/* * Fair Queue * * Copyright (C) 2013-2015 Eric Dumazet * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" static void explain(void) { fprintf(stderr, "Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]\n" " [ quantum BYTES ] [ initial_quantum BYTES ]\n" " [ maxrate RATE ] [ buckets NUMBER ]\n" " [ [no]pacing ] [ refill_delay TIME ]\n" " [ low_rate_threshold RATE ]\n" " [ orphan_mask MASK]\n" " [ timer_slack TIME]\n" " [ ce_threshold TIME ]\n"); } static unsigned int ilog2(unsigned int val) { unsigned int res = 0; val--; while (val) { res++; val >>= 1; } return res; } static int fq_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { unsigned int plimit; unsigned int flow_plimit; unsigned int quantum; unsigned int initial_quantum; unsigned int buckets = 0; unsigned int maxrate; unsigned int low_rate_threshold; unsigned int defrate; unsigned int refill_delay; unsigned int orphan_mask; unsigned int ce_threshold; unsigned int timer_slack; bool set_plimit = false; bool set_flow_plimit = false; bool set_quantum = false; bool set_initial_quantum = false; bool set_maxrate = false; bool set_defrate = false; bool set_refill_delay = false; bool set_orphan_mask = false; bool set_low_rate_threshold = false; bool set_ce_threshold = false; bool set_timer_slack = false; int pacing = -1; struct rtattr *tail; while (argc > 0) { if (strcmp(*argv, "limit") == 0) { NEXT_ARG(); if (get_unsigned(&plimit, *argv, 0)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } set_plimit = true; } else if (strcmp(*argv, "flow_limit") == 0) { NEXT_ARG(); if (get_unsigned(&flow_plimit, *argv, 0)) { fprintf(stderr, "Illegal \"flow_limit\"\n"); return -1; } set_flow_plimit = true; } else if (strcmp(*argv, "buckets") == 0) { NEXT_ARG(); if (get_unsigned(&buckets, *argv, 0)) { fprintf(stderr, "Illegal \"buckets\"\n"); return -1; } } else if (strcmp(*argv, "maxrate") == 0) { NEXT_ARG(); if (strchr(*argv, '%')) { if (get_percent_rate(&maxrate, *argv, dev)) { fprintf(stderr, "Illegal \"maxrate\"\n"); return -1; } } else if (get_rate(&maxrate, *argv)) { fprintf(stderr, "Illegal \"maxrate\"\n"); return -1; } set_maxrate = true; } else if (strcmp(*argv, "low_rate_threshold") == 0) { NEXT_ARG(); if (get_rate(&low_rate_threshold, *argv)) { fprintf(stderr, "Illegal \"low_rate_threshold\"\n"); return -1; } set_low_rate_threshold = true; } else if (strcmp(*argv, "ce_threshold") == 0) { NEXT_ARG(); if (get_time(&ce_threshold, *argv)) { fprintf(stderr, "Illegal \"ce_threshold\"\n"); return -1; } set_ce_threshold = true; } else if (strcmp(*argv, "timer_slack") == 0) { __s64 t64; NEXT_ARG(); if (get_time64(&t64, *argv)) { fprintf(stderr, "Illegal \"timer_slack\"\n"); return -1; } timer_slack = t64; if (timer_slack != t64) { fprintf(stderr, "Illegal (out of range) \"timer_slack\"\n"); return -1; } set_timer_slack = true; } else if (strcmp(*argv, "defrate") == 0) { NEXT_ARG(); if (strchr(*argv, '%')) { if (get_percent_rate(&defrate, *argv, dev)) { fprintf(stderr, "Illegal \"defrate\"\n"); return -1; } } else if (get_rate(&defrate, *argv)) { fprintf(stderr, "Illegal \"defrate\"\n"); return -1; } set_defrate = true; } else if (strcmp(*argv, "quantum") == 0) { NEXT_ARG(); if (get_unsigned(&quantum, *argv, 0)) { fprintf(stderr, "Illegal \"quantum\"\n"); return -1; } set_quantum = true; } else if (strcmp(*argv, "initial_quantum") == 0) { NEXT_ARG(); if (get_unsigned(&initial_quantum, *argv, 0)) { fprintf(stderr, "Illegal \"initial_quantum\"\n"); return -1; } set_initial_quantum = true; } else if (strcmp(*argv, "orphan_mask") == 0) { NEXT_ARG(); if (get_unsigned(&orphan_mask, *argv, 0)) { fprintf(stderr, "Illegal \"initial_quantum\"\n"); return -1; } set_orphan_mask = true; } else if (strcmp(*argv, "refill_delay") == 0) { NEXT_ARG(); if (get_time(&refill_delay, *argv)) { fprintf(stderr, "Illegal \"refill_delay\"\n"); return -1; } set_refill_delay = true; } else if (strcmp(*argv, "pacing") == 0) { pacing = 1; } else if (strcmp(*argv, "nopacing") == 0) { pacing = 0; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } tail = addattr_nest(n, 1024, TCA_OPTIONS); if (buckets) { unsigned int log = ilog2(buckets); addattr_l(n, 1024, TCA_FQ_BUCKETS_LOG, &log, sizeof(log)); } if (set_plimit) addattr_l(n, 1024, TCA_FQ_PLIMIT, &plimit, sizeof(plimit)); if (set_flow_plimit) addattr_l(n, 1024, TCA_FQ_FLOW_PLIMIT, &flow_plimit, sizeof(flow_plimit)); if (set_quantum) addattr_l(n, 1024, TCA_FQ_QUANTUM, &quantum, sizeof(quantum)); if (set_initial_quantum) addattr_l(n, 1024, TCA_FQ_INITIAL_QUANTUM, &initial_quantum, sizeof(initial_quantum)); if (pacing != -1) addattr_l(n, 1024, TCA_FQ_RATE_ENABLE, &pacing, sizeof(pacing)); if (set_maxrate) addattr_l(n, 1024, TCA_FQ_FLOW_MAX_RATE, &maxrate, sizeof(maxrate)); if (set_low_rate_threshold) addattr_l(n, 1024, TCA_FQ_LOW_RATE_THRESHOLD, &low_rate_threshold, sizeof(low_rate_threshold)); if (set_defrate) addattr_l(n, 1024, TCA_FQ_FLOW_DEFAULT_RATE, &defrate, sizeof(defrate)); if (set_refill_delay) addattr_l(n, 1024, TCA_FQ_FLOW_REFILL_DELAY, &refill_delay, sizeof(refill_delay)); if (set_orphan_mask) addattr_l(n, 1024, TCA_FQ_ORPHAN_MASK, &orphan_mask, sizeof(orphan_mask)); if (set_ce_threshold) addattr_l(n, 1024, TCA_FQ_CE_THRESHOLD, &ce_threshold, sizeof(ce_threshold)); if (set_timer_slack) addattr_l(n, 1024, TCA_FQ_TIMER_SLACK, &timer_slack, sizeof(timer_slack)); addattr_nest_end(n, tail); return 0; } static int fq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_FQ_MAX + 1]; unsigned int plimit, flow_plimit; unsigned int buckets_log; int pacing; unsigned int rate, quantum; unsigned int refill_delay; unsigned int orphan_mask; unsigned int ce_threshold; unsigned int timer_slack; SPRINT_BUF(b1); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_FQ_MAX, opt); if (tb[TCA_FQ_PLIMIT] && RTA_PAYLOAD(tb[TCA_FQ_PLIMIT]) >= sizeof(__u32)) { plimit = rta_getattr_u32(tb[TCA_FQ_PLIMIT]); print_uint(PRINT_ANY, "limit", "limit %up ", plimit); } if (tb[TCA_FQ_FLOW_PLIMIT] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_PLIMIT]) >= sizeof(__u32)) { flow_plimit = rta_getattr_u32(tb[TCA_FQ_FLOW_PLIMIT]); print_uint(PRINT_ANY, "flow_limit", "flow_limit %up ", flow_plimit); } if (tb[TCA_FQ_BUCKETS_LOG] && RTA_PAYLOAD(tb[TCA_FQ_BUCKETS_LOG]) >= sizeof(__u32)) { buckets_log = rta_getattr_u32(tb[TCA_FQ_BUCKETS_LOG]); print_uint(PRINT_ANY, "buckets", "buckets %u ", 1U << buckets_log); } if (tb[TCA_FQ_ORPHAN_MASK] && RTA_PAYLOAD(tb[TCA_FQ_ORPHAN_MASK]) >= sizeof(__u32)) { orphan_mask = rta_getattr_u32(tb[TCA_FQ_ORPHAN_MASK]); print_uint(PRINT_ANY, "orphan_mask", "orphan_mask %u ", orphan_mask); } if (tb[TCA_FQ_RATE_ENABLE] && RTA_PAYLOAD(tb[TCA_FQ_RATE_ENABLE]) >= sizeof(int)) { pacing = rta_getattr_u32(tb[TCA_FQ_RATE_ENABLE]); if (pacing == 0) print_bool(PRINT_ANY, "pacing", "nopacing ", false); } if (tb[TCA_FQ_QUANTUM] && RTA_PAYLOAD(tb[TCA_FQ_QUANTUM]) >= sizeof(__u32)) { quantum = rta_getattr_u32(tb[TCA_FQ_QUANTUM]); print_uint(PRINT_JSON, "quantum", NULL, quantum); print_string(PRINT_FP, NULL, "quantum %s ", sprint_size(quantum, b1)); } if (tb[TCA_FQ_INITIAL_QUANTUM] && RTA_PAYLOAD(tb[TCA_FQ_INITIAL_QUANTUM]) >= sizeof(__u32)) { quantum = rta_getattr_u32(tb[TCA_FQ_INITIAL_QUANTUM]); print_uint(PRINT_JSON, "initial_quantum", NULL, quantum); print_string(PRINT_FP, NULL, "initial_quantum %s ", sprint_size(quantum, b1)); } if (tb[TCA_FQ_FLOW_MAX_RATE] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_MAX_RATE]) >= sizeof(__u32)) { rate = rta_getattr_u32(tb[TCA_FQ_FLOW_MAX_RATE]); if (rate != ~0U) { print_uint(PRINT_JSON, "maxrate", NULL, rate); print_string(PRINT_FP, NULL, "maxrate %s ", sprint_rate(rate, b1)); } } if (tb[TCA_FQ_FLOW_DEFAULT_RATE] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_DEFAULT_RATE]) >= sizeof(__u32)) { rate = rta_getattr_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]); if (rate != 0) { print_uint(PRINT_JSON, "defrate", NULL, rate); print_string(PRINT_FP, NULL, "defrate %s ", sprint_rate(rate, b1)); } } if (tb[TCA_FQ_LOW_RATE_THRESHOLD] && RTA_PAYLOAD(tb[TCA_FQ_LOW_RATE_THRESHOLD]) >= sizeof(__u32)) { rate = rta_getattr_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]); if (rate != 0) { print_uint(PRINT_JSON, "low_rate_threshold", NULL, rate); print_string(PRINT_FP, NULL, "low_rate_threshold %s ", sprint_rate(rate, b1)); } } if (tb[TCA_FQ_FLOW_REFILL_DELAY] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_REFILL_DELAY]) >= sizeof(__u32)) { refill_delay = rta_getattr_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]); print_uint(PRINT_JSON, "refill_delay", NULL, refill_delay); print_string(PRINT_FP, NULL, "refill_delay %s ", sprint_time(refill_delay, b1)); } if (tb[TCA_FQ_CE_THRESHOLD] && RTA_PAYLOAD(tb[TCA_FQ_CE_THRESHOLD]) >= sizeof(__u32)) { ce_threshold = rta_getattr_u32(tb[TCA_FQ_CE_THRESHOLD]); if (ce_threshold != ~0U) { print_uint(PRINT_JSON, "ce_threshold", NULL, ce_threshold); print_string(PRINT_FP, NULL, "ce_threshold %s ", sprint_time(ce_threshold, b1)); } } if (tb[TCA_FQ_TIMER_SLACK] && RTA_PAYLOAD(tb[TCA_FQ_TIMER_SLACK]) >= sizeof(__u32)) { timer_slack = rta_getattr_u32(tb[TCA_FQ_TIMER_SLACK]); print_uint(PRINT_JSON, "timer_slack", NULL, timer_slack); print_string(PRINT_FP, NULL, "timer_slack %s ", sprint_time64(timer_slack, b1)); } return 0; } static int fq_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_fq_qd_stats *st, _st; SPRINT_BUF(b1); if (xstats == NULL) return 0; memset(&_st, 0, sizeof(_st)); memcpy(&_st, RTA_DATA(xstats), min(RTA_PAYLOAD(xstats), sizeof(*st))); st = &_st; print_uint(PRINT_ANY, "flows", " flows %u", st->flows); print_uint(PRINT_ANY, "inactive", " (inactive %u", st->inactive_flows); print_uint(PRINT_ANY, "throttled", " throttled %u)", st->throttled_flows); if (st->time_next_delayed_flow > 0) { print_lluint(PRINT_JSON, "next_packet_delay", NULL, st->time_next_delayed_flow); print_string(PRINT_FP, NULL, " next_packet_delay %s", sprint_time64(st->time_next_delayed_flow, b1)); } print_nl(); print_lluint(PRINT_ANY, "gc", " gc %llu", st->gc_flows); print_lluint(PRINT_ANY, "highprio", " highprio %llu", st->highprio_packets); if (st->tcp_retrans) print_lluint(PRINT_ANY, "retrans", " retrans %llu", st->tcp_retrans); print_lluint(PRINT_ANY, "throttled", " throttled %llu", st->throttled); if (st->unthrottle_latency_ns) { print_uint(PRINT_JSON, "latency", NULL, st->unthrottle_latency_ns); print_string(PRINT_FP, NULL, " latency %s", sprint_time64(st->unthrottle_latency_ns, b1)); } if (st->ce_mark) print_lluint(PRINT_ANY, "ce_mark", " ce_mark %llu", st->ce_mark); if (st->flows_plimit) print_lluint(PRINT_ANY, "flows_plimit", " flows_plimit %llu", st->flows_plimit); if (st->pkts_too_long || st->allocation_errors) { print_nl(); print_lluint(PRINT_ANY, "pkts_too_long", " pkts_too_long %llu", st->pkts_too_long); print_lluint(PRINT_ANY, "alloc_errors", " alloc_errors %llu", st->allocation_errors); } return 0; } struct qdisc_util fq_qdisc_util = { .id = "fq", .parse_qopt = fq_parse_opt, .print_qopt = fq_print_opt, .print_xstats = fq_print_xstats, };