/* * q_red.c RED. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, * */ #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" #include "tc_qevent.h" #include "tc_red.h" static void explain(void) { fprintf(stderr, "Usage: ... red limit BYTES [min BYTES] [max BYTES] avpkt BYTES [burst PACKETS]\n" " [adaptive] [probability PROBABILITY] [bandwidth KBPS]\n" " [ecn] [harddrop] [nodrop]\n" " [qevent early_drop block IDX] [qevent mark block IDX]\n"); } #define RED_SUPPORTED_FLAGS (TC_RED_HISTORIC_FLAGS | TC_RED_NODROP) static struct qevent_plain qe_early_drop = {}; static struct qevent_plain qe_mark = {}; static struct qevent_util qevents[] = { QEVENT("early_drop", plain, &qe_early_drop, TCA_RED_EARLY_DROP_BLOCK), QEVENT("mark", plain, &qe_mark, TCA_RED_MARK_BLOCK), {}, }; static int red_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { struct nla_bitfield32 flags_bf = { .selector = RED_SUPPORTED_FLAGS, }; struct tc_red_qopt opt = {}; unsigned int burst = 0; unsigned int avpkt = 0; double probability = 0.02; unsigned int rate = 0; int parm; __u8 sbuf[256]; __u32 max_P; struct rtattr *tail; qevents_init(qevents); while (argc > 0) { if (strcmp(*argv, "limit") == 0) { NEXT_ARG(); if (get_size(&opt.limit, *argv)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } } else if (strcmp(*argv, "min") == 0) { NEXT_ARG(); if (get_size(&opt.qth_min, *argv)) { fprintf(stderr, "Illegal \"min\"\n"); return -1; } } else if (strcmp(*argv, "max") == 0) { NEXT_ARG(); if (get_size(&opt.qth_max, *argv)) { fprintf(stderr, "Illegal \"max\"\n"); return -1; } } else if (strcmp(*argv, "burst") == 0) { NEXT_ARG(); if (get_unsigned(&burst, *argv, 0)) { fprintf(stderr, "Illegal \"burst\"\n"); return -1; } } else if (strcmp(*argv, "avpkt") == 0) { NEXT_ARG(); if (get_size(&avpkt, *argv)) { fprintf(stderr, "Illegal \"avpkt\"\n"); return -1; } } else if (strcmp(*argv, "probability") == 0) { NEXT_ARG(); if (sscanf(*argv, "%lg", &probability) != 1) { fprintf(stderr, "Illegal \"probability\"\n"); return -1; } } else if (strcmp(*argv, "bandwidth") == 0) { NEXT_ARG(); if (strchr(*argv, '%')) { if (get_percent_rate(&rate, *argv, dev)) { fprintf(stderr, "Illegal \"bandwidth\"\n"); return -1; } } else if (get_rate(&rate, *argv)) { fprintf(stderr, "Illegal \"bandwidth\"\n"); return -1; } } else if (strcmp(*argv, "ecn") == 0) { flags_bf.value |= TC_RED_ECN; } else if (strcmp(*argv, "harddrop") == 0) { flags_bf.value |= TC_RED_HARDDROP; } else if (strcmp(*argv, "nodrop") == 0) { flags_bf.value |= TC_RED_NODROP; } else if (strcmp(*argv, "adaptative") == 0) { flags_bf.value |= TC_RED_ADAPTATIVE; } else if (strcmp(*argv, "adaptive") == 0) { flags_bf.value |= TC_RED_ADAPTATIVE; } else if (matches(*argv, "qevent") == 0) { NEXT_ARG(); if (qevent_parse(qevents, &argc, &argv)) return -1; continue; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } if (!opt.limit || !avpkt) { fprintf(stderr, "RED: Required parameter (limit, avpkt) is missing\n"); return -1; } /* Compute default min/max thresholds based on * Sally Floyd's recommendations: * http://www.icir.org/floyd/REDparameters.txt */ if (!opt.qth_max) opt.qth_max = opt.qth_min ? opt.qth_min * 3 : opt.limit / 4; if (!opt.qth_min) opt.qth_min = opt.qth_max / 3; if (!burst) burst = (2 * opt.qth_min + opt.qth_max) / (3 * avpkt); if (!rate) { get_rate(&rate, "10Mbit"); fprintf(stderr, "RED: set bandwidth to 10Mbit\n"); } if ((parm = tc_red_eval_ewma(opt.qth_min, burst, avpkt)) < 0) { fprintf(stderr, "RED: failed to calculate EWMA constant.\n"); return -1; } if (parm >= 10) fprintf(stderr, "RED: WARNING. Burst %u seems to be too large.\n", burst); opt.Wlog = parm; if ((parm = tc_red_eval_P(opt.qth_min, opt.qth_max, probability)) < 0) { fprintf(stderr, "RED: failed to calculate probability.\n"); return -1; } opt.Plog = parm; if ((parm = tc_red_eval_idle_damping(opt.Wlog, avpkt, rate, sbuf)) < 0) { fprintf(stderr, "RED: failed to calculate idle damping table.\n"); return -1; } opt.Scell_log = parm; tail = addattr_nest(n, 1024, TCA_OPTIONS); addattr_l(n, 1024, TCA_RED_PARMS, &opt, sizeof(opt)); addattr_l(n, 1024, TCA_RED_STAB, sbuf, 256); max_P = probability * pow(2, 32); addattr_l(n, 1024, TCA_RED_MAX_P, &max_P, sizeof(max_P)); addattr_l(n, 1024, TCA_RED_FLAGS, &flags_bf, sizeof(flags_bf)); if (qevents_dump(qevents, n)) return -1; addattr_nest_end(n, tail); return 0; } static int red_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_RED_MAX + 1]; struct nla_bitfield32 *flags_bf; struct tc_red_qopt *qopt; __u32 max_P = 0; SPRINT_BUF(b1); SPRINT_BUF(b2); SPRINT_BUF(b3); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_RED_MAX, opt); if (tb[TCA_RED_PARMS] == NULL) return -1; qopt = RTA_DATA(tb[TCA_RED_PARMS]); if (RTA_PAYLOAD(tb[TCA_RED_PARMS]) < sizeof(*qopt)) return -1; if (tb[TCA_RED_MAX_P] && RTA_PAYLOAD(tb[TCA_RED_MAX_P]) >= sizeof(__u32)) max_P = rta_getattr_u32(tb[TCA_RED_MAX_P]); if (tb[TCA_RED_FLAGS] && RTA_PAYLOAD(tb[TCA_RED_FLAGS]) >= sizeof(*flags_bf)) { flags_bf = RTA_DATA(tb[TCA_RED_FLAGS]); qopt->flags = flags_bf->value; } print_uint(PRINT_JSON, "limit", NULL, qopt->limit); print_string(PRINT_FP, NULL, "limit %s ", sprint_size(qopt->limit, b1)); print_uint(PRINT_JSON, "min", NULL, qopt->qth_min); print_string(PRINT_FP, NULL, "min %s ", sprint_size(qopt->qth_min, b2)); print_uint(PRINT_JSON, "max", NULL, qopt->qth_max); print_string(PRINT_FP, NULL, "max %s ", sprint_size(qopt->qth_max, b3)); tc_red_print_flags(qopt->flags); if (show_details) { print_uint(PRINT_ANY, "ewma", "ewma %u ", qopt->Wlog); if (max_P) print_float(PRINT_ANY, "probability", "probability %lg ", max_P / pow(2, 32)); else print_uint(PRINT_ANY, "Plog", "Plog %u ", qopt->Plog); print_uint(PRINT_ANY, "Scell_log", "Scell_log %u", qopt->Scell_log); } qevents_init(qevents); if (qevents_read(qevents, tb)) return -1; qevents_print(qevents, f); return 0; } static int red_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { #ifdef TC_RED_ECN struct tc_red_xstats *st; if (xstats == NULL) return 0; if (RTA_PAYLOAD(xstats) < sizeof(*st)) return -1; st = RTA_DATA(xstats); print_uint(PRINT_ANY, "marked", " marked %u ", st->marked); print_uint(PRINT_ANY, "early", "early %u ", st->early); print_uint(PRINT_ANY, "pdrop", "pdrop %u ", st->pdrop); print_uint(PRINT_ANY, "other", "other %u ", st->other); #endif return 0; } static int red_has_block(struct qdisc_util *qu, struct rtattr *opt, __u32 block_idx, bool *p_has) { struct rtattr *tb[TCA_RED_MAX + 1]; if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_RED_MAX, opt); qevents_init(qevents); if (qevents_read(qevents, tb)) return -1; *p_has = qevents_have_block(qevents, block_idx); return 0; } struct qdisc_util red_qdisc_util = { .id = "red", .parse_qopt = red_parse_opt, .print_qopt = red_print_opt, .print_xstats = red_print_xstats, .has_block = red_has_block, };