/* * tc_util.c Misc TC utility functions. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, * */ #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "names.h" #include "tc_util.h" #include "tc_common.h" #ifndef LIBDIR #define LIBDIR "/usr/lib" #endif static struct db_names *cls_names; #define NAMES_DB "/etc/iproute2/tc_cls" int cls_names_init(char *path) { int ret; cls_names = db_names_alloc(); if (!cls_names) return -1; ret = db_names_load(cls_names, path ?: NAMES_DB); if (ret == -ENOENT && path) { fprintf(stderr, "Can't open class names file: %s\n", path); return -1; } if (ret) { db_names_free(cls_names); cls_names = NULL; } return 0; } void cls_names_uninit(void) { db_names_free(cls_names); } const char *get_tc_lib(void) { const char *lib_dir; lib_dir = getenv("TC_LIB_DIR"); if (!lib_dir) lib_dir = LIBDIR "/tc/"; return lib_dir; } int get_qdisc_handle(__u32 *h, const char *str) { __u32 maj; char *p; maj = TC_H_UNSPEC; if (strcmp(str, "none") == 0) goto ok; maj = strtoul(str, &p, 16); if (p == str || maj >= (1 << 16)) return -1; maj <<= 16; if (*p != ':' && *p != 0) return -1; ok: *h = maj; return 0; } int get_tc_classid(__u32 *h, const char *str) { __u32 maj, min; char *p; maj = TC_H_ROOT; if (strcmp(str, "root") == 0) goto ok; maj = TC_H_UNSPEC; if (strcmp(str, "none") == 0) goto ok; maj = strtoul(str, &p, 16); if (p == str) { maj = 0; if (*p != ':') return -1; } if (*p == ':') { if (maj >= (1<<16)) return -1; maj <<= 16; str = p+1; min = strtoul(str, &p, 16); if (*p != 0) return -1; if (min >= (1<<16)) return -1; maj |= min; } else if (*p != 0) return -1; ok: *h = maj; return 0; } int print_tc_classid(char *buf, int blen, __u32 h) { SPRINT_BUF(handle) = {}; int hlen = SPRINT_BSIZE - 1; if (h == TC_H_ROOT) sprintf(handle, "root"); else if (h == TC_H_UNSPEC) snprintf(handle, hlen, "none"); else if (TC_H_MAJ(h) == 0) snprintf(handle, hlen, ":%x", TC_H_MIN(h)); else if (TC_H_MIN(h) == 0) snprintf(handle, hlen, "%x:", TC_H_MAJ(h) >> 16); else snprintf(handle, hlen, "%x:%x", TC_H_MAJ(h) >> 16, TC_H_MIN(h)); if (use_names) { char clname[IDNAME_MAX] = {}; if (id_to_name(cls_names, h, clname)) snprintf(buf, blen, "%s#%s", clname, handle); else snprintf(buf, blen, "%s", handle); } else { snprintf(buf, blen, "%s", handle); } return 0; } char *sprint_tc_classid(__u32 h, char *buf) { if (print_tc_classid(buf, SPRINT_BSIZE-1, h)) strcpy(buf, "???"); return buf; } /* See http://physics.nist.gov/cuu/Units/binary.html */ static const struct rate_suffix { const char *name; double scale; } suffixes[] = { { "bit", 1. }, { "Kibit", 1024. }, { "kbit", 1000. }, { "mibit", 1024.*1024. }, { "mbit", 1000000. }, { "gibit", 1024.*1024.*1024. }, { "gbit", 1000000000. }, { "tibit", 1024.*1024.*1024.*1024. }, { "tbit", 1000000000000. }, { "Bps", 8. }, { "KiBps", 8.*1024. }, { "KBps", 8000. }, { "MiBps", 8.*1024*1024. }, { "MBps", 8000000. }, { "GiBps", 8.*1024.*1024.*1024. }, { "GBps", 8000000000. }, { "TiBps", 8.*1024.*1024.*1024.*1024. }, { "TBps", 8000000000000. }, { NULL } }; /* Parse a percent e.g: '30%' * return: 0 = ok, -1 = error, 1 = out of range */ int parse_percent(double *val, const char *str) { char *p; *val = strtod(str, &p) / 100.; if (*val > 1.0 || *val < 0.0) return 1; if (*p && strcmp(p, "%")) return -1; return 0; } static int parse_percent_rate(char *rate, size_t len, const char *str, const char *dev) { long dev_mbit; int ret; double perc, rate_bit; char *str_perc = NULL; if (!dev[0]) { fprintf(stderr, "No device specified; specify device to rate limit by percentage\n"); return -1; } if (read_prop(dev, "speed", &dev_mbit)) return -1; ret = sscanf(str, "%m[0-9.%]", &str_perc); if (ret != 1) goto malf; ret = parse_percent(&perc, str_perc); if (ret == 1) { fprintf(stderr, "Invalid rate specified; should be between [0,100]%% but is %s\n", str); goto err; } else if (ret == -1) { goto malf; } free(str_perc); rate_bit = perc * dev_mbit * 1000 * 1000; ret = snprintf(rate, len, "%lf", rate_bit); if (ret <= 0 || ret >= len) { fprintf(stderr, "Unable to parse calculated rate\n"); return -1; } return 0; malf: fprintf(stderr, "Specified rate value could not be read or is malformed\n"); err: free(str_perc); return -1; } int get_percent_rate(unsigned int *rate, const char *str, const char *dev) { char r_str[20]; if (parse_percent_rate(r_str, sizeof(r_str), str, dev)) return -1; return get_rate(rate, r_str); } int get_percent_rate64(__u64 *rate, const char *str, const char *dev) { char r_str[20]; if (parse_percent_rate(r_str, sizeof(r_str), str, dev)) return -1; return get_rate64(rate, r_str); } int get_rate(unsigned int *rate, const char *str) { char *p; double bps = strtod(str, &p); const struct rate_suffix *s; if (p == str) return -1; for (s = suffixes; s->name; ++s) { if (strcasecmp(s->name, p) == 0) { bps *= s->scale; p += strlen(p); break; } } if (*p) return -1; /* unknown suffix */ bps /= 8; /* -> bytes per second */ *rate = bps; /* detect if an overflow happened */ if (*rate != floor(bps)) return -1; return 0; } int get_rate64(__u64 *rate, const char *str) { char *p; double bps = strtod(str, &p); const struct rate_suffix *s; if (p == str) return -1; for (s = suffixes; s->name; ++s) { if (strcasecmp(s->name, p) == 0) { bps *= s->scale; p += strlen(p); break; } } if (*p) return -1; /* unknown suffix */ bps /= 8; /* -> bytes per second */ *rate = bps; return 0; } void print_rate(char *buf, int len, __u64 rate) { extern int use_iec; unsigned long kilo = use_iec ? 1024 : 1000; const char *str = use_iec ? "i" : ""; static char *units[5] = {"", "K", "M", "G", "T"}; int i; rate <<= 3; /* bytes/sec -> bits/sec */ for (i = 0; i < ARRAY_SIZE(units) - 1; i++) { if (rate < kilo) break; if (((rate % kilo) != 0) && rate < 1000*kilo) break; rate /= kilo; } snprintf(buf, len, "%.0f%s%sbit", (double)rate, units[i], str); } char *sprint_rate(__u64 rate, char *buf) { print_rate(buf, SPRINT_BSIZE-1, rate); return buf; } char *sprint_ticks(__u32 ticks, char *buf) { return sprint_time(tc_core_tick2time(ticks), buf); } int get_size(unsigned int *size, const char *str) { double sz; char *p; sz = strtod(str, &p); if (p == str) return -1; if (*p) { if (strcasecmp(p, "kb") == 0 || strcasecmp(p, "k") == 0) sz *= 1024; else if (strcasecmp(p, "gb") == 0 || strcasecmp(p, "g") == 0) sz *= 1024*1024*1024; else if (strcasecmp(p, "gbit") == 0) sz *= 1024*1024*1024/8; else if (strcasecmp(p, "mb") == 0 || strcasecmp(p, "m") == 0) sz *= 1024*1024; else if (strcasecmp(p, "mbit") == 0) sz *= 1024*1024/8; else if (strcasecmp(p, "kbit") == 0) sz *= 1024/8; else if (strcasecmp(p, "b") != 0) return -1; } *size = sz; /* detect if an overflow happened */ if (*size != floor(sz)) return -1; return 0; } int get_size_and_cell(unsigned int *size, int *cell_log, char *str) { char *slash = strchr(str, '/'); if (slash) *slash = 0; if (get_size(size, str)) return -1; if (slash) { int cell; int i; if (get_integer(&cell, slash+1, 0)) return -1; *slash = '/'; for (i = 0; i < 32; i++) { if ((1<= 1024*1024 && fabs(1024*1024*rint(tmp/(1024*1024)) - sz) < 1024) snprintf(buf, len, "%gMb", rint(tmp/(1024*1024))); else if (sz >= 1024 && fabs(1024*rint(tmp/1024) - sz) < 16) snprintf(buf, len, "%gKb", rint(tmp/1024)); else snprintf(buf, len, "%ub", sz); } char *sprint_size(__u32 size, char *buf) { print_size(buf, SPRINT_BSIZE-1, size); return buf; } static const char *action_n2a(int action) { static char buf[64]; if (TC_ACT_EXT_CMP(action, TC_ACT_GOTO_CHAIN)) return "goto"; if (TC_ACT_EXT_CMP(action, TC_ACT_JUMP)) return "jump"; switch (action) { case TC_ACT_UNSPEC: return "continue"; case TC_ACT_OK: return "pass"; case TC_ACT_SHOT: return "drop"; case TC_ACT_RECLASSIFY: return "reclassify"; case TC_ACT_PIPE: return "pipe"; case TC_ACT_STOLEN: return "stolen"; case TC_ACT_TRAP: return "trap"; default: snprintf(buf, 64, "%d", action); return buf; } } /* Convert action branch name into numeric format. * * Parameters: * @arg - string to parse * @result - pointer to output variable * @allow_num - whether @arg may be in numeric format already * * In error case, returns -1 and does not touch @result. Otherwise returns 0. */ int action_a2n(char *arg, int *result, bool allow_num) { int n; char dummy; struct { const char *a; int n; } a2n[] = { {"continue", TC_ACT_UNSPEC}, {"drop", TC_ACT_SHOT}, {"shot", TC_ACT_SHOT}, {"pass", TC_ACT_OK}, {"ok", TC_ACT_OK}, {"reclassify", TC_ACT_RECLASSIFY}, {"pipe", TC_ACT_PIPE}, {"goto", TC_ACT_GOTO_CHAIN}, {"jump", TC_ACT_JUMP}, {"trap", TC_ACT_TRAP}, { NULL }, }, *iter; for (iter = a2n; iter->a; iter++) { if (matches(arg, iter->a) != 0) continue; n = iter->n; goto out_ok; } if (!allow_num || sscanf(arg, "%d%c", &n, &dummy) != 1) return -1; out_ok: if (result) *result = n; return 0; } static int __parse_action_control(int *argc_p, char ***argv_p, int *result_p, bool allow_num, bool ignore_a2n_miss) { int argc = *argc_p; char **argv = *argv_p; int result; if (!argc) return -1; if (action_a2n(*argv, &result, allow_num) == -1) { if (!ignore_a2n_miss) fprintf(stderr, "Bad action type %s\n", *argv); return -1; } if (result == TC_ACT_GOTO_CHAIN) { __u32 chain_index; NEXT_ARG(); if (matches(*argv, "chain") != 0) { fprintf(stderr, "\"chain index\" expected\n"); return -1; } NEXT_ARG(); if (get_u32(&chain_index, *argv, 10) || chain_index > TC_ACT_EXT_VAL_MASK) { fprintf(stderr, "Illegal \"chain index\"\n"); return -1; } result |= chain_index; } if (result == TC_ACT_JUMP) { __u32 jump_cnt = 0; NEXT_ARG(); if (get_u32(&jump_cnt, *argv, 10) || jump_cnt > TC_ACT_EXT_VAL_MASK) { fprintf(stderr, "Invalid \"jump count\" (%s)\n", *argv); return -1; } result |= jump_cnt; } NEXT_ARG_FWD(); *argc_p = argc; *argv_p = argv; *result_p = result; return 0; } /* Parse action control including possible options. * * Parameters: * @argc_p - pointer to argc to parse * @argv_p - pointer to argv to parse * @result_p - pointer to output variable * @allow_num - whether action may be in numeric format already * * In error case, returns -1 and does not touch @result_1p. Otherwise returns 0. */ int parse_action_control(int *argc_p, char ***argv_p, int *result_p, bool allow_num) { return __parse_action_control(argc_p, argv_p, result_p, allow_num, false); } /* Parse action control including possible options. * * Parameters: * @argc_p - pointer to argc to parse * @argv_p - pointer to argv to parse * @result_p - pointer to output variable * @allow_num - whether action may be in numeric format already * @default_result - set as a result in case of parsing error * * In case there is an error during parsing, the default result is used. */ void parse_action_control_dflt(int *argc_p, char ***argv_p, int *result_p, bool allow_num, int default_result) { if (__parse_action_control(argc_p, argv_p, result_p, allow_num, true)) *result_p = default_result; } static int parse_action_control_slash_spaces(int *argc_p, char ***argv_p, int *result1_p, int *result2_p, bool allow_num) { int argc = *argc_p; char **argv = *argv_p; int result1 = -1, result2; int *result_p = &result1; int ok = 0; int ret; while (argc > 0) { switch (ok) { case 1: if (strcmp(*argv, "/") != 0) goto out; result_p = &result2; NEXT_ARG(); /* fall-through */ case 0: /* fall-through */ case 2: ret = parse_action_control(&argc, &argv, result_p, allow_num); if (ret) return ret; ok++; break; default: goto out; } } out: *result1_p = result1; if (ok == 2) *result2_p = result2; *argc_p = argc; *argv_p = argv; return 0; } /* Parse action control with slash including possible options. * * Parameters: * @argc_p - pointer to argc to parse * @argv_p - pointer to argv to parse * @result1_p - pointer to the first (before slash) output variable * @result2_p - pointer to the second (after slash) output variable * @allow_num - whether action may be in numeric format already * * In error case, returns -1 and does not touch @result*. Otherwise returns 0. */ int parse_action_control_slash(int *argc_p, char ***argv_p, int *result1_p, int *result2_p, bool allow_num) { int result1, result2, argc = *argc_p; char **argv = *argv_p; char *p = strchr(*argv, '/'); if (!p) return parse_action_control_slash_spaces(argc_p, argv_p, result1_p, result2_p, allow_num); *p = 0; if (action_a2n(*argv, &result1, allow_num)) { *p = '/'; return -1; } *p = '/'; if (action_a2n(p + 1, &result2, allow_num)) return -1; *result1_p = result1; *result2_p = result2; NEXT_ARG_FWD(); *argc_p = argc; *argv_p = argv; return 0; } void print_action_control(FILE *f, const char *prefix, int action, const char *suffix) { print_string(PRINT_FP, NULL, "%s", prefix); open_json_object("control_action"); print_string(PRINT_ANY, "type", "%s", action_n2a(action)); if (TC_ACT_EXT_CMP(action, TC_ACT_GOTO_CHAIN)) print_uint(PRINT_ANY, "chain", " chain %u", action & TC_ACT_EXT_VAL_MASK); if (TC_ACT_EXT_CMP(action, TC_ACT_JUMP)) print_uint(PRINT_ANY, "jump", " %u", action & TC_ACT_EXT_VAL_MASK); close_json_object(); print_string(PRINT_FP, NULL, "%s", suffix); } int get_linklayer(unsigned int *val, const char *arg) { int res; if (matches(arg, "ethernet") == 0) res = LINKLAYER_ETHERNET; else if (matches(arg, "atm") == 0) res = LINKLAYER_ATM; else if (matches(arg, "adsl") == 0) res = LINKLAYER_ATM; else return -1; /* Indicate error */ *val = res; return 0; } static void print_linklayer(char *buf, int len, unsigned int linklayer) { switch (linklayer) { case LINKLAYER_UNSPEC: snprintf(buf, len, "%s", "unspec"); return; case LINKLAYER_ETHERNET: snprintf(buf, len, "%s", "ethernet"); return; case LINKLAYER_ATM: snprintf(buf, len, "%s", "atm"); return; default: snprintf(buf, len, "%s", "unknown"); return; } } char *sprint_linklayer(unsigned int linklayer, char *buf) { print_linklayer(buf, SPRINT_BSIZE-1, linklayer); return buf; } void print_tm(FILE *f, const struct tcf_t *tm) { int hz = get_user_hz(); if (tm->install != 0) print_uint(PRINT_ANY, "installed", " installed %u sec", tm->install / hz); if (tm->lastuse != 0) print_uint(PRINT_ANY, "last_used", " used %u sec", tm->lastuse / hz); if (tm->firstuse != 0) print_uint(PRINT_ANY, "first_used", " firstused %u sec", tm->firstuse / hz); if (tm->expires != 0) print_uint(PRINT_ANY, "expires", " expires %u sec", tm->expires / hz); } static void print_tcstats_basic_hw(struct rtattr **tbs, char *prefix) { struct gnet_stats_basic bs_hw; if (!tbs[TCA_STATS_BASIC_HW]) return; memcpy(&bs_hw, RTA_DATA(tbs[TCA_STATS_BASIC_HW]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_BASIC_HW]), sizeof(bs_hw))); if (bs_hw.bytes == 0 && bs_hw.packets == 0) return; if (tbs[TCA_STATS_BASIC]) { struct gnet_stats_basic bs; memcpy(&bs, RTA_DATA(tbs[TCA_STATS_BASIC]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_BASIC]), sizeof(bs))); if (bs.bytes >= bs_hw.bytes && bs.packets >= bs_hw.packets) { print_nl(); print_string(PRINT_FP, NULL, "%s", prefix); print_lluint(PRINT_ANY, "sw_bytes", "Sent software %llu bytes", bs.bytes - bs_hw.bytes); print_uint(PRINT_ANY, "sw_packets", " %u pkt", bs.packets - bs_hw.packets); } } print_nl(); print_string(PRINT_FP, NULL, "%s", prefix); print_lluint(PRINT_ANY, "hw_bytes", "Sent hardware %llu bytes", bs_hw.bytes); print_uint(PRINT_ANY, "hw_packets", " %u pkt", bs_hw.packets); } void print_tcstats2_attr(FILE *fp, struct rtattr *rta, char *prefix, struct rtattr **xstats) { SPRINT_BUF(b1); struct rtattr *tbs[TCA_STATS_MAX + 1]; parse_rtattr_nested(tbs, TCA_STATS_MAX, rta); if (tbs[TCA_STATS_BASIC]) { struct gnet_stats_basic bs = {0}; __u64 packets64 = 0; if (tbs[TCA_STATS_PKT64]) packets64 = rta_getattr_u64(tbs[TCA_STATS_PKT64]); memcpy(&bs, RTA_DATA(tbs[TCA_STATS_BASIC]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_BASIC]), sizeof(bs))); print_string(PRINT_FP, NULL, "%s", prefix); print_lluint(PRINT_ANY, "bytes", "Sent %llu bytes", bs.bytes); if (packets64) print_lluint(PRINT_ANY, "packets", " %llu pkt", packets64); else print_uint(PRINT_ANY, "packets", " %u pkt", bs.packets); } if (tbs[TCA_STATS_QUEUE]) { struct gnet_stats_queue q = {0}; memcpy(&q, RTA_DATA(tbs[TCA_STATS_QUEUE]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_QUEUE]), sizeof(q))); print_uint(PRINT_ANY, "drops", " (dropped %u", q.drops); print_uint(PRINT_ANY, "overlimits", ", overlimits %u", q.overlimits); print_uint(PRINT_ANY, "requeues", " requeues %u) ", q.requeues); } if (tbs[TCA_STATS_BASIC_HW]) print_tcstats_basic_hw(tbs, prefix); if (tbs[TCA_STATS_RATE_EST64]) { struct gnet_stats_rate_est64 re = {0}; memcpy(&re, RTA_DATA(tbs[TCA_STATS_RATE_EST64]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_RATE_EST64]), sizeof(re))); print_string(PRINT_FP, NULL, "\n%s", prefix); print_lluint(PRINT_JSON, "rate", NULL, re.bps); print_string(PRINT_FP, NULL, "rate %s", sprint_rate(re.bps, b1)); print_lluint(PRINT_ANY, "pps", " %llupps", re.pps); } else if (tbs[TCA_STATS_RATE_EST]) { struct gnet_stats_rate_est re = {0}; memcpy(&re, RTA_DATA(tbs[TCA_STATS_RATE_EST]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_RATE_EST]), sizeof(re))); print_string(PRINT_FP, NULL, "\n%s", prefix); print_uint(PRINT_JSON, "rate", NULL, re.bps); print_string(PRINT_FP, NULL, "rate %s", sprint_rate(re.bps, b1)); print_uint(PRINT_ANY, "pps", " %upps", re.pps); } if (tbs[TCA_STATS_QUEUE]) { struct gnet_stats_queue q = {0}; memcpy(&q, RTA_DATA(tbs[TCA_STATS_QUEUE]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_QUEUE]), sizeof(q))); if (!tbs[TCA_STATS_RATE_EST]) print_nl(); print_uint(PRINT_JSON, "backlog", NULL, q.backlog); print_string(PRINT_FP, NULL, "%s", prefix); print_string(PRINT_FP, NULL, "backlog %s", sprint_size(q.backlog, b1)); print_uint(PRINT_ANY, "qlen", " %up", q.qlen); print_uint(PRINT_FP, NULL, " requeues %u", q.requeues); } if (xstats) *xstats = tbs[TCA_STATS_APP] ? : NULL; } void print_tcstats_attr(FILE *fp, struct rtattr *tb[], char *prefix, struct rtattr **xstats) { SPRINT_BUF(b1); if (tb[TCA_STATS2]) { print_tcstats2_attr(fp, tb[TCA_STATS2], prefix, xstats); if (xstats && !*xstats) goto compat_xstats; return; } /* backward compatibility */ if (tb[TCA_STATS]) { struct tc_stats st = {}; /* handle case where kernel returns more/less than we know about */ memcpy(&st, RTA_DATA(tb[TCA_STATS]), MIN(RTA_PAYLOAD(tb[TCA_STATS]), sizeof(st))); fprintf(fp, "%sSent %llu bytes %u pkts (dropped %u, overlimits %u) ", prefix, (unsigned long long)st.bytes, st.packets, st.drops, st.overlimits); if (st.bps || st.pps || st.qlen || st.backlog) { fprintf(fp, "\n%s", prefix); if (st.bps || st.pps) { fprintf(fp, "rate "); if (st.bps) fprintf(fp, "%s ", sprint_rate(st.bps, b1)); if (st.pps) fprintf(fp, "%upps ", st.pps); } if (st.qlen || st.backlog) { fprintf(fp, "backlog "); if (st.backlog) fprintf(fp, "%s ", sprint_size(st.backlog, b1)); if (st.qlen) fprintf(fp, "%up ", st.qlen); } } } compat_xstats: if (tb[TCA_XSTATS] && xstats) *xstats = tb[TCA_XSTATS]; } static void print_masked_type(__u32 type_max, __u32 (*rta_getattr_type)(const struct rtattr *), const char *name, struct rtattr *attr, struct rtattr *mask_attr, bool newline) { SPRINT_BUF(namefrm); __u32 value, mask; SPRINT_BUF(out); size_t done; if (!attr) return; value = rta_getattr_type(attr); mask = mask_attr ? rta_getattr_type(mask_attr) : type_max; if (is_json_context()) { sprintf(namefrm, "\n %s %%u", name); print_hu(PRINT_ANY, name, namefrm, rta_getattr_type(attr)); if (mask != type_max) { char mask_name[SPRINT_BSIZE-6]; sprintf(mask_name, "%s_mask", name); if (newline) print_string(PRINT_FP, NULL, "%s ", _SL_); sprintf(namefrm, " %s %%u", mask_name); print_hu(PRINT_ANY, mask_name, namefrm, mask); } } else { done = sprintf(out, "%u", value); if (mask != type_max) sprintf(out + done, "/0x%x", mask); if (newline) print_string(PRINT_FP, NULL, "%s ", _SL_); sprintf(namefrm, " %s %%s", name); print_string(PRINT_ANY, name, namefrm, out); } } void print_masked_u32(const char *name, struct rtattr *attr, struct rtattr *mask_attr, bool newline) { print_masked_type(UINT32_MAX, rta_getattr_u32, name, attr, mask_attr, newline); } static __u32 __rta_getattr_u16_u32(const struct rtattr *attr) { return rta_getattr_u16(attr); } void print_masked_u16(const char *name, struct rtattr *attr, struct rtattr *mask_attr, bool newline) { print_masked_type(UINT16_MAX, __rta_getattr_u16_u32, name, attr, mask_attr, newline); } static __u32 __rta_getattr_u8_u32(const struct rtattr *attr) { return rta_getattr_u8(attr); } void print_masked_u8(const char *name, struct rtattr *attr, struct rtattr *mask_attr, bool newline) { print_masked_type(UINT8_MAX, __rta_getattr_u8_u32, name, attr, mask_attr, newline); } static __u32 __rta_getattr_be16_u32(const struct rtattr *attr) { return rta_getattr_be16(attr); } void print_masked_be16(const char *name, struct rtattr *attr, struct rtattr *mask_attr, bool newline) { print_masked_type(UINT16_MAX, __rta_getattr_be16_u32, name, attr, mask_attr, newline); }