Blob Blame History Raw
/*
 * q_netem.c		NETEM.
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Stephen Hemminger <shemminger@linux-foundation.org>
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdint.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <errno.h>

#include "utils.h"
#include "tc_util.h"
#include "tc_common.h"

static void explain(void)
{
	fprintf(stderr,
		"Usage: ... netem	[ limit PACKETS ]\n" \
		"			[ delay TIME [ JITTER [CORRELATION]]]\n" \
		"			[ distribution {uniform|normal|pareto|paretonormal} ]\n" \
		"			[ corrupt PERCENT [CORRELATION]]\n" \
		"			[ duplicate PERCENT [CORRELATION]]\n" \
		"			[ loss random PERCENT [CORRELATION]]\n" \
		"			[ loss state P13 [P31 [P32 [P23 P14]]]\n" \
		"			[ loss gemodel PERCENT [R [1-H [1-K]]]\n" \
		"			[ ecn ]\n" \
		"			[ reorder PERCENT [CORRELATION] [ gap DISTANCE ]]\n" \
		"			[ rate RATE [PACKETOVERHEAD] [CELLSIZE] [CELLOVERHEAD]]\n" \
		"			[ slot MIN_DELAY [MAX_DELAY] [packets MAX_PACKETS]" \
		" [bytes MAX_BYTES]]\n" \
		"		[ slot distribution" \
		" {uniform|normal|pareto|paretonormal|custom} DELAY JITTER" \
		" [packets MAX_PACKETS] [bytes MAX_BYTES]]\n");
}

static void explain1(const char *arg)
{
	fprintf(stderr, "Illegal \"%s\"\n", arg);
}

/* Upper bound on size of distribution
 *  really (TCA_BUF_MAX - other headers) / sizeof (__s16)
 */
#define MAX_DIST	(16*1024)

/* Print values only if they are non-zero */
static void __print_int_opt(const char *label_json, const char *label_fp,
			    int val)
{
	print_int(PRINT_ANY, label_json, val ? label_fp : "", val);
}
#define PRINT_INT_OPT(label, val)			\
	__print_int_opt(label, " " label " %d", (val))

/* Time print prints normally with varying units, but for JSON prints
 * in seconds (1ms vs 0.001).
 */
static void __print_time64(const char *label_json, const char *label_fp,
			   __u64 val)
{
	SPRINT_BUF(b1);

	print_string(PRINT_FP, NULL, label_fp, sprint_time64(val, b1));
	print_float(PRINT_JSON, label_json, NULL, val / 1000000000.);
}
#define __PRINT_TIME64(label_json, label_fp, val)	\
	__print_time64(label_json, label_fp " %s", (val))
#define PRINT_TIME64(label, val) __PRINT_TIME64(label, " " label, (val))

/* Percent print prints normally in percentage points, but for JSON prints
 * an absolute value (1% vs 0.01).
 */
static void __print_percent(const char *label_json, const char *label_fp,
			    __u32 per)
{
	print_float(PRINT_FP, NULL, label_fp, (100. * per) / UINT32_MAX);
	print_float(PRINT_JSON, label_json, NULL, (1. * per) / UINT32_MAX);
}
#define __PRINT_PERCENT(label_json, label_fp, per)		\
	__print_percent(label_json, label_fp " %g%%", (per))
#define PRINT_PERCENT(label, per) __PRINT_PERCENT(label, " " label, (per))

/* scaled value used to percent of maximum. */
static void set_percent(__u32 *percent, double per)
{
	*percent = rint(per * UINT32_MAX);
}

static int get_percent(__u32 *percent, const char *str)
{
	double per;

	if (parse_percent(&per, str))
		return -1;

	set_percent(percent, per);
	return 0;
}

static void print_corr(bool present, __u32 value)
{
	if (!is_json_context()) {
		if (present)
			__PRINT_PERCENT("", "", value);
	} else {
		PRINT_PERCENT("correlation", value);
	}
}

/*
 * Simplistic file parser for distrbution data.
 * Format is:
 *	# comment line(s)
 *	data0 data1 ...
 */
static int get_distribution(const char *type, __s16 *data, int maxdata)
{
	FILE *f;
	int n;
	long x;
	size_t len;
	char *line = NULL;
	char name[128];

	snprintf(name, sizeof(name), "%s/%s.dist", get_tc_lib(), type);
	if ((f = fopen(name, "r")) == NULL) {
		fprintf(stderr, "No distribution data for %s (%s: %s)\n",
			type, name, strerror(errno));
		return -1;
	}

	n = 0;
	while (getline(&line, &len, f) != -1) {
		char *p, *endp;

		if (*line == '\n' || *line == '#')
			continue;

		for (p = line; ; p = endp) {
			x = strtol(p, &endp, 0);
			if (endp == p)
				break;

			if (n >= maxdata) {
				fprintf(stderr, "%s: too much data\n",
					name);
				n = -1;
				goto error;
			}
			data[n++] = x;
		}
	}
 error:
	free(line);
	fclose(f);
	return n;
}

#define NEXT_IS_NUMBER() (NEXT_ARG_OK() && isdigit(argv[1][0]))
#define NEXT_IS_SIGNED_NUMBER() \
	(NEXT_ARG_OK() && (isdigit(argv[1][0]) || argv[1][0] == '-'))

/* Adjust for the fact that psched_ticks aren't always usecs
   (based on kernel PSCHED_CLOCK configuration */
static int get_ticks(__u32 *ticks, const char *str)
{
	unsigned int t;

	if (get_time(&t, str))
		return -1;

	if (tc_core_time2big(t)) {
		fprintf(stderr, "Illegal %u time (too large)\n", t);
		return -1;
	}

	*ticks = tc_core_time2tick(t);
	return 0;
}

static int netem_parse_opt(struct qdisc_util *qu, int argc, char **argv,
			   struct nlmsghdr *n, const char *dev)
{
	int dist_size = 0;
	int slot_dist_size = 0;
	struct rtattr *tail;
	struct tc_netem_qopt opt = { .limit = 1000 };
	struct tc_netem_corr cor = {};
	struct tc_netem_reorder reorder = {};
	struct tc_netem_corrupt corrupt = {};
	struct tc_netem_gimodel gimodel;
	struct tc_netem_gemodel gemodel;
	struct tc_netem_rate rate = {};
	struct tc_netem_slot slot = {};
	__s16 *dist_data = NULL;
	__s16 *slot_dist_data = NULL;
	__u16 loss_type = NETEM_LOSS_UNSPEC;
	int present[__TCA_NETEM_MAX] = {};
	__u64 rate64 = 0;

	for ( ; argc > 0; --argc, ++argv) {
		if (matches(*argv, "limit") == 0) {
			NEXT_ARG();
			if (get_size(&opt.limit, *argv)) {
				explain1("limit");
				return -1;
			}
		} else if (matches(*argv, "latency") == 0 ||
			   matches(*argv, "delay") == 0) {
			NEXT_ARG();
			if (get_ticks(&opt.latency, *argv)) {
				explain1("latency");
				return -1;
			}

			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				if (get_ticks(&opt.jitter, *argv)) {
					explain1("latency");
					return -1;
				}

				if (NEXT_IS_NUMBER()) {
					NEXT_ARG();
					++present[TCA_NETEM_CORR];
					if (get_percent(&cor.delay_corr, *argv)) {
						explain1("latency");
						return -1;
					}
				}
			}
		} else if (matches(*argv, "loss") == 0 ||
			   matches(*argv, "drop") == 0) {
			if (opt.loss > 0 || loss_type != NETEM_LOSS_UNSPEC) {
				explain1("duplicate loss argument\n");
				return -1;
			}

			NEXT_ARG();
			/* Old (deprecated) random loss model syntax */
			if (isdigit(argv[0][0]))
				goto random_loss_model;

			if (!strcmp(*argv, "random")) {
				NEXT_ARG();
			random_loss_model:
				if (get_percent(&opt.loss, *argv)) {
					explain1("loss percent");
					return -1;
				}
				if (NEXT_IS_NUMBER()) {
					NEXT_ARG();
					++present[TCA_NETEM_CORR];
					if (get_percent(&cor.loss_corr, *argv)) {
						explain1("loss correllation");
						return -1;
					}
				}
			} else if (!strcmp(*argv, "state")) {
				double p13;

				NEXT_ARG();
				if (parse_percent(&p13, *argv)) {
					explain1("loss p13");
					return -1;
				}

				/* set defaults */
				set_percent(&gimodel.p13, p13);
				set_percent(&gimodel.p31, 1. - p13);
				set_percent(&gimodel.p32, 0);
				set_percent(&gimodel.p23, 1.);
				set_percent(&gimodel.p14, 0);
				loss_type = NETEM_LOSS_GI;

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p31, *argv)) {
					explain1("loss p31");
					return -1;
				}

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p32, *argv)) {
					explain1("loss p32");
					return -1;
				}

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p23, *argv)) {
					explain1("loss p23");
					return -1;
				}
				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p14, *argv)) {
					explain1("loss p14");
					return -1;
				}

			} else if (!strcmp(*argv, "gemodel")) {
				double p;

				NEXT_ARG();
				if (parse_percent(&p, *argv)) {
					explain1("loss gemodel p");
					return -1;
				}
				set_percent(&gemodel.p, p);

				/* set defaults */
				set_percent(&gemodel.r, 1. - p);
				set_percent(&gemodel.h, 0);
				set_percent(&gemodel.k1, 0);
				loss_type = NETEM_LOSS_GE;

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gemodel.r, *argv)) {
					explain1("loss gemodel r");
					return -1;
				}

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gemodel.h, *argv)) {
					explain1("loss gemodel h");
					return -1;
				}
				/* netem option is "1-h" but kernel
				 * expects "h".
				 */
				gemodel.h = UINT32_MAX - gemodel.h;

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gemodel.k1, *argv)) {
					explain1("loss gemodel k");
					return -1;
				}
			} else {
				fprintf(stderr, "Unknown loss parameter: %s\n",
					*argv);
				return -1;
			}
		} else if (matches(*argv, "ecn") == 0) {
			present[TCA_NETEM_ECN] = 1;
		} else if (matches(*argv, "reorder") == 0) {
			NEXT_ARG();
			present[TCA_NETEM_REORDER] = 1;
			if (get_percent(&reorder.probability, *argv)) {
				explain1("reorder");
				return -1;
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				++present[TCA_NETEM_CORR];
				if (get_percent(&reorder.correlation, *argv)) {
					explain1("reorder");
					return -1;
				}
			}
		} else if (matches(*argv, "corrupt") == 0) {
			NEXT_ARG();
			present[TCA_NETEM_CORRUPT] = 1;
			if (get_percent(&corrupt.probability, *argv)) {
				explain1("corrupt");
				return -1;
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				++present[TCA_NETEM_CORR];
				if (get_percent(&corrupt.correlation, *argv)) {
					explain1("corrupt");
					return -1;
				}
			}
		} else if (matches(*argv, "gap") == 0) {
			NEXT_ARG();
			if (get_u32(&opt.gap, *argv, 0)) {
				explain1("gap");
				return -1;
			}
		} else if (matches(*argv, "duplicate") == 0) {
			NEXT_ARG();
			if (get_percent(&opt.duplicate, *argv)) {
				explain1("duplicate");
				return -1;
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				if (get_percent(&cor.dup_corr, *argv)) {
					explain1("duplicate");
					return -1;
				}
			}
		} else if (matches(*argv, "distribution") == 0) {
			NEXT_ARG();
			dist_data = calloc(sizeof(dist_data[0]), MAX_DIST);
			dist_size = get_distribution(*argv, dist_data, MAX_DIST);
			if (dist_size <= 0) {
				free(dist_data);
				return -1;
			}
		} else if (matches(*argv, "rate") == 0) {
			++present[TCA_NETEM_RATE];
			NEXT_ARG();
			if (strchr(*argv, '%')) {
				if (get_percent_rate64(&rate64, *argv, dev)) {
					explain1("rate");
					return -1;
				}
			} else if (get_rate64(&rate64, *argv)) {
				explain1("rate");
				return -1;
			}
			if (NEXT_IS_SIGNED_NUMBER()) {
				NEXT_ARG();
				if (get_s32(&rate.packet_overhead, *argv, 0)) {
					explain1("rate");
					return -1;
				}
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				if (get_u32(&rate.cell_size, *argv, 0)) {
					explain1("rate");
					return -1;
				}
			}
			if (NEXT_IS_SIGNED_NUMBER()) {
				NEXT_ARG();
				if (get_s32(&rate.cell_overhead, *argv, 0)) {
					explain1("rate");
					return -1;
				}
			}
		} else if (matches(*argv, "slot") == 0) {
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				present[TCA_NETEM_SLOT] = 1;
				if (get_time64(&slot.min_delay, *argv)) {
					explain1("slot min_delay");
					return -1;
				}
				if (NEXT_IS_NUMBER()) {
					NEXT_ARG();
					if (get_time64(&slot.max_delay, *argv) ||
					    slot.max_delay < slot.min_delay) {
						explain1("slot max_delay");
						return -1;
					}
				} else {
					slot.max_delay = slot.min_delay;
				}
			} else {
				NEXT_ARG();
				if (strcmp(*argv, "distribution") == 0) {
					present[TCA_NETEM_SLOT] = 1;
					NEXT_ARG();
					slot_dist_data = calloc(sizeof(slot_dist_data[0]), MAX_DIST);
					if (!slot_dist_data)
						return -1;
					slot_dist_size = get_distribution(*argv, slot_dist_data, MAX_DIST);
					if (slot_dist_size <= 0) {
						free(slot_dist_data);
						return -1;
					}
					NEXT_ARG();
					if (get_time64(&slot.dist_delay, *argv)) {
						explain1("slot delay");
						return -1;
					}
					NEXT_ARG();
					if (get_time64(&slot.dist_jitter, *argv)) {
						explain1("slot jitter");
						return -1;
					}
					if (slot.dist_jitter <= 0) {
						fprintf(stderr, "Non-positive jitter\n");
						return -1;
					}
				} else {
					fprintf(stderr, "Unknown slot parameter: %s\n",
						*argv);
					return -1;
				}
			}
			if (NEXT_ARG_OK() &&
			    matches(*(argv+1), "packets") == 0) {
				NEXT_ARG();
				if (!NEXT_ARG_OK() ||
				    get_s32(&slot.max_packets, *(argv+1), 0)) {
					explain1("slot packets");
					return -1;
				}
				NEXT_ARG();
			}
			if (NEXT_ARG_OK() &&
			    matches(*(argv+1), "bytes") == 0) {
				unsigned int max_bytes;
				NEXT_ARG();
				if (!NEXT_ARG_OK() ||
				    get_size(&max_bytes, *(argv+1))) {
					explain1("slot bytes");
					return -1;
				}
				slot.max_bytes = (int) max_bytes;
				NEXT_ARG();
			}
		} else if (strcmp(*argv, "help") == 0) {
			explain();
			return -1;
		} else {
			fprintf(stderr, "What is \"%s\"?\n", *argv);
			explain();
			return -1;
		}
	}

	tail = NLMSG_TAIL(n);

	if (reorder.probability) {
		if (opt.latency == 0) {
			fprintf(stderr, "reordering not possible without specifying some delay\n");
			explain();
			return -1;
		}
		if (opt.gap == 0)
			opt.gap = 1;
	} else if (opt.gap > 0) {
		fprintf(stderr, "gap specified without reorder probability\n");
		explain();
		return -1;
	}

	if (present[TCA_NETEM_ECN]) {
		if (opt.loss <= 0 && loss_type == NETEM_LOSS_UNSPEC) {
			fprintf(stderr, "ecn requested without loss model\n");
			explain();
			return -1;
		}
	}

	if (dist_data && (opt.latency == 0 || opt.jitter == 0)) {
		fprintf(stderr, "distribution specified but no latency and jitter values\n");
		explain();
		return -1;
	}

	if (addattr_l(n, 1024, TCA_OPTIONS, &opt, sizeof(opt)) < 0)
		return -1;

	if (present[TCA_NETEM_CORR] &&
	    addattr_l(n, 1024, TCA_NETEM_CORR, &cor, sizeof(cor)) < 0)
		return -1;

	if (present[TCA_NETEM_REORDER] &&
	    addattr_l(n, 1024, TCA_NETEM_REORDER, &reorder, sizeof(reorder)) < 0)
		return -1;

	if (present[TCA_NETEM_ECN] &&
	    addattr_l(n, 1024, TCA_NETEM_ECN, &present[TCA_NETEM_ECN],
		      sizeof(present[TCA_NETEM_ECN])) < 0)
		return -1;

	if (present[TCA_NETEM_CORRUPT] &&
	    addattr_l(n, 1024, TCA_NETEM_CORRUPT, &corrupt, sizeof(corrupt)) < 0)
		return -1;

	if (present[TCA_NETEM_SLOT] &&
	    addattr_l(n, 1024, TCA_NETEM_SLOT, &slot, sizeof(slot)) < 0)
		return -1;

	if (loss_type != NETEM_LOSS_UNSPEC) {
		struct rtattr *start;

		start = addattr_nest(n, 1024, TCA_NETEM_LOSS | NLA_F_NESTED);
		if (loss_type == NETEM_LOSS_GI) {
			if (addattr_l(n, 1024, NETEM_LOSS_GI,
				      &gimodel, sizeof(gimodel)) < 0)
				return -1;
		} else if (loss_type == NETEM_LOSS_GE) {
			if (addattr_l(n, 1024, NETEM_LOSS_GE,
				      &gemodel, sizeof(gemodel)) < 0)
				return -1;
		} else {
			fprintf(stderr, "loss in the weeds!\n");
			return -1;
		}

		addattr_nest_end(n, start);
	}

	if (present[TCA_NETEM_RATE]) {
		if (rate64 >= (1ULL << 32)) {
			if (addattr_l(n, 1024,
				      TCA_NETEM_RATE64, &rate64, sizeof(rate64)) < 0)
				return -1;
			rate.rate = ~0U;
		} else {
			rate.rate = rate64;
		}
		if (addattr_l(n, 1024, TCA_NETEM_RATE, &rate, sizeof(rate)) < 0)
			return -1;
	}

	if (dist_data) {
		if (addattr_l(n, MAX_DIST * sizeof(dist_data[0]),
			      TCA_NETEM_DELAY_DIST,
			      dist_data, dist_size * sizeof(dist_data[0])) < 0)
			return -1;
		free(dist_data);
	}

	if (slot_dist_data) {
		if (addattr_l(n, MAX_DIST * sizeof(slot_dist_data[0]),
			      TCA_NETEM_SLOT_DIST,
			      slot_dist_data, slot_dist_size * sizeof(slot_dist_data[0])) < 0)
			return -1;
		free(slot_dist_data);
	}
	tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail;
	return 0;
}

static int netem_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	const struct tc_netem_corr *cor = NULL;
	const struct tc_netem_reorder *reorder = NULL;
	const struct tc_netem_corrupt *corrupt = NULL;
	const struct tc_netem_gimodel *gimodel = NULL;
	const struct tc_netem_gemodel *gemodel = NULL;
	int *ecn = NULL;
	struct tc_netem_qopt qopt;
	const struct tc_netem_rate *rate = NULL;
	const struct tc_netem_slot *slot = NULL;
	int len;
	__u64 rate64 = 0;

	SPRINT_BUF(b1);

	if (opt == NULL)
		return 0;

	len = RTA_PAYLOAD(opt) - sizeof(qopt);
	if (len < 0) {
		fprintf(stderr, "options size error\n");
		return -1;
	}
	memcpy(&qopt, RTA_DATA(opt), sizeof(qopt));

	if (len > 0) {
		struct rtattr *tb[TCA_NETEM_MAX+1];

		parse_rtattr(tb, TCA_NETEM_MAX, RTA_DATA(opt) + sizeof(qopt),
			     len);

		if (tb[TCA_NETEM_CORR]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_CORR]) < sizeof(*cor))
				return -1;
			cor = RTA_DATA(tb[TCA_NETEM_CORR]);
		}
		if (tb[TCA_NETEM_REORDER]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_REORDER]) < sizeof(*reorder))
				return -1;
			reorder = RTA_DATA(tb[TCA_NETEM_REORDER]);
		}
		if (tb[TCA_NETEM_CORRUPT]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_CORRUPT]) < sizeof(*corrupt))
				return -1;
			corrupt = RTA_DATA(tb[TCA_NETEM_CORRUPT]);
		}
		if (tb[TCA_NETEM_LOSS]) {
			struct rtattr *lb[NETEM_LOSS_MAX + 1];

			parse_rtattr_nested(lb, NETEM_LOSS_MAX, tb[TCA_NETEM_LOSS]);
			if (lb[NETEM_LOSS_GI])
				gimodel = RTA_DATA(lb[NETEM_LOSS_GI]);
			if (lb[NETEM_LOSS_GE])
				gemodel = RTA_DATA(lb[NETEM_LOSS_GE]);
		}
		if (tb[TCA_NETEM_RATE]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_RATE]) < sizeof(*rate))
				return -1;
			rate = RTA_DATA(tb[TCA_NETEM_RATE]);
		}
		if (tb[TCA_NETEM_ECN]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_ECN]) < sizeof(*ecn))
				return -1;
			ecn = RTA_DATA(tb[TCA_NETEM_ECN]);
		}
		if (tb[TCA_NETEM_RATE64]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_RATE64]) < sizeof(rate64))
				return -1;
			rate64 = rta_getattr_u64(tb[TCA_NETEM_RATE64]);
		}
		if (tb[TCA_NETEM_SLOT]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_SLOT]) < sizeof(*slot))
				return -1;
			slot = RTA_DATA(tb[TCA_NETEM_SLOT]);
		}
	}

	print_uint(PRINT_ANY, "limit", "limit %d", qopt.limit);

	if (qopt.latency) {
		open_json_object("delay");
		if (!is_json_context()) {
			print_string(PRINT_FP, NULL, " delay %s",
				     sprint_ticks(qopt.latency, b1));

			if (qopt.jitter)
				print_string(PRINT_FP, NULL, "  %s",
					     sprint_ticks(qopt.jitter, b1));
		} else {
			print_float(PRINT_JSON, "delay", NULL,
				    tc_core_tick2time(qopt.latency) /
				    1000000.);
			print_float(PRINT_JSON, "jitter", NULL,
				    tc_core_tick2time(qopt.jitter) /
				    1000000.);
		}
		print_corr(qopt.jitter && cor && cor->delay_corr,
			   cor ? cor->delay_corr : 0);
		close_json_object();
	}

	if (qopt.loss) {
		open_json_object("loss-random");
		PRINT_PERCENT("loss", qopt.loss);
		print_corr(cor && cor->loss_corr, cor ? cor->loss_corr : 0);
		close_json_object();
	}

	if (gimodel) {
		open_json_object("loss-state");
		__PRINT_PERCENT("p13", " loss state p13", gimodel->p13);
		PRINT_PERCENT("p31", gimodel->p31);
		PRINT_PERCENT("p32", gimodel->p32);
		PRINT_PERCENT("p23", gimodel->p23);
		PRINT_PERCENT("p14", gimodel->p14);
		close_json_object();
	}

	if (gemodel) {
		open_json_object("loss-gemodel");
		__PRINT_PERCENT("p", " loss gemodel p", gemodel->p);
		PRINT_PERCENT("r", gemodel->r);
		PRINT_PERCENT("1-h", UINT32_MAX - gemodel->h);
		PRINT_PERCENT("1-k", gemodel->k1);
		close_json_object();
	}

	if (qopt.duplicate) {
		open_json_object("duplicate");
		PRINT_PERCENT("duplicate", qopt.duplicate);
		print_corr(cor && cor->dup_corr, cor ? cor->dup_corr : 0);
		close_json_object();
	}

	if (reorder && reorder->probability) {
		open_json_object("reorder");
		PRINT_PERCENT("reorder", reorder->probability);
		print_corr(reorder->correlation, reorder->correlation);
		close_json_object();
	}

	if (corrupt && corrupt->probability) {
		open_json_object("corrupt");
		PRINT_PERCENT("corrupt", corrupt->probability);
		print_corr(corrupt->correlation, corrupt->correlation);
		close_json_object();
	}

	if (rate && rate->rate) {
		open_json_object("rate");
		rate64 = rate64 ? : rate->rate;
		print_string(PRINT_FP, NULL, " rate %s",
			     sprint_rate(rate64, b1));
		print_lluint(PRINT_JSON, "rate", NULL, rate64);
		PRINT_INT_OPT("packetoverhead", rate->packet_overhead);
		print_uint(PRINT_ANY, "cellsize",
			   rate->cell_size ? " cellsize %u" : "",
			   rate->cell_size);
		PRINT_INT_OPT("celloverhead", rate->cell_overhead);
		close_json_object();
	}

	if (slot) {
		open_json_object("slot");
		if (slot->dist_jitter > 0) {
			__PRINT_TIME64("distribution", " slot distribution",
				       slot->dist_delay);
			__PRINT_TIME64("jitter", "", slot->dist_jitter);
		} else {
			__PRINT_TIME64("min-delay", " slot", slot->min_delay);
			__PRINT_TIME64("max-delay", "", slot->max_delay);
		}
		PRINT_INT_OPT("packets", slot->max_packets);
		PRINT_INT_OPT("bytes", slot->max_bytes);
		close_json_object();
	}

	print_bool(PRINT_ANY, "ecn", ecn ? " ecn " : "", ecn);
	print_luint(PRINT_ANY, "gap", qopt.gap ? " gap %lu" : "",
		    (unsigned long)qopt.gap);

	return 0;
}

struct qdisc_util netem_qdisc_util = {
	.id		= "netem",
	.parse_qopt	= netem_parse_opt,
	.print_qopt	= netem_print_opt,
};