/* fft/hc_pass_n.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_halfcomplex,pass_n) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t factor, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]) { size_t k, k1; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; size_t e1, e2; const double d_theta = 2.0 * M_PI / ((double) factor); const ATOMIC cos_d_theta = cos (d_theta); const ATOMIC sin_d_theta = sin (d_theta); for (k1 = 0; k1 < product_1; k1++) { /* compute z = W(factor) x, for x halfcomplex */ ATOMIC dw_real = 1.0, dw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC sum_real = 0.0; ATOMIC w_real = 1.0, w_imag = 0.0; if (e1 > 0) { ATOMIC tmp_real = dw_real * cos_d_theta - dw_imag * sin_d_theta; ATOMIC tmp_imag = dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = tmp_real; dw_imag = tmp_imag; } for (e2 = 0; e2 <= factor - e2; e2++) { ATOMIC z_real, z_imag; if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } if (e2 == 0) { size_t from_idx = factor * k1 * q; z_real = VECTOR(in,istride,from_idx); z_imag = 0.0; sum_real += w_real * z_real - w_imag * z_imag; } else if (e2 == factor - e2) { size_t from_idx = factor * q * k1 + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from_idx); z_imag = 0.0; sum_real += w_real * z_real; } else { size_t from_idx = factor * q * k1 + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from_idx); z_imag = VECTOR(in,istride,from_idx + 1); sum_real += 2 * (w_real * z_real - w_imag * z_imag); } } { const size_t to_idx = q * k1 + e1 * m; VECTOR(out,ostride,to_idx) = sum_real; } } } if (q == 1) return; for (k = 1; k < (q + 1) / 2; k++) { for (k1 = 0; k1 < product_1; k1++) { ATOMIC dw_real = 1.0, dw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC z_real, z_imag; ATOMIC sum_real = 0.0; ATOMIC sum_imag = 0.0; ATOMIC w_real = 1.0, w_imag = 0.0; if (e1 > 0) { ATOMIC t_real = dw_real * cos_d_theta - dw_imag * sin_d_theta; ATOMIC t_imag = dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = t_real; dw_imag = t_imag; } for (e2 = 0; e2 < factor; e2++) { if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } if (e2 < factor - e2) { const size_t from0 = factor * k1 * q + 2 * k + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from0); z_imag = VECTOR(in,istride,from0 + 1); } else { const size_t from0 = factor * k1 * q - 2 * k + 2 * (factor - e2) * q - 1; z_real = VECTOR(in,istride,from0); z_imag = -VECTOR(in,istride,from0 + 1); } sum_real += w_real * z_real - w_imag * z_imag; sum_imag += w_real * z_imag + w_imag * z_real; } if (k == 0 || e1 == 0) { w_real = 1.0; w_imag = 0.0; } else { size_t tskip = (q + 1) / 2 - 1; w_real = GSL_REAL(twiddle[k - 1 + tskip * (e1 - 1)]); w_imag = GSL_IMAG(twiddle[k - 1 + tskip * (e1 - 1)]); } { const size_t to0 = k1 * q + 2 * k + e1 * m - 1; VECTOR(out,ostride,to0) = w_real * sum_real - w_imag * sum_imag; VECTOR(out,ostride,to0 + 1) = w_real * sum_imag + w_imag * sum_real; } } } } if (q % 2 == 1) return; { double tw_arg = M_PI / ((double) factor); ATOMIC cos_tw_arg = cos (tw_arg); ATOMIC sin_tw_arg = sin (tw_arg); for (k1 = 0; k1 < product_1; k1++) { ATOMIC dw_real = 1.0, dw_imag = 0.0; ATOMIC tw_real = 1.0, tw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC w_real, w_imag, z_real, z_imag; ATOMIC sum_real = 0.0; if (e1 > 0) { ATOMIC tmp_real = tw_real * cos_tw_arg - tw_imag * sin_tw_arg; ATOMIC tmp_imag = tw_real * sin_tw_arg + tw_imag * cos_tw_arg; tw_real = tmp_real; tw_imag = tmp_imag; } w_real = tw_real; w_imag = tw_imag; if (e1 > 0) { ATOMIC t_real = dw_real * cos_d_theta - dw_imag * sin_d_theta; ATOMIC t_imag = dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = t_real; dw_imag = t_imag; } for (e2 = 0; e2 <= factor - e2 - 1; e2++) { if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } if (e2 == factor - e2 - 1) { const size_t from0 = factor * k1 * q + q + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from0); z_imag = 0.0; sum_real += w_real * z_real - w_imag * z_imag; } else { const size_t from0 = factor * k1 * q + q + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from0); z_imag = VECTOR(in,istride,from0 + 1); sum_real += 2 * (w_real * z_real - w_imag * z_imag); } } { const size_t to0 = k1 * q + q + e1 * m - 1; VECTOR(out,ostride,to0) = sum_real; } } } } return; }