/* fft/dft_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_dft_complex,forward) (const BASE data[], const size_t stride, const size_t n, BASE result[]) { gsl_fft_direction sign = gsl_fft_forward; int status = FUNCTION(gsl_dft_complex,transform) (data, stride, n, result, sign); return status; } int FUNCTION(gsl_dft_complex,backward) (const BASE data[], const size_t stride, const size_t n, BASE result[]) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_dft_complex,transform) (data, stride, n, result, sign); return status; } int FUNCTION(gsl_dft_complex,inverse) (const BASE data[], const size_t stride, const size_t n, BASE result[]) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_dft_complex,transform) (data, stride, n, result, sign); /* normalize inverse fft with 1/n */ { const ATOMIC norm = ONE / (ATOMIC)n; size_t i; for (i = 0; i < n; i++) { REAL(result,stride,i) *= norm; IMAG(result,stride,i) *= norm; } } return status; } int FUNCTION(gsl_dft_complex,transform) (const BASE data[], const size_t stride, const size_t n, BASE result[], const gsl_fft_direction sign) { size_t i, j, exponent; const double d_theta = 2.0 * ((int) sign) * M_PI / (double) n; /* FIXME: check that input length == output length and give error */ for (i = 0; i < n; i++) { ATOMIC sum_real = 0; ATOMIC sum_imag = 0; exponent = 0; for (j = 0; j < n; j++) { double theta = d_theta * (double) exponent; /* sum = exp(i theta) * data[j] */ ATOMIC w_real = (ATOMIC) cos (theta); ATOMIC w_imag = (ATOMIC) sin (theta); ATOMIC data_real = REAL(data,stride,j); ATOMIC data_imag = IMAG(data,stride,j); sum_real += w_real * data_real - w_imag * data_imag; sum_imag += w_real * data_imag + w_imag * data_real; exponent = (exponent + i) % n; } REAL(result,stride,i) = sum_real; IMAG(result,stride,i) = sum_imag; } return 0; }