/* * q_netem.c NETEM. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Stephen Hemminger * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" #include "tc_common.h" static void explain(void) { fprintf(stderr, "Usage: ... netem [ limit PACKETS ]\n" \ " [ delay TIME [ JITTER [CORRELATION]]]\n" \ " [ distribution {uniform|normal|pareto|paretonormal} ]\n" \ " [ corrupt PERCENT [CORRELATION]]\n" \ " [ duplicate PERCENT [CORRELATION]]\n" \ " [ loss random PERCENT [CORRELATION]]\n" \ " [ loss state P13 [P31 [P32 [P23 P14]]]\n" \ " [ loss gemodel PERCENT [R [1-H [1-K]]]\n" \ " [ ecn ]\n" \ " [ reorder PERCENT [CORRELATION] [ gap DISTANCE ]]\n" \ " [ rate RATE [PACKETOVERHEAD] [CELLSIZE] [CELLOVERHEAD]]\n" \ " [ slot MIN_DELAY [MAX_DELAY] [packets MAX_PACKETS]" \ " [bytes MAX_BYTES]]\n" \ " [ slot distribution" \ " {uniform|normal|pareto|paretonormal|custom} DELAY JITTER" \ " [packets MAX_PACKETS] [bytes MAX_BYTES]]\n"); } static void explain1(const char *arg) { fprintf(stderr, "Illegal \"%s\"\n", arg); } /* Upper bound on size of distribution * really (TCA_BUF_MAX - other headers) / sizeof (__s16) */ #define MAX_DIST (16*1024) /* Print values only if they are non-zero */ static void __print_int_opt(const char *label_json, const char *label_fp, int val) { print_int(PRINT_ANY, label_json, val ? label_fp : "", val); } #define PRINT_INT_OPT(label, val) \ __print_int_opt(label, " " label " %d", (val)) /* Time print prints normally with varying units, but for JSON prints * in seconds (1ms vs 0.001). */ static void __print_time64(const char *label_json, const char *label_fp, __u64 val) { SPRINT_BUF(b1); print_string(PRINT_FP, NULL, label_fp, sprint_time64(val, b1)); print_float(PRINT_JSON, label_json, NULL, val / 1000000000.); } #define __PRINT_TIME64(label_json, label_fp, val) \ __print_time64(label_json, label_fp " %s", (val)) #define PRINT_TIME64(label, val) __PRINT_TIME64(label, " " label, (val)) /* Percent print prints normally in percentage points, but for JSON prints * an absolute value (1% vs 0.01). */ static void __print_percent(const char *label_json, const char *label_fp, __u32 per) { print_float(PRINT_FP, NULL, label_fp, (100. * per) / UINT32_MAX); print_float(PRINT_JSON, label_json, NULL, (1. * per) / UINT32_MAX); } #define __PRINT_PERCENT(label_json, label_fp, per) \ __print_percent(label_json, label_fp " %g%%", (per)) #define PRINT_PERCENT(label, per) __PRINT_PERCENT(label, " " label, (per)) /* scaled value used to percent of maximum. */ static void set_percent(__u32 *percent, double per) { *percent = rint(per * UINT32_MAX); } static int get_percent(__u32 *percent, const char *str) { double per; if (parse_percent(&per, str)) return -1; set_percent(percent, per); return 0; } static void print_corr(bool present, __u32 value) { if (!is_json_context()) { if (present) __PRINT_PERCENT("", "", value); } else { PRINT_PERCENT("correlation", value); } } /* * Simplistic file parser for distrbution data. * Format is: * # comment line(s) * data0 data1 ... */ static int get_distribution(const char *type, __s16 *data, int maxdata) { FILE *f; int n; long x; size_t len; char *line = NULL; char name[128]; snprintf(name, sizeof(name), "%s/%s.dist", get_tc_lib(), type); if ((f = fopen(name, "r")) == NULL) { fprintf(stderr, "No distribution data for %s (%s: %s)\n", type, name, strerror(errno)); return -1; } n = 0; while (getline(&line, &len, f) != -1) { char *p, *endp; if (*line == '\n' || *line == '#') continue; for (p = line; ; p = endp) { x = strtol(p, &endp, 0); if (endp == p) break; if (n >= maxdata) { fprintf(stderr, "%s: too much data\n", name); n = -1; goto error; } data[n++] = x; } } error: free(line); fclose(f); return n; } #define NEXT_IS_NUMBER() (NEXT_ARG_OK() && isdigit(argv[1][0])) #define NEXT_IS_SIGNED_NUMBER() \ (NEXT_ARG_OK() && (isdigit(argv[1][0]) || argv[1][0] == '-')) /* Adjust for the fact that psched_ticks aren't always usecs (based on kernel PSCHED_CLOCK configuration */ static int get_ticks(__u32 *ticks, const char *str) { unsigned int t; if (get_time(&t, str)) return -1; if (tc_core_time2big(t)) { fprintf(stderr, "Illegal %u time (too large)\n", t); return -1; } *ticks = tc_core_time2tick(t); return 0; } static int netem_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { int dist_size = 0; int slot_dist_size = 0; struct rtattr *tail; struct tc_netem_qopt opt = { .limit = 1000 }; struct tc_netem_corr cor = {}; struct tc_netem_reorder reorder = {}; struct tc_netem_corrupt corrupt = {}; struct tc_netem_gimodel gimodel; struct tc_netem_gemodel gemodel; struct tc_netem_rate rate = {}; struct tc_netem_slot slot = {}; __s16 *dist_data = NULL; __s16 *slot_dist_data = NULL; __u16 loss_type = NETEM_LOSS_UNSPEC; int present[__TCA_NETEM_MAX] = {}; __u64 rate64 = 0; for ( ; argc > 0; --argc, ++argv) { if (matches(*argv, "limit") == 0) { NEXT_ARG(); if (get_size(&opt.limit, *argv)) { explain1("limit"); return -1; } } else if (matches(*argv, "latency") == 0 || matches(*argv, "delay") == 0) { NEXT_ARG(); if (get_ticks(&opt.latency, *argv)) { explain1("latency"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); if (get_ticks(&opt.jitter, *argv)) { explain1("latency"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&cor.delay_corr, *argv)) { explain1("latency"); return -1; } } } } else if (matches(*argv, "loss") == 0 || matches(*argv, "drop") == 0) { if (opt.loss > 0 || loss_type != NETEM_LOSS_UNSPEC) { explain1("duplicate loss argument\n"); return -1; } NEXT_ARG(); /* Old (deprecated) random loss model syntax */ if (isdigit(argv[0][0])) goto random_loss_model; if (!strcmp(*argv, "random")) { NEXT_ARG(); random_loss_model: if (get_percent(&opt.loss, *argv)) { explain1("loss percent"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&cor.loss_corr, *argv)) { explain1("loss correllation"); return -1; } } } else if (!strcmp(*argv, "state")) { double p13; NEXT_ARG(); if (parse_percent(&p13, *argv)) { explain1("loss p13"); return -1; } /* set defaults */ set_percent(&gimodel.p13, p13); set_percent(&gimodel.p31, 1. - p13); set_percent(&gimodel.p32, 0); set_percent(&gimodel.p23, 1.); set_percent(&gimodel.p14, 0); loss_type = NETEM_LOSS_GI; if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gimodel.p31, *argv)) { explain1("loss p31"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gimodel.p32, *argv)) { explain1("loss p32"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gimodel.p23, *argv)) { explain1("loss p23"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gimodel.p14, *argv)) { explain1("loss p14"); return -1; } } else if (!strcmp(*argv, "gemodel")) { double p; NEXT_ARG(); if (parse_percent(&p, *argv)) { explain1("loss gemodel p"); return -1; } set_percent(&gemodel.p, p); /* set defaults */ set_percent(&gemodel.r, 1. - p); set_percent(&gemodel.h, 0); set_percent(&gemodel.k1, 0); loss_type = NETEM_LOSS_GE; if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gemodel.r, *argv)) { explain1("loss gemodel r"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gemodel.h, *argv)) { explain1("loss gemodel h"); return -1; } /* netem option is "1-h" but kernel * expects "h". */ gemodel.h = UINT32_MAX - gemodel.h; if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gemodel.k1, *argv)) { explain1("loss gemodel k"); return -1; } } else { fprintf(stderr, "Unknown loss parameter: %s\n", *argv); return -1; } } else if (matches(*argv, "ecn") == 0) { present[TCA_NETEM_ECN] = 1; } else if (matches(*argv, "reorder") == 0) { NEXT_ARG(); present[TCA_NETEM_REORDER] = 1; if (get_percent(&reorder.probability, *argv)) { explain1("reorder"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&reorder.correlation, *argv)) { explain1("reorder"); return -1; } } } else if (matches(*argv, "corrupt") == 0) { NEXT_ARG(); present[TCA_NETEM_CORRUPT] = 1; if (get_percent(&corrupt.probability, *argv)) { explain1("corrupt"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&corrupt.correlation, *argv)) { explain1("corrupt"); return -1; } } } else if (matches(*argv, "gap") == 0) { NEXT_ARG(); if (get_u32(&opt.gap, *argv, 0)) { explain1("gap"); return -1; } } else if (matches(*argv, "duplicate") == 0) { NEXT_ARG(); if (get_percent(&opt.duplicate, *argv)) { explain1("duplicate"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); if (get_percent(&cor.dup_corr, *argv)) { explain1("duplicate"); return -1; } } } else if (matches(*argv, "distribution") == 0) { NEXT_ARG(); dist_data = calloc(sizeof(dist_data[0]), MAX_DIST); dist_size = get_distribution(*argv, dist_data, MAX_DIST); if (dist_size <= 0) { free(dist_data); return -1; } } else if (matches(*argv, "rate") == 0) { ++present[TCA_NETEM_RATE]; NEXT_ARG(); if (strchr(*argv, '%')) { if (get_percent_rate64(&rate64, *argv, dev)) { explain1("rate"); return -1; } } else if (get_rate64(&rate64, *argv)) { explain1("rate"); return -1; } if (NEXT_IS_SIGNED_NUMBER()) { NEXT_ARG(); if (get_s32(&rate.packet_overhead, *argv, 0)) { explain1("rate"); return -1; } } if (NEXT_IS_NUMBER()) { NEXT_ARG(); if (get_u32(&rate.cell_size, *argv, 0)) { explain1("rate"); return -1; } } if (NEXT_IS_SIGNED_NUMBER()) { NEXT_ARG(); if (get_s32(&rate.cell_overhead, *argv, 0)) { explain1("rate"); return -1; } } } else if (matches(*argv, "slot") == 0) { if (NEXT_IS_NUMBER()) { NEXT_ARG(); present[TCA_NETEM_SLOT] = 1; if (get_time64(&slot.min_delay, *argv)) { explain1("slot min_delay"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); if (get_time64(&slot.max_delay, *argv) || slot.max_delay < slot.min_delay) { explain1("slot max_delay"); return -1; } } else { slot.max_delay = slot.min_delay; } } else { NEXT_ARG(); if (strcmp(*argv, "distribution") == 0) { present[TCA_NETEM_SLOT] = 1; NEXT_ARG(); slot_dist_data = calloc(sizeof(slot_dist_data[0]), MAX_DIST); if (!slot_dist_data) return -1; slot_dist_size = get_distribution(*argv, slot_dist_data, MAX_DIST); if (slot_dist_size <= 0) { free(slot_dist_data); return -1; } NEXT_ARG(); if (get_time64(&slot.dist_delay, *argv)) { explain1("slot delay"); return -1; } NEXT_ARG(); if (get_time64(&slot.dist_jitter, *argv)) { explain1("slot jitter"); return -1; } if (slot.dist_jitter <= 0) { fprintf(stderr, "Non-positive jitter\n"); return -1; } } else { fprintf(stderr, "Unknown slot parameter: %s\n", *argv); return -1; } } if (NEXT_ARG_OK() && matches(*(argv+1), "packets") == 0) { NEXT_ARG(); if (!NEXT_ARG_OK() || get_s32(&slot.max_packets, *(argv+1), 0)) { explain1("slot packets"); return -1; } NEXT_ARG(); } if (NEXT_ARG_OK() && matches(*(argv+1), "bytes") == 0) { unsigned int max_bytes; NEXT_ARG(); if (!NEXT_ARG_OK() || get_size(&max_bytes, *(argv+1))) { explain1("slot bytes"); return -1; } slot.max_bytes = (int) max_bytes; NEXT_ARG(); } } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } } tail = NLMSG_TAIL(n); if (reorder.probability) { if (opt.latency == 0) { fprintf(stderr, "reordering not possible without specifying some delay\n"); explain(); return -1; } if (opt.gap == 0) opt.gap = 1; } else if (opt.gap > 0) { fprintf(stderr, "gap specified without reorder probability\n"); explain(); return -1; } if (present[TCA_NETEM_ECN]) { if (opt.loss <= 0 && loss_type == NETEM_LOSS_UNSPEC) { fprintf(stderr, "ecn requested without loss model\n"); explain(); return -1; } } if (dist_data && (opt.latency == 0 || opt.jitter == 0)) { fprintf(stderr, "distribution specified but no latency and jitter values\n"); explain(); return -1; } if (addattr_l(n, 1024, TCA_OPTIONS, &opt, sizeof(opt)) < 0) return -1; if (present[TCA_NETEM_CORR] && addattr_l(n, 1024, TCA_NETEM_CORR, &cor, sizeof(cor)) < 0) return -1; if (present[TCA_NETEM_REORDER] && addattr_l(n, 1024, TCA_NETEM_REORDER, &reorder, sizeof(reorder)) < 0) return -1; if (present[TCA_NETEM_ECN] && addattr_l(n, 1024, TCA_NETEM_ECN, &present[TCA_NETEM_ECN], sizeof(present[TCA_NETEM_ECN])) < 0) return -1; if (present[TCA_NETEM_CORRUPT] && addattr_l(n, 1024, TCA_NETEM_CORRUPT, &corrupt, sizeof(corrupt)) < 0) return -1; if (present[TCA_NETEM_SLOT] && addattr_l(n, 1024, TCA_NETEM_SLOT, &slot, sizeof(slot)) < 0) return -1; if (loss_type != NETEM_LOSS_UNSPEC) { struct rtattr *start; start = addattr_nest(n, 1024, TCA_NETEM_LOSS | NLA_F_NESTED); if (loss_type == NETEM_LOSS_GI) { if (addattr_l(n, 1024, NETEM_LOSS_GI, &gimodel, sizeof(gimodel)) < 0) return -1; } else if (loss_type == NETEM_LOSS_GE) { if (addattr_l(n, 1024, NETEM_LOSS_GE, &gemodel, sizeof(gemodel)) < 0) return -1; } else { fprintf(stderr, "loss in the weeds!\n"); return -1; } addattr_nest_end(n, start); } if (present[TCA_NETEM_RATE]) { if (rate64 >= (1ULL << 32)) { if (addattr_l(n, 1024, TCA_NETEM_RATE64, &rate64, sizeof(rate64)) < 0) return -1; rate.rate = ~0U; } else { rate.rate = rate64; } if (addattr_l(n, 1024, TCA_NETEM_RATE, &rate, sizeof(rate)) < 0) return -1; } if (dist_data) { if (addattr_l(n, MAX_DIST * sizeof(dist_data[0]), TCA_NETEM_DELAY_DIST, dist_data, dist_size * sizeof(dist_data[0])) < 0) return -1; free(dist_data); } if (slot_dist_data) { if (addattr_l(n, MAX_DIST * sizeof(slot_dist_data[0]), TCA_NETEM_SLOT_DIST, slot_dist_data, slot_dist_size * sizeof(slot_dist_data[0])) < 0) return -1; free(slot_dist_data); } tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static int netem_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { const struct tc_netem_corr *cor = NULL; const struct tc_netem_reorder *reorder = NULL; const struct tc_netem_corrupt *corrupt = NULL; const struct tc_netem_gimodel *gimodel = NULL; const struct tc_netem_gemodel *gemodel = NULL; int *ecn = NULL; struct tc_netem_qopt qopt; const struct tc_netem_rate *rate = NULL; const struct tc_netem_slot *slot = NULL; int len; __u64 rate64 = 0; SPRINT_BUF(b1); if (opt == NULL) return 0; len = RTA_PAYLOAD(opt) - sizeof(qopt); if (len < 0) { fprintf(stderr, "options size error\n"); return -1; } memcpy(&qopt, RTA_DATA(opt), sizeof(qopt)); if (len > 0) { struct rtattr *tb[TCA_NETEM_MAX+1]; parse_rtattr(tb, TCA_NETEM_MAX, RTA_DATA(opt) + sizeof(qopt), len); if (tb[TCA_NETEM_CORR]) { if (RTA_PAYLOAD(tb[TCA_NETEM_CORR]) < sizeof(*cor)) return -1; cor = RTA_DATA(tb[TCA_NETEM_CORR]); } if (tb[TCA_NETEM_REORDER]) { if (RTA_PAYLOAD(tb[TCA_NETEM_REORDER]) < sizeof(*reorder)) return -1; reorder = RTA_DATA(tb[TCA_NETEM_REORDER]); } if (tb[TCA_NETEM_CORRUPT]) { if (RTA_PAYLOAD(tb[TCA_NETEM_CORRUPT]) < sizeof(*corrupt)) return -1; corrupt = RTA_DATA(tb[TCA_NETEM_CORRUPT]); } if (tb[TCA_NETEM_LOSS]) { struct rtattr *lb[NETEM_LOSS_MAX + 1]; parse_rtattr_nested(lb, NETEM_LOSS_MAX, tb[TCA_NETEM_LOSS]); if (lb[NETEM_LOSS_GI]) gimodel = RTA_DATA(lb[NETEM_LOSS_GI]); if (lb[NETEM_LOSS_GE]) gemodel = RTA_DATA(lb[NETEM_LOSS_GE]); } if (tb[TCA_NETEM_RATE]) { if (RTA_PAYLOAD(tb[TCA_NETEM_RATE]) < sizeof(*rate)) return -1; rate = RTA_DATA(tb[TCA_NETEM_RATE]); } if (tb[TCA_NETEM_ECN]) { if (RTA_PAYLOAD(tb[TCA_NETEM_ECN]) < sizeof(*ecn)) return -1; ecn = RTA_DATA(tb[TCA_NETEM_ECN]); } if (tb[TCA_NETEM_RATE64]) { if (RTA_PAYLOAD(tb[TCA_NETEM_RATE64]) < sizeof(rate64)) return -1; rate64 = rta_getattr_u64(tb[TCA_NETEM_RATE64]); } if (tb[TCA_NETEM_SLOT]) { if (RTA_PAYLOAD(tb[TCA_NETEM_SLOT]) < sizeof(*slot)) return -1; slot = RTA_DATA(tb[TCA_NETEM_SLOT]); } } print_uint(PRINT_ANY, "limit", "limit %d", qopt.limit); if (qopt.latency) { open_json_object("delay"); if (!is_json_context()) { print_string(PRINT_FP, NULL, " delay %s", sprint_ticks(qopt.latency, b1)); if (qopt.jitter) print_string(PRINT_FP, NULL, " %s", sprint_ticks(qopt.jitter, b1)); } else { print_float(PRINT_JSON, "delay", NULL, tc_core_tick2time(qopt.latency) / 1000000.); print_float(PRINT_JSON, "jitter", NULL, tc_core_tick2time(qopt.jitter) / 1000000.); } print_corr(qopt.jitter && cor && cor->delay_corr, cor ? cor->delay_corr : 0); close_json_object(); } if (qopt.loss) { open_json_object("loss-random"); PRINT_PERCENT("loss", qopt.loss); print_corr(cor && cor->loss_corr, cor ? cor->loss_corr : 0); close_json_object(); } if (gimodel) { open_json_object("loss-state"); __PRINT_PERCENT("p13", " loss state p13", gimodel->p13); PRINT_PERCENT("p31", gimodel->p31); PRINT_PERCENT("p32", gimodel->p32); PRINT_PERCENT("p23", gimodel->p23); PRINT_PERCENT("p14", gimodel->p14); close_json_object(); } if (gemodel) { open_json_object("loss-gemodel"); __PRINT_PERCENT("p", " loss gemodel p", gemodel->p); PRINT_PERCENT("r", gemodel->r); PRINT_PERCENT("1-h", UINT32_MAX - gemodel->h); PRINT_PERCENT("1-k", gemodel->k1); close_json_object(); } if (qopt.duplicate) { open_json_object("duplicate"); PRINT_PERCENT("duplicate", qopt.duplicate); print_corr(cor && cor->dup_corr, cor ? cor->dup_corr : 0); close_json_object(); } if (reorder && reorder->probability) { open_json_object("reorder"); PRINT_PERCENT("reorder", reorder->probability); print_corr(reorder->correlation, reorder->correlation); close_json_object(); } if (corrupt && corrupt->probability) { open_json_object("corrupt"); PRINT_PERCENT("corrupt", corrupt->probability); print_corr(corrupt->correlation, corrupt->correlation); close_json_object(); } if (rate && rate->rate) { open_json_object("rate"); rate64 = rate64 ? : rate->rate; print_string(PRINT_FP, NULL, " rate %s", sprint_rate(rate64, b1)); print_lluint(PRINT_JSON, "rate", NULL, rate64); PRINT_INT_OPT("packetoverhead", rate->packet_overhead); print_uint(PRINT_ANY, "cellsize", rate->cell_size ? " cellsize %u" : "", rate->cell_size); PRINT_INT_OPT("celloverhead", rate->cell_overhead); close_json_object(); } if (slot) { open_json_object("slot"); if (slot->dist_jitter > 0) { __PRINT_TIME64("distribution", " slot distribution", slot->dist_delay); __PRINT_TIME64("jitter", "", slot->dist_jitter); } else { __PRINT_TIME64("min-delay", " slot", slot->min_delay); __PRINT_TIME64("max-delay", "", slot->max_delay); } PRINT_INT_OPT("packets", slot->max_packets); PRINT_INT_OPT("bytes", slot->max_bytes); close_json_object(); } print_bool(PRINT_ANY, "ecn", ecn ? " ecn " : "", ecn); print_luint(PRINT_ANY, "gap", qopt.gap ? " gap %lu" : "", (unsigned long)qopt.gap); return 0; } struct qdisc_util netem_qdisc_util = { .id = "netem", .parse_qopt = netem_parse_opt, .print_qopt = netem_print_opt, };