/* fft/factorize.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include "factorize.h" static int fft_complex_factorize (const size_t n, size_t *nf, size_t factors[]) { const size_t complex_subtransforms[] = {7, 6, 5, 4, 3, 2, 0}; /* other factors can be added here if their transform modules are implemented. The end of the list is marked by 0. */ int status = fft_factorize (n, complex_subtransforms, nf, factors); return status; } static int fft_halfcomplex_factorize (const size_t n, size_t *nf, size_t factors[]) { const size_t halfcomplex_subtransforms[] = {5, 4, 3, 2, 0}; int status = fft_factorize (n, halfcomplex_subtransforms, nf, factors); return status; } static int fft_real_factorize (const size_t n, size_t *nf, size_t factors[]) { const size_t real_subtransforms[] = {5, 4, 3, 2, 0}; int status = fft_factorize (n, real_subtransforms, nf, factors); return status; } static int fft_factorize (const size_t n, const size_t implemented_subtransforms[], size_t *n_factors, size_t factors[]) { size_t nf = 0; size_t ntest = n; size_t factor; size_t i = 0; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } if (n == 1) { factors[0] = 1; *n_factors = 1; return 0; } /* deal with the implemented factors first */ while (implemented_subtransforms[i] && ntest != 1) { factor = implemented_subtransforms[i]; while ((ntest % factor) == 0) { ntest = ntest / factor; factors[nf] = factor; nf++; } i++; } /* deal with any other even prime factors (there is only one) */ factor = 2; while ((ntest % factor) == 0 && (ntest != 1)) { ntest = ntest / factor; factors[nf] = factor; nf++; } /* deal with any other odd prime factors */ factor = 3; while (ntest != 1) { while ((ntest % factor) != 0) { factor += 2; } ntest = ntest / factor; factors[nf] = factor; nf++; } /* check that the factorization is correct */ { size_t product = 1; for (i = 0; i < nf; i++) { product *= factors[i]; } if (product != n) { GSL_ERROR ("factorization failed", GSL_ESANITY); } } *n_factors = nf; return 0; } static int fft_binary_logn (const size_t n) { size_t ntest ; size_t binary_logn = 0 ; size_t k = 1; while (k < n) { k *= 2; binary_logn++; } ntest = (1 << binary_logn) ; if (n != ntest ) { return -1 ; /* n is not a power of 2 */ } return binary_logn; }