor(mu[0], alpha);
Packit fb9d21
		GBR_ceil(mu[1], alpha);
Packit fb9d21
Packit fb9d21
		if (isl_int_eq(mu[0], mu[1]))
Packit fb9d21
			isl_int_set(tmp, mu[0]);
Packit fb9d21
		else {
Packit fb9d21
			int j;
Packit fb9d21
Packit fb9d21
			for (j = 0; j <= 1; ++j) {
Packit fb9d21
				isl_int_set(tmp, mu[j]);
Packit fb9d21
				isl_seq_combine(b_tmp->el,
Packit fb9d21
						ctx->one, B->row[1+i+1]+1,
Packit fb9d21
						tmp, B->row[1+i]+1, dim);
Packit fb9d21
				GBR_lp_set_obj(lp, b_tmp->el, dim);
Packit fb9d21
				ctx->stats->gbr_solved_lps++;
Packit fb9d21
				unbounded = GBR_lp_solve(lp);
Packit fb9d21
				isl_assert(ctx, !unbounded, goto error);
Packit fb9d21
				GBR_lp_get_obj_val(lp, &mu_F[j]);
Packit fb9d21
				mu_fixed[j] = GBR_lp_is_fixed(lp);
Packit fb9d21
				if (i > 0)
Packit fb9d21
					save_alpha(lp, row-i, i, alpha_buffer[j]);
Packit fb9d21
			}
Packit fb9d21
Packit fb9d21
			if (GBR_lt(mu_F[0], mu_F[1]))
Packit fb9d21
				j = 0;
Packit fb9d21
			else
Packit fb9d21
				j = 1;
Packit fb9d21
Packit fb9d21
			isl_int_set(tmp, mu[j]);
Packit fb9d21
			GBR_set(F_new, mu_F[j]);
Packit fb9d21
			fixed = mu_fixed[j];
Packit fb9d21
			alpha_saved = alpha_buffer[j];
Packit fb9d21
		}
Packit fb9d21
		isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
Packit fb9d21
				tmp, B->row[1+i]+1, dim);
Packit fb9d21
Packit fb9d21
		if (i+1 == tab->n_zero && fixed) {
Packit fb9d21
			if (!GBR_is_zero(F[i+1])) {
Packit fb9d21
				empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
Packit fb9d21
				if (empty)
Packit fb9d21
					goto done;
Packit fb9d21
				GBR_set_ui(F[i+1], 0);
Packit fb9d21
			}
Packit fb9d21
			tab->n_zero++;
Packit fb9d21
		}
Packit fb9d21
Packit fb9d21
		GBR_set(F_old, F[i]);
Packit fb9d21
Packit fb9d21
		use_saved = 0;
Packit fb9d21
		/* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
Packit fb9d21
		GBR_set_ui(mu_F[0], 4);
Packit fb9d21
		GBR_mul(mu_F[0], mu_F[0], F_new);
Packit fb9d21
		GBR_set_ui(mu_F[1], 3);
Packit fb9d21
		GBR_mul(mu_F[1], mu_F[1], F_old);
Packit fb9d21
		if (GBR_lt(mu_F[0], mu_F[1])) {
Packit fb9d21
			B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
Packit fb9d21
			if (i > tab->n_zero) {
Packit fb9d21
				use_saved = 1;
Packit fb9d21
				GBR_set(F_saved, F_new);
Packit fb9d21
				fixed_saved = fixed;
Packit fb9d21
				if (GBR_lp_del_row(lp) < 0)
Packit fb9d21
					goto error;
Packit fb9d21
				--i;
Packit fb9d21
			} else {
Packit fb9d21
				GBR_set(F[tab->n_zero], F_new);
Packit fb9d21
				if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
Packit fb9d21
					break;
Packit fb9d21
Packit fb9d21
				if (fixed) {
Packit fb9d21
					if (!GBR_is_zero(F[tab->n_zero])) {
Packit fb9d21
						empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
Packit fb9d21
						if (empty)
Packit fb9d21
							goto done;
Packit fb9d21
						GBR_set_ui(F[tab->n_zero], 0);
Packit fb9d21
					}
Packit fb9d21
					tab->n_zero++;
Packit fb9d21
				}
Packit fb9d21
			}
Packit fb9d21
		} else {
Packit fb9d21
			GBR_lp_add_row(lp, B->row[1+i]+1, dim);
Packit fb9d21
			++i;
Packit fb9d21
		}
Packit fb9d21
	} while (i < n_bounded - 1);
Packit fb9d21
Packit fb9d21
	if (0) {
Packit fb9d21
done:
Packit fb9d21
		if (empty < 0) {
Packit fb9d21
error:
Packit fb9d21
			isl_mat_free(B);
Packit fb9d21
			B = NULL;
Packit fb9d21
		}
Packit fb9d21
	}
Packit fb9d21
Packit fb9d21
	GBR_lp_delete(lp);
Packit fb9d21
Packit fb9d21
	if (alpha_buffer[1])
Packit fb9d21
		for (i = 0; i < n_bounded; ++i) {
Packit fb9d21
			GBR_clear(F[i]);
Packit fb9d21
			GBR_clear(alpha_buffer[0][i]);
Packit fb9d21
			GBR_clear(alpha_buffer[1][i]);
Packit fb9d21
		}
Packit fb9d21
	free(F);
Packit fb9d21
	free(alpha_buffer[0]);
Packit fb9d21
	free(alpha_buffer[1]);
Packit fb9d21
Packit fb9d21
	isl_vec_free(b_tmp);
Packit fb9d21
Packit fb9d21
	GBR_clear(alpha);
Packit fb9d21
	GBR_clear(F_old);
Packit fb9d21
	GBR_clear(F_new);
Packit fb9d21
	GBR_clear(F_saved);
Packit fb9d21
	GBR_clear(mu_F[0]);
Packit fb9d21
	GBR_clear(mu_F[1]);
Packit fb9d21
	GBR_clear(two);
Packit fb9d21
	GBR_clear(one);
Packit fb9d21
Packit fb9d21
	isl_int_clear(tmp);
Packit fb9d21
	isl_int_clear(mu[0]);
Packit fb9d21
	isl_int_clear(mu[1]);
Packit fb9d21
Packit fb9d21
	tab->basis = B;
Packit fb9d21
Packit fb9d21
	return tab;
Packit fb9d21
}
Packit fb9d21
Packit fb9d21
/* Compute an affine form of a reduced basis of the given basic
Packit fb9d21
 * non-parametric set, which is assumed to be bounded and not
Packit fb9d21
 * include any integer divisions.
Packit fb9d21
 * The first column and the first row correspond to the constant term.
Packit fb9d21
 *
Packit fb9d21
 * If the input contains any equalities, we first create an initial
Packit fb9d21
 * basis with the equalities first.  Otherwise, we start off with
Packit fb9d21
 * the identity matrix.
Packit fb9d21
 */
Packit fb9d21
struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
Packit fb9d21
{
Packit fb9d21
	struct isl_mat *basis;
Packit fb9d21
	struct isl_tab *tab;
Packit fb9d21
Packit fb9d21
	if (!bset)
Packit fb9d21
		return NULL;
Packit fb9d21
Packit fb9d21
	if (isl_basic_set_dim(bset, isl_dim_div) != 0)
Packit fb9d21
		isl_die(bset->ctx, isl_error_invalid,
Packit fb9d21
			"no integer division allowed", return NULL);
Packit fb9d21
	if (isl_basic_set_dim(bset, isl_dim_param) != 0)
Packit fb9d21
		isl_die(bset->ctx, isl_error_invalid,
Packit fb9d21
			"no parameters allowed", return NULL);
Packit fb9d21
Packit fb9d21
	tab = isl_tab_from_basic_set(bset, 0);
Packit fb9d21
	if (!tab)
Packit fb9d21
		return NULL;
Packit fb9d21
Packit fb9d21
	if (bset->n_eq == 0)
Packit fb9d21
		tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
Packit fb9d21
	else {
Packit fb9d21
		isl_mat *eq;
Packit fb9d21
		unsigned nvar = isl_basic_set_total_dim(bset);
Packit fb9d21
		eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
Packit fb9d21
					1, nvar);
Packit fb9d21
		eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
Packit fb9d21
		tab->basis = isl_mat_lin_to_aff(tab->basis);
Packit fb9d21
		tab->n_zero = bset->n_eq;
Packit fb9d21
		isl_mat_free(eq);
Packit fb9d21
	}
Packit fb9d21
	tab = isl_tab_compute_reduced_basis(tab);
Packit fb9d21
	if (!tab)
Packit fb9d21
		return NULL;
Packit fb9d21
Packit fb9d21
	basis = isl_mat_copy(tab->basis);
Packit fb9d21
Packit fb9d21
	isl_tab_free(tab);
Packit fb9d21
Packit fb9d21
	return basis;
Packit fb9d21
}