/* SPDX-License-Identifier: GPL-2.0 */ /* q_hhf.c Heavy-Hitter Filter (HHF) * * Copyright (C) 2013 Terry Lam */ #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" static void explain(void) { fprintf(stderr, "Usage: ... hhf [ limit PACKETS ] [ quantum BYTES]\n" " [ hh_limit NUMBER ]\n" " [ reset_timeout TIME ]\n" " [ admit_bytes BYTES ]\n" " [ evict_timeout TIME ]\n" " [ non_hh_weight NUMBER ]\n"); } static int hhf_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { unsigned int limit = 0; unsigned int quantum = 0; unsigned int hh_limit = 0; unsigned int reset_timeout = 0; unsigned int admit_bytes = 0; unsigned int evict_timeout = 0; unsigned int non_hh_weight = 0; struct rtattr *tail; while (argc > 0) { if (strcmp(*argv, "limit") == 0) { NEXT_ARG(); if (get_unsigned(&limit, *argv, 0)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } } else if (strcmp(*argv, "quantum") == 0) { NEXT_ARG(); if (get_unsigned(&quantum, *argv, 0)) { fprintf(stderr, "Illegal \"quantum\"\n"); return -1; } } else if (strcmp(*argv, "hh_limit") == 0) { NEXT_ARG(); if (get_unsigned(&hh_limit, *argv, 0)) { fprintf(stderr, "Illegal \"hh_limit\"\n"); return -1; } } else if (strcmp(*argv, "reset_timeout") == 0) { NEXT_ARG(); if (get_time(&reset_timeout, *argv)) { fprintf(stderr, "Illegal \"reset_timeout\"\n"); return -1; } } else if (strcmp(*argv, "admit_bytes") == 0) { NEXT_ARG(); if (get_unsigned(&admit_bytes, *argv, 0)) { fprintf(stderr, "Illegal \"admit_bytes\"\n"); return -1; } } else if (strcmp(*argv, "evict_timeout") == 0) { NEXT_ARG(); if (get_time(&evict_timeout, *argv)) { fprintf(stderr, "Illegal \"evict_timeout\"\n"); return -1; } } else if (strcmp(*argv, "non_hh_weight") == 0) { NEXT_ARG(); if (get_unsigned(&non_hh_weight, *argv, 0)) { fprintf(stderr, "Illegal \"non_hh_weight\"\n"); return -1; } } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } tail = addattr_nest(n, 1024, TCA_OPTIONS); if (limit) addattr_l(n, 1024, TCA_HHF_BACKLOG_LIMIT, &limit, sizeof(limit)); if (quantum) addattr_l(n, 1024, TCA_HHF_QUANTUM, &quantum, sizeof(quantum)); if (hh_limit) addattr_l(n, 1024, TCA_HHF_HH_FLOWS_LIMIT, &hh_limit, sizeof(hh_limit)); if (reset_timeout) addattr_l(n, 1024, TCA_HHF_RESET_TIMEOUT, &reset_timeout, sizeof(reset_timeout)); if (admit_bytes) addattr_l(n, 1024, TCA_HHF_ADMIT_BYTES, &admit_bytes, sizeof(admit_bytes)); if (evict_timeout) addattr_l(n, 1024, TCA_HHF_EVICT_TIMEOUT, &evict_timeout, sizeof(evict_timeout)); if (non_hh_weight) addattr_l(n, 1024, TCA_HHF_NON_HH_WEIGHT, &non_hh_weight, sizeof(non_hh_weight)); addattr_nest_end(n, tail); return 0; } static int hhf_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_HHF_MAX + 1]; unsigned int limit; unsigned int quantum; unsigned int hh_limit; unsigned int reset_timeout; unsigned int admit_bytes; unsigned int evict_timeout; unsigned int non_hh_weight; SPRINT_BUF(b1); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_HHF_MAX, opt); if (tb[TCA_HHF_BACKLOG_LIMIT] && RTA_PAYLOAD(tb[TCA_HHF_BACKLOG_LIMIT]) >= sizeof(__u32)) { limit = rta_getattr_u32(tb[TCA_HHF_BACKLOG_LIMIT]); print_uint(PRINT_ANY, "limit", "limit %up ", limit); } if (tb[TCA_HHF_QUANTUM] && RTA_PAYLOAD(tb[TCA_HHF_QUANTUM]) >= sizeof(__u32)) { quantum = rta_getattr_u32(tb[TCA_HHF_QUANTUM]); print_uint(PRINT_JSON, "quantum", NULL, quantum); print_string(PRINT_FP, NULL, "quantum %s ", sprint_size(quantum, b1)); } if (tb[TCA_HHF_HH_FLOWS_LIMIT] && RTA_PAYLOAD(tb[TCA_HHF_HH_FLOWS_LIMIT]) >= sizeof(__u32)) { hh_limit = rta_getattr_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); print_uint(PRINT_ANY, "hh_limit", "hh_limit %u ", hh_limit); } if (tb[TCA_HHF_RESET_TIMEOUT] && RTA_PAYLOAD(tb[TCA_HHF_RESET_TIMEOUT]) >= sizeof(__u32)) { reset_timeout = rta_getattr_u32(tb[TCA_HHF_RESET_TIMEOUT]); print_uint(PRINT_JSON, "reset_timeout", NULL, reset_timeout); print_string(PRINT_FP, NULL, "reset_timeout %s ", sprint_time(reset_timeout, b1)); } if (tb[TCA_HHF_ADMIT_BYTES] && RTA_PAYLOAD(tb[TCA_HHF_ADMIT_BYTES]) >= sizeof(__u32)) { admit_bytes = rta_getattr_u32(tb[TCA_HHF_ADMIT_BYTES]); print_uint(PRINT_JSON, "admit_bytes", NULL, admit_bytes); print_string(PRINT_FP, NULL, "admit_bytes %s ", sprint_size(admit_bytes, b1)); } if (tb[TCA_HHF_EVICT_TIMEOUT] && RTA_PAYLOAD(tb[TCA_HHF_EVICT_TIMEOUT]) >= sizeof(__u32)) { evict_timeout = rta_getattr_u32(tb[TCA_HHF_EVICT_TIMEOUT]); print_uint(PRINT_JSON, "evict_timeout", NULL, evict_timeout); print_string(PRINT_FP, NULL, "evict_timeout %s ", sprint_time(evict_timeout, b1)); } if (tb[TCA_HHF_NON_HH_WEIGHT] && RTA_PAYLOAD(tb[TCA_HHF_NON_HH_WEIGHT]) >= sizeof(__u32)) { non_hh_weight = rta_getattr_u32(tb[TCA_HHF_NON_HH_WEIGHT]); print_uint(PRINT_ANY, "non_hh_weight", "non_hh_weight %u ", non_hh_weight); } return 0; } static int hhf_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_hhf_xstats *st; if (xstats == NULL) return 0; if (RTA_PAYLOAD(xstats) < sizeof(*st)) return -1; st = RTA_DATA(xstats); print_uint(PRINT_ANY, "drop_overlimit", " drop_overlimit %u", st->drop_overlimit); print_uint(PRINT_ANY, "hh_overlimit", " hh_overlimit %u", st->hh_overlimit); print_uint(PRINT_ANY, "tot_hh", " tot_hh %u", st->hh_tot_count); print_uint(PRINT_ANY, "cur_hh", " cur_hh %u", st->hh_cur_count); return 0; } struct qdisc_util hhf_qdisc_util = { .id = "hhf", .parse_qopt = hhf_parse_opt, .print_qopt = hhf_print_opt, .print_xstats = hhf_print_xstats, };