/* * Fair Queue Codel * * Copyright (C) 2012,2015 Eric Dumazet * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" static void explain(void) { fprintf(stderr, "Usage: ... fq_codel [ limit PACKETS ] [ flows NUMBER ]\n" "[ memory_limit BYTES ]\n" "[ target TIME ] [ interval TIME ]\n" "[ quantum BYTES ] [ [no]ecn ]\n" "[ ce_threshold TIME ]\n" "[ drop_batch SIZE ]\n"); } static int fq_codel_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { unsigned int drop_batch = 0; unsigned int limit = 0; unsigned int flows = 0; unsigned int target = 0; unsigned int interval = 0; unsigned int quantum = 0; unsigned int ce_threshold = ~0U; unsigned int memory = ~0U; int ecn = -1; struct rtattr *tail; while (argc > 0) { if (strcmp(*argv, "limit") == 0) { NEXT_ARG(); if (get_unsigned(&limit, *argv, 0)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } } else if (strcmp(*argv, "flows") == 0) { NEXT_ARG(); if (get_unsigned(&flows, *argv, 0)) { fprintf(stderr, "Illegal \"flows\"\n"); return -1; } } else if (strcmp(*argv, "quantum") == 0) { NEXT_ARG(); if (get_unsigned(&quantum, *argv, 0)) { fprintf(stderr, "Illegal \"quantum\"\n"); return -1; } } else if (strcmp(*argv, "drop_batch") == 0) { NEXT_ARG(); if (get_unsigned(&drop_batch, *argv, 0)) { fprintf(stderr, "Illegal \"drop_batch\"\n"); return -1; } } else if (strcmp(*argv, "target") == 0) { NEXT_ARG(); if (get_time(&target, *argv)) { fprintf(stderr, "Illegal \"target\"\n"); return -1; } } else if (strcmp(*argv, "ce_threshold") == 0) { NEXT_ARG(); if (get_time(&ce_threshold, *argv)) { fprintf(stderr, "Illegal \"ce_threshold\"\n"); return -1; } } else if (strcmp(*argv, "memory_limit") == 0) { NEXT_ARG(); if (get_size(&memory, *argv)) { fprintf(stderr, "Illegal \"memory_limit\"\n"); return -1; } } else if (strcmp(*argv, "interval") == 0) { NEXT_ARG(); if (get_time(&interval, *argv)) { fprintf(stderr, "Illegal \"interval\"\n"); return -1; } } else if (strcmp(*argv, "ecn") == 0) { ecn = 1; } else if (strcmp(*argv, "noecn") == 0) { ecn = 0; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } tail = addattr_nest(n, 1024, TCA_OPTIONS); if (limit) addattr_l(n, 1024, TCA_FQ_CODEL_LIMIT, &limit, sizeof(limit)); if (flows) addattr_l(n, 1024, TCA_FQ_CODEL_FLOWS, &flows, sizeof(flows)); if (quantum) addattr_l(n, 1024, TCA_FQ_CODEL_QUANTUM, &quantum, sizeof(quantum)); if (interval) addattr_l(n, 1024, TCA_FQ_CODEL_INTERVAL, &interval, sizeof(interval)); if (target) addattr_l(n, 1024, TCA_FQ_CODEL_TARGET, &target, sizeof(target)); if (ecn != -1) addattr_l(n, 1024, TCA_FQ_CODEL_ECN, &ecn, sizeof(ecn)); if (ce_threshold != ~0U) addattr_l(n, 1024, TCA_FQ_CODEL_CE_THRESHOLD, &ce_threshold, sizeof(ce_threshold)); if (memory != ~0U) addattr_l(n, 1024, TCA_FQ_CODEL_MEMORY_LIMIT, &memory, sizeof(memory)); if (drop_batch) addattr_l(n, 1024, TCA_FQ_CODEL_DROP_BATCH_SIZE, &drop_batch, sizeof(drop_batch)); addattr_nest_end(n, tail); return 0; } static int fq_codel_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_FQ_CODEL_MAX + 1]; unsigned int limit; unsigned int flows; unsigned int interval; unsigned int target; unsigned int ecn; unsigned int quantum; unsigned int ce_threshold; unsigned int memory_limit; unsigned int drop_batch; SPRINT_BUF(b1); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_FQ_CODEL_MAX, opt); if (tb[TCA_FQ_CODEL_LIMIT] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_LIMIT]) >= sizeof(__u32)) { limit = rta_getattr_u32(tb[TCA_FQ_CODEL_LIMIT]); print_uint(PRINT_ANY, "limit", "limit %up ", limit); } if (tb[TCA_FQ_CODEL_FLOWS] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_FLOWS]) >= sizeof(__u32)) { flows = rta_getattr_u32(tb[TCA_FQ_CODEL_FLOWS]); print_uint(PRINT_ANY, "flows", "flows %u ", flows); } if (tb[TCA_FQ_CODEL_QUANTUM] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_QUANTUM]) >= sizeof(__u32)) { quantum = rta_getattr_u32(tb[TCA_FQ_CODEL_QUANTUM]); print_uint(PRINT_ANY, "quantum", "quantum %u ", quantum); } if (tb[TCA_FQ_CODEL_TARGET] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_TARGET]) >= sizeof(__u32)) { target = rta_getattr_u32(tb[TCA_FQ_CODEL_TARGET]); print_uint(PRINT_JSON, "target", NULL, target); print_string(PRINT_FP, NULL, "target %s ", sprint_time(target, b1)); } if (tb[TCA_FQ_CODEL_CE_THRESHOLD] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_CE_THRESHOLD]) >= sizeof(__u32)) { ce_threshold = rta_getattr_u32(tb[TCA_FQ_CODEL_CE_THRESHOLD]); print_uint(PRINT_JSON, "ce_threshold", NULL, ce_threshold); print_string(PRINT_FP, NULL, "ce_threshold %s ", sprint_time(ce_threshold, b1)); } if (tb[TCA_FQ_CODEL_INTERVAL] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_INTERVAL]) >= sizeof(__u32)) { interval = rta_getattr_u32(tb[TCA_FQ_CODEL_INTERVAL]); print_uint(PRINT_JSON, "interval", NULL, interval); print_string(PRINT_FP, NULL, "interval %s ", sprint_time(interval, b1)); } if (tb[TCA_FQ_CODEL_MEMORY_LIMIT] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_MEMORY_LIMIT]) >= sizeof(__u32)) { memory_limit = rta_getattr_u32(tb[TCA_FQ_CODEL_MEMORY_LIMIT]); print_uint(PRINT_JSON, "memory_limit", NULL, memory_limit); print_string(PRINT_FP, NULL, "memory_limit %s ", sprint_size(memory_limit, b1)); } if (tb[TCA_FQ_CODEL_ECN] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_ECN]) >= sizeof(__u32)) { ecn = rta_getattr_u32(tb[TCA_FQ_CODEL_ECN]); if (ecn) print_bool(PRINT_ANY, "ecn", "ecn ", true); } if (tb[TCA_FQ_CODEL_DROP_BATCH_SIZE] && RTA_PAYLOAD(tb[TCA_FQ_CODEL_DROP_BATCH_SIZE]) >= sizeof(__u32)) { drop_batch = rta_getattr_u32(tb[TCA_FQ_CODEL_DROP_BATCH_SIZE]); if (drop_batch) print_uint(PRINT_ANY, "drop_batch", "drop_batch %u ", drop_batch); } return 0; } static int fq_codel_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_fq_codel_xstats _st = {}, *st; SPRINT_BUF(b1); if (xstats == NULL) return 0; st = RTA_DATA(xstats); if (RTA_PAYLOAD(xstats) < sizeof(*st)) { memcpy(&_st, st, RTA_PAYLOAD(xstats)); st = &_st; } if (st->type == TCA_FQ_CODEL_XSTATS_QDISC) { print_uint(PRINT_ANY, "maxpacket", " maxpacket %u", st->qdisc_stats.maxpacket); print_uint(PRINT_ANY, "drop_overlimit", " drop_overlimit %u", st->qdisc_stats.drop_overlimit); print_uint(PRINT_ANY, "new_flow_count", " new_flow_count %u", st->qdisc_stats.new_flow_count); print_uint(PRINT_ANY, "ecn_mark", " ecn_mark %u", st->qdisc_stats.ecn_mark); if (st->qdisc_stats.ce_mark) print_uint(PRINT_ANY, "ce_mark", " ce_mark %u", st->qdisc_stats.ce_mark); if (st->qdisc_stats.memory_usage) print_uint(PRINT_ANY, "memory_used", " memory_used %u", st->qdisc_stats.memory_usage); if (st->qdisc_stats.drop_overmemory) print_uint(PRINT_ANY, "drop_overmemory", " drop_overmemory %u", st->qdisc_stats.drop_overmemory); print_nl(); print_uint(PRINT_ANY, "new_flows_len", " new_flows_len %u", st->qdisc_stats.new_flows_len); print_uint(PRINT_ANY, "old_flows_len", " old_flows_len %u", st->qdisc_stats.old_flows_len); } if (st->type == TCA_FQ_CODEL_XSTATS_CLASS) { print_int(PRINT_ANY, "deficit", " deficit %d", st->class_stats.deficit); print_uint(PRINT_ANY, "count", " count %u", st->class_stats.count); print_uint(PRINT_ANY, "lastcount", " lastcount %u", st->class_stats.lastcount); print_uint(PRINT_JSON, "ldelay", NULL, st->class_stats.ldelay); print_string(PRINT_FP, NULL, " ldelay %s", sprint_time(st->class_stats.ldelay, b1)); if (st->class_stats.dropping) { print_bool(PRINT_ANY, "dropping", " dropping", true); print_int(PRINT_JSON, "drop_next", NULL, st->class_stats.drop_next); if (st->class_stats.drop_next < 0) print_string(PRINT_FP, NULL, " drop_next -%s", sprint_time(-st->class_stats.drop_next, b1)); else { print_string(PRINT_FP, NULL, " drop_next %s", sprint_time(st->class_stats.drop_next, b1)); } } } return 0; } struct qdisc_util fq_codel_qdisc_util = { .id = "fq_codel", .parse_qopt = fq_codel_parse_opt, .print_qopt = fq_codel_print_opt, .print_xstats = fq_codel_print_xstats, };